Discrete and Algebraic Structures

Master Study Mathematics

MAT. 402
Winter Semester 2015/2016 \& 2016/17
(Due to organisational reasons register for the course at TU and KFU)

Parts I \& II

Contents

I Combinatorics and Graph Theory 1
1 Combinatorics 2
1.1 Basics 2
1.1.1 Binomial Coefficient and Binomial Theorem 2
1.1.2 Landau- and Asymptotic Notations 5
1.1.3 Useful Inequalities and Asymptotic Estimates 6
1.2 Recursions 7
1.2.1 Recursions 7
1.2.2 Linear recurrences 7
1.2.3 Non-linear recurrences 12
1.3 Generating Functions 13
1.3.1 Formal Power Series 13
1.3.2 Ordinary and Exponential Generating Functions 17
1.4 Symbolic method 20
1.4.1 Unlabelled combinatorial objects 20
1.4.2 Labelled combinatorial objects 25
1.5 Analytic Methods 28
1.5.1 Analytic functions 28
1.5.2 Cauchy's coefficient formula 29
1.5.3 Lagrange Inversion Theorem 29
1.5.4 Singularities 33
1.5.5 Meromorphic functions 33
1.5.6 Newton's generalised binomial theorem 34
1.5.7 Transfer theorem 35
1.5.8 Multiple singularities 36
2 Graph Theory 39
2.1 Matchings, Eulerian Tour and Hamiltorian Cycles 40
2.1.1 Basic Terminologies 40
2.1.2 Matchings 42
2.1.3 Eulerian Tours and Hamiltorian Cycles 44
2.2 Graph Decompositions 46
2.2.1 Connected Graphs 46
2.2.2 2-Connected Graphs 46
CONTENTS ii
2.2.3 3-Connected Graphs 48
2.3 Planar Graphs and Trees 49
2.3.1 Planar and Plane Graphs 49
2.3.2 Trees 51
3 Stochastic Aspects 55
3.1 Basics 56
3.2 Ramsey Number 59
3.3 Independence Number 63
3.4 Subgraphs and Second Moment Method 64

Part I

Combinatorics and Graph Theory

Chapter 1

Standard Methods of Enumerative Combinatorics

Lecture 1

1.1 Basics

1.1.1 Binomial Coefficient and Binomial Theorem

Definition 1 (Set of integers).

$$
[n]:=\{1,2, \ldots, n\}
$$

Definition 2 (Factorial). For any $n \in \mathbb{N} \cup\{0\}$,

$$
\begin{aligned}
& n!:=n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1=\prod_{i=0}^{n-1}(n-i) \\
& 0!:=1
\end{aligned}
$$

Definition 3 (Falling factorial). For any $n, k \in \mathbb{N} \cup\{0\}$ satisfying $k \leq n$,

$$
\begin{aligned}
& (n)_{k}:=n \cdot(n-1) \cdot \ldots \cdot(n-k+1)=\prod_{i=0}^{k-1}(n-i) \\
& (n)_{0}:=1
\end{aligned}
$$

Definition 4 (Binomial coefficient). For any $n, k \in \mathbb{N} \cup\{0\}$,

$$
\binom{n}{k}:= \begin{cases}\frac{n!}{(n-k)!k!}=\frac{n \cdot(n-1) \cdot \ldots \cdot(n-k+1)}{k!} & \text { if } k \leq n \\ 0 & \text { if } k>n\end{cases}
$$

Definition 5 (Multinomial coefficient). For any $n, k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{N} \cup\{0\}$ satisfying $n=k_{1}+k_{2}+\ldots+k_{m}$,

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}:=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}
$$

Properties 1. For any $n, k \in \mathbb{N} \cup\{0\}$ satisfying $k \leq n$,

$$
\begin{aligned}
\binom{n}{k} & =\binom{n}{n-k} \\
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k}
\end{aligned}
$$

For any $k, m, n \in \mathbb{N}$,

$$
\binom{n+m}{k}=\sum_{\ell=0}^{k}\binom{n}{\ell} \cdot\binom{m}{k-\ell}
$$

Theorem 1 (Binomial theorem). For any $n \in \mathbb{N}$,

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

where x is a formal variable or $x \in \mathbb{C}$.

Theorem 2 (Multinomial theorem). For any $n \in \mathbb{N}$,

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{2}}
$$

where the sum is over all $k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{N} \cup\{0\}$ satisfying $n=k_{1}+k_{2}+\ldots+k_{m}$.
Applying the binomial theorem with $x=1$ and $x=-1$ we have

$$
\begin{aligned}
& 2^{n}=\sum_{i=0}^{n}\binom{n}{k} \\
& 0=\sum_{i=0}^{n}(-1)^{k}\binom{n}{k}
\end{aligned}
$$

Example 1 (Subsets). The number of all subsets of $[n]$ is equal to

$$
\sum_{i=0}^{n}\binom{n}{k}=2^{n}
$$

Example 2 (Subsets of odd sizes).
To calculate the number of subsets of $[n]$ of odd sizes, we observe that

$$
\begin{aligned}
2^{n} & =\sum_{i=0}^{n}\binom{n}{k}+\sum_{i=0}^{n}(-1)^{k}\binom{n}{k} \\
& =2\left[\binom{n}{0}+\binom{n}{2}+\cdots+\binom{n}{2 \cdot\lfloor n / 2\rfloor}\right]
\end{aligned}
$$

This implies that the number of subsets of $[n]$ of even sizes is 2^{n-1}, and therefore the number of subsets of $[n]$ of odd sizes is equal to

$$
2^{n}-2^{n-1}=2^{n-1}
$$

Definition 6 (Generalized binomial coefficient). For any $\alpha \in \mathbb{C}$ and $k \in \mathbb{N}$,

$$
\binom{\alpha}{k}:=\frac{\alpha \cdot(\alpha-1) \cdot \ldots \cdot(\alpha-k+1)}{k!}
$$

(1) Note that the denominator has k terms.
(2) If α is in \mathbb{N} and $k>\alpha,\binom{\alpha}{k}=0$ as in Definition 4.

Example 3.

$$
\begin{aligned}
\binom{\frac{1}{2}}{k} & :=\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right) \cdot \ldots \cdot\left(\frac{1}{2}-k+1\right)}{k!} \\
& =\frac{1 \cdot(1-2) \cdot \ldots \cdot(1-2(k-1))}{2^{k} k!} \\
& =\frac{(-1)^{k-1}}{4^{k}(2 k-1)}\binom{2 k}{k}
\end{aligned}
$$

Theorem 3 (Generalized binomial theorem). For any $\alpha \in \mathbb{C}$ and $x \in \mathbb{C}$ with $|x|<1$,

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

Example 4.

$$
\begin{aligned}
(1-x)^{\frac{1}{2}} & =\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(-x)^{k} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{4^{k}(2 k-1)}\binom{2 k}{k}(-x)^{k} \\
& =-\sum_{k=0}^{\infty} \frac{1}{4^{k}(2 k-1)}\binom{2 k}{k} x^{k}
\end{aligned}
$$

1.1.2 Landau- and Asymptotic Notations

(1) $O(g(n)):=\left\{f(n): \quad \exists c>0, \exists n_{0} \in \mathbb{N}\right.$ s.t. $\left.\forall n \geq n_{0}|f(n)| \leq c \cdot|g(n)|\right\}$

$$
=\left\{f(n): \quad \lim \sup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}<\infty\right\}
$$

$$
f(n)=O(g(n))
$$

$$
" f(n) \text { is Big Oh of } g(n) "
$$

" $f(n)$ grows at most as fast as $g(n)$ ",
(2) $\Omega(g(n)):=\left\{f(n): \exists c>0, \exists n_{0} \in \mathbb{N}\right.$ s.t. $\left.\forall n \geq n_{0}|f(n)| \geq c \cdot|g(n)|\right\}$

$$
=\left\{f(n): \quad \liminf _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}>0\right\}
$$

$f(n)=\Omega(g(n))$
" $f(n)$ is Big Omega of $g(n)$ "
$" f(n)$ grows at least as fast as $g(n) "$,
(3) $\Theta(g(n)):=O(g(n)) \cap \Omega(g(n))$
$f(n)=\Theta(g(n))$
" $f(n)$ is Big Theta of $g(n)$ "
" $f(n)$ grows as fast as $g(n)$ ",
(4) $o(g(n)):=\left\{f(n): \forall c>0, \exists n_{0} \in \mathbb{N}\right.$ s.t. $\left.\forall n \geq n_{0}|f(n)| \leq c \cdot|g(n)|\right\}$

$$
=\left\{f(n): \quad \lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}=0\right\}
$$

$f(n)=o(g(n)) \quad$ or $\quad f(n) \ll g(n)$
" $f(n)$ is Small Oh of $g(n) "$
" $f(n)$ grows slower than $g(n) "$,
(5) $\omega(g(n)):=\left\{f(n): \forall c>0, \exists n_{0} \in \mathbb{N}\right.$ s.t. $\left.\forall n \geq n_{0}|f(n)| \geq c \cdot|g(n)|\right\}$

$$
=\left\{f(n): \quad \lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}=\infty\right\}
$$

$f(n)=\omega(g(n)) \quad$ or $\quad f(n) \gg g(n)$
" $f(n)$ is omega of $g(n)$ "
$" f(n)$ grows faster than $g(n) "$,
(6)

$$
f(n) \sim g(n) \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

" $f(n)$ is of order of $g(n)$ "
" $f(n)$ is asymptotically equal to $g(n)$ ",

Example 5.

$1+\frac{1}{n}=1+o(1) \quad$ vs $\quad 1+\frac{1}{n^{2}}=1+o(1) \quad$ vs $\quad 1+\frac{1}{n^{2}+1000}=1+o(1)$

1.1.3 Useful Inequalities and Asymptotic Estimates

Theorem 4 (GM-AM-RMS inequality). For any $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{+}$,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

In words, "the geometric mean is smaller than the arithmetic mean, which is smaller than the root mean square".

Theorem 5 (Stirlings formula). For any $n \in \mathbb{N}$,

$$
\begin{aligned}
n! & =\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)\right) \\
& =(1+o(1)) \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
\end{aligned}
$$

Lemma 6 (Binomial coefficient approximation). For any $n, k \in \mathbb{N}$ satisfying $k \leq n$,

$$
\begin{aligned}
\left(\frac{n}{k}\right)^{k} & \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} \\
\binom{n}{k} & =2^{H\left(\frac{n}{k}\right) n+O(\log k)}
\end{aligned}
$$

where H is the Entropy function

$$
H(x):=-x \log _{2} x-(1-x) \log _{2}(1-x)
$$

Lecture 2

1.2 Recursions

1.2.1 Recursions

Example 6. Let a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ of numbers be given by a recursion

$$
\begin{cases}a_{0} & =0 \\ a_{n+1} & =2 a_{n}+1, \quad n \geq 0\end{cases}
$$

The sequence begins with $0,1,3,7,15,31, \ldots$
We add 1 in both sides of the latter equation to obtain

$$
a_{n+1}+1=2\left(a_{n}+1\right), \quad n \geq 0
$$

Then we have $a_{n}+1=2^{n}\left(a_{0}+1\right)=2^{n}$ and therefore the sequence is explicitly given by

$$
a_{n}=2^{n}-1, \quad n \geq 0
$$

Example 7. Let a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ of numbers be given by a recursion

$$
\begin{cases}a_{0} & =0 \\ a_{1} & =1 \\ a_{n+2} & =a_{n+1}+a_{n}, \quad n \geq 0\end{cases}
$$

This sequence is called Fibonacci sequence and begins with $0,1,1,2,3,5,8,13, \ldots$..
How can we derive the explicit form of the sequence?

1.2.2 Linear recurrences

Definition 7. We say that a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ satisfies a k-th order recurrence (or recursion) if a_{n} can be written as

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}\right), \quad n \geq k
$$

for a function $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$.

First-order linear recurrences

Theorem 7. A first-order linear recurrence with constant coefficients of the form

$$
\left\{\begin{array}{l}
a_{0}=0 \\
a_{n}=c_{n} \cdot a_{n-1}+d_{n}, \quad n \geq 1
\end{array}\right.
$$

with $c_{i} \neq 0$ has an explicit solution,

$$
a_{n}=d_{n}+\sum_{i=1}^{n-1} d_{i} c_{i+1} c_{i+2} \cdots c_{n}
$$

Proof. Divide both sides by $c_{n} c_{n-1} \cdots c_{1}$:

$$
\frac{a_{n}}{c_{n} c_{n-1} \cdots c_{1}}=\frac{a_{n-1}}{c_{n-1} c_{n-2} \cdots c_{1}}+\frac{d_{n}}{c_{n} c_{n-1} \cdots c_{1}} .
$$

Change of variables: let

$$
b_{n}=\frac{a_{n}}{c_{n} c_{n-1} \cdots c_{1}}
$$

We get the difference relation

$$
b_{n}=b_{n-1}+\frac{d_{n}}{c_{n} c_{n-1} \cdots c_{1}}
$$

that is,

$$
b_{n}-b_{n-1}=\frac{d_{n}}{c_{n} c_{n-1} \cdots c_{1}}
$$

Summing up, we get

$$
b_{n}=\sum_{i=1}^{n} \frac{d_{i}}{c_{i} c_{i-1} \cdots c_{1}}
$$

Thus, for a_{n} we have

$$
\begin{aligned}
a_{n} & =c_{n} c_{n-1} \cdots c_{1} \cdot\left(\sum_{i=1}^{n} \frac{d_{i}}{c_{i} c_{i-1} \cdots c_{1}}\right) \\
& =d_{n}+\sum_{i=1}^{n-1} d_{i} c_{i+1} c_{i+2} \cdots c_{n}
\end{aligned}
$$

Example 8. Returning to Example 6 we have

$$
\begin{cases}a_{0} & =0 \\ a_{n+1} & =2 a_{n}+1, \quad n \geq 0\end{cases}
$$

so taking $c_{i}=2, d_{i}=1$ for all i in Theorem 7 we have

$$
a_{n}=1+\sum_{i=1}^{n-1} 2^{n-i}=1+2^{n}\left(1-\left(\frac{1}{2}\right)^{n-1}\right)=2^{n}-1
$$

because $\sum_{i=1}^{n} r^{i}=\frac{r\left(1-r^{n}\right)}{1-r}$ for any $r \neq 1$.

Higher order linear recurrences with constant coefficients

Theorem 8. All solutions to the k-th order linear recurrence with constant coefficients $c_{1}, c_{2}, \ldots, c_{k}$

$$
a_{n}=c_{1} \cdot a_{n-1}+c_{2} \cdot a_{n-2}+\ldots+c_{k} \cdot a_{n-k}, \quad n \geq k
$$

can be expressed as linear combinations of terms of the form

$$
\alpha^{n}, n \alpha^{n}, n^{2} \alpha^{n}, \ldots, n^{m-1} \alpha^{n}
$$

where α is a root of order m of the characteristic polynomial

$$
q(z)=z^{k}-c_{1} \cdot z^{k-1}-c_{2} \cdot z^{k-2}-\ldots-c_{k} .
$$

Remark 1. If $q(z)=(z-\alpha)^{m} \cdot p(z)$ for some polynomial $p(z)$ where $(z-\alpha) \nmid p(z)$, i.e. α is a root of multiplicity m, then $q(\alpha)=q^{\prime}(\alpha)=\ldots=q^{(m-1)}(\alpha)=0$.

Proof of Theorem 8. Let α be a simple root of $q(z)$ (i.e. the multiplicity is 1) and $a_{n}=\alpha^{n}$. We want to check that a_{n} is a solution to the recurrence, i.e.

$$
\begin{aligned}
0 & \stackrel{!}{=} \alpha^{n}-c_{1} \alpha^{n-1}-c_{2} \alpha^{n-2}-\ldots-c_{k} \alpha^{n-k} \\
& =\alpha^{n-k} \cdot\left(\alpha^{k}-c_{1} \alpha^{k-1}-\ldots-c_{k}\right) \\
& =\alpha^{n-k} \cdot q(\alpha)=0
\end{aligned}
$$

Let α now be a root of multiplicity of m of $q(z)$. Then, for $0 \leq i \leq m-1, a_{n}=n^{i} \alpha^{n}$ is a solution to the recurrence because

$$
\begin{aligned}
& 0 \stackrel{!}{=} a_{n}-c_{1} \cdot a_{n-1}-c_{2} \cdot a_{n-2}-\ldots-c_{k} a_{n-k} \\
& =n^{i} \alpha^{n}-c_{1}(n-1)^{i} \alpha^{n-1}-c_{2}(n-2)^{i} \alpha^{n-2}-\ldots c_{k}(n-k)^{i} \alpha^{n-k} \\
& = \\
& =\alpha^{n-k} \cdot\left(n^{i} \alpha^{k}-c_{1}(n-1)^{i} \alpha^{k-1}-\ldots-c_{k}(n-k)^{i}\right) \\
& =\alpha^{n-k} \cdot\left((n-k)^{i} q(\alpha)+\alpha\left((n-k)^{i}-(n-k-1)^{i}\right) q^{\prime}(\alpha)+\right. \\
& \left.\quad \alpha^{2}\left(b_{0}(n-k)^{i}+b_{1}(n-k-1)^{i}+b_{2}(n-k-2)^{i}\right) q^{\prime \prime}(\alpha)+\ldots\right) \\
& = \\
& \alpha^{n-k} \cdot\left(\sum_{0 \leq j \leq i} \cdot\left(\sum_{0 \leq \ell \leq j} b_{j, l}(n-k-\ell)^{i}\right) q^{(j)}(\alpha)\right)=0,
\end{aligned}
$$

because of the previous remark; the $b_{j, \ell}$ are constants.
Furthermore, a linear combination of $\alpha^{n}, n \cdot \alpha^{n}, \ldots, n^{m-1} \alpha^{n}$ is also a solution to the recurrence.

If $q(z)$ has distinct roots $\alpha_{1}, \ldots, \alpha_{s}$ with multiplicities m_{1}, \ldots, m_{s} where $m_{1}+\ldots+$ $m_{s}=k$, then a linear combination of all these $n^{j} \cdot \alpha_{i}^{n}$ for $0 \leq j \leq m_{i}-1,1 \leq i \leq s$, i.e.

$$
a_{n}=\sum_{i=1}^{s}\left(b_{i, 0}+b_{i, 1} n+\ldots+b_{i, m_{i}-1} n^{m_{i}-1}\right) \cdot \alpha_{i}^{n}
$$

is also a solution to the recurrence.

We claim the opposite is also true. Let s be the set of sequences $\left\{a=\left(a_{n} \in \mathbb{R}\right)_{n \geq 0}\right\}$ and R be the set of solutions to the recurrence. Then R is closed under addition and scalar multiplication, and $R \neq \emptyset$. Therefore, R is a vector space.

We claim that R has dimension k. Consider a map f from R to \mathbb{R}^{k} :

$$
f: R \rightarrow \mathbb{R}^{k}, \quad a \mapsto\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right)
$$

This is a linear map and also an isomorphism, because any solution to the recurrence is uniquely determined by the k initial values. So, R has dimension k.

Therefore, R is given (generated) by linear combinations of any k linearly independent solutions to the recurrence. Now it suffices to show that the set of k solutions $\left\{n^{j} \alpha_{i}^{n} \mid 1 \leq j \leq m_{i}-1,1 \leq i \leq s\right\}$ to the recurrence is linearly independent. But this is true because these solutions have different orders of growth (in particular at ∞).

Example 9. Returning to Example 7 we consider the Fibonacci sequence

$$
\left\{\begin{array}{l}
a_{n}=a_{n-1}+a_{n-2}, \quad n \geq 2 \tag{1.1}\\
a_{0}=0, a_{1}=1
\end{array}\right.
$$

Its characteristic polynomial is

$$
q(z)=z^{2}-z-1=\left(z-\frac{1+\sqrt{5}}{2}\right) \cdot\left(z-\frac{1-\sqrt{5}}{2}\right)
$$

and the solution to the recurrence for a_{n} is

$$
\left\{\begin{array}{l}
a_{n}=r_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+r_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
a_{0}=0, a_{1}=1
\end{array}\right.
$$

From the initial conditions, we get $r_{1}=\frac{1}{\sqrt{5}}, r_{2}=-\frac{1}{\sqrt{5}}$. The explicit solution to (1.1) is

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Example 10. Consider the second order linear recurrence

$$
a_{n}=5 a_{n-1}-6 a_{n-2}, \quad n \geq 2
$$

with the initial conditions $a_{0}=0, a_{1}=1$.
The characteristic polynomial is

$$
q(z)=z^{2}-5 z+6=(z-2)(z-3)
$$

The solution will be of the form

$$
a_{n}=r_{1} 2^{n}+r_{2} 3^{n}
$$

Due to the initial conditions, $r_{1}=-1$ and $r_{2}=1$ and the solution is

$$
a_{n}=-2^{n}+3^{n} .
$$

This can be solved in Maple as follows:

```
rsolve({a(n)=5*a(n-1)-6*a(n-2),a(0)=0,a(1)=1},a(n));
```

In Mathematica:
RSolve $[\{\mathrm{a}[\mathrm{n}]==5 * \mathrm{a}[\mathrm{n}-1]-6 * \mathrm{a}[\mathrm{n}-2], \mathrm{a}[0]==0, \mathrm{a}[1]==1\}, \mathrm{a}[\mathrm{n}], \mathrm{n}]$
Exercise 1. Find initial conditions a_{0}, a_{1}, a_{2} for which the growth rate of the solution to the recurrence

$$
a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}, \quad n \geq 3
$$

is (a) constant, (b) exponential, and (c) fluctuating in sign.

Higher order linear recurrences with non-constant coefficients

Example 11. Consider the recurrence

$$
\left\{\begin{array}{l}
a_{n}=n a_{n-1}+n(n-1) a_{n-2}, \quad n \geq 2 \\
a_{0}=0, a_{1}=1
\end{array}\right.
$$

Divide by n ! to receive

$$
\frac{a_{n}}{n!}=\frac{a_{n-1}}{(n-1)!}+\frac{a_{n-2}}{(n-2)!}
$$

Change variables: let $b_{n}=\frac{a_{n}}{n!}$. Then we get the recurrence

$$
\left\{\begin{array}{l}
b_{n}=b_{n-1}+b_{n-2}, \quad n \geq 2 \\
b_{0}=0, b_{1}=1
\end{array}\right.
$$

for the Fibonacci sequence. From Example 9 we have

$$
b_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

This yields

$$
a_{n}=\frac{n!}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) .
$$

Exercise 2. Solve the recurrence

$$
\left\{\begin{array}{l}
n(n-1) a_{n}=(n-1) a_{n-1}+a_{n-2}, \quad n \geq 2 \\
a_{0}=0, a_{1}=1
\end{array}\right.
$$

1.2.3 Non-linear recurrences

Example 12. Consider the second order non-linear recurrence

$$
\left\{\begin{array}{l}
a_{n}=\sqrt{a_{n-1} \cdot a_{n-2}}, \quad n \geq 2 \\
a_{0}=1, a_{1}=2
\end{array}\right.
$$

We use the logarithm function, since

$$
\log _{a} x y=\log _{a} x+\log _{a} y
$$

Let $b_{n}=\log a_{n}$. We get

$$
\left\{\begin{array}{l}
b_{n}=\frac{1}{2}\left(b_{n-1}+b_{n-2}\right), \quad n \geq 2 \\
b_{0}=0, b_{1}=1
\end{array}\right.
$$

This can be solved similar to the previous linear recurrences.

Lecture 3

1.3 Generating Functions

1.3.1 Formal Power Series

Now let us return to Example 6.
Example 13. Let a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ of numbers be given by a recursion

$$
\begin{cases}a_{0} & =0 \tag{1.2}\\ a_{n+1} & =2 a_{n}+1, \quad n \geq 0\end{cases}
$$

and let z be a formal indeterminate variable.
Multiplying both sides of (1.2) by z^{n+1} and summing over $n \in \mathbb{N} \cup\{0\}$, we obtain

$$
\sum_{n=0}^{\infty} a_{n+1} z^{n+1}=\sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1}
$$

If it were true that $\sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1}=2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n}$, we would obtain

$$
\sum_{n=1}^{\infty} a_{n} z^{n}=2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n}
$$

Defining $A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}$ we have

$$
A(z)=2 z A(z)+z \sum_{n=0}^{\infty} z^{n} \quad \text { equiv. } \quad(1-2 z) A(z)=z \sum_{n=0}^{\infty} z^{n}
$$

because $a_{0}=0$. From this we we would further obtain

$$
\begin{aligned}
A(z) & \stackrel{?}{=} \frac{z}{1-2 z} \sum_{n=0}^{\infty} z^{n} \stackrel{?}{=} \frac{z}{1-2 z} \cdot \frac{1}{1-z}=2 z \frac{1}{1-2 z}-z \frac{1}{1-z} \\
& \stackrel{?}{=} 2 z \sum_{n=0}^{\infty}(2 z)^{n}-z \sum_{n=0}^{\infty} z^{n} \\
& \stackrel{?}{=} \sum_{n=1}^{\infty}(2 z)^{n}-\sum_{n=1}^{\infty} z^{n} \\
& \stackrel{?}{=} \sum_{n=1}^{\infty}\left(2^{n}-1\right) z^{n} \\
& =\sum_{n=0}^{\infty}\left(2^{n}-1\right) z^{n}
\end{aligned}
$$

if the following were true:

$$
\begin{align*}
& (1-2 z) A(z)=z \sum_{n=0}^{\infty} z^{n} \quad \stackrel{?}{\Longleftrightarrow} \quad A(z)=\frac{z}{1-2 z} \sum_{n=0}^{\infty} z^{n} \tag{1.3}\\
& \sum_{n=0}^{\infty}(a z)^{n} \stackrel{?}{=} \frac{1}{1-a z}, \quad a \in \mathbb{K} \tag{1.4}\\
& \sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1} \stackrel{?}{=} 2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n} \tag{1.5}
\end{align*}
$$

Summing up, we would have $\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty}\left(2^{n}-1\right) z^{n}$ and therefore $a_{n}=2^{n}-1$ for every $n \in \mathbb{N} \cup\{0\}$, by comparing the coefficients, if (1.3)-(1.5) were true. When are they true?

Definition 8 (Formal Power Series). Let \mathbb{K} denote a commutative ring, usually we take $\mathbb{K}=\mathbb{C}$. Given a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ with $a_{n} \in \mathbb{K}$ and a formal variable z, we call an infinite sum of the form

$$
A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n \geq 0} a_{n} z^{n}
$$

a formal power series. We call a_{n} the coefficient of z^{n} in $A(z)$ and use the notation

$$
\left[z^{n}\right] A(z):=a_{n} .
$$

The ring of formal power series is denoted by $\mathbb{K}[[z]]$ and endowed with the operations of addition and product:

$$
\begin{align*}
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)+\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right):=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n} \tag{1.6}\\
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right):=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) z^{n} \tag{1.7}
\end{align*}
$$

We often skip • for the product of two formal power series. As a special case of (1.7) we have, for any $a \in \mathbb{K}$,

$$
\begin{equation*}
a\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right)=\sum_{n=0}^{\infty} a b_{n} z^{n} \tag{1.8}
\end{equation*}
$$

Given a formal power series $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ we also define the following algebraic operations:

- Differentiation: $A^{\prime}(z):=\sum_{n \geq 1} n a_{n} z^{n-1}=\sum_{n \geq 0}(n+1) a_{n+1} z^{n}$.
- Integration: $\int_{0}^{z} A(t) \mathrm{d} t:=\sum_{n \geq 0} \frac{a_{n}}{n+1} z^{n+1}=\sum_{n \geq 1} \frac{a_{n-1}}{n} z^{n}$.

A formal power series $B(z):=\sum_{n=0}^{\infty} b_{n} z^{n}$ is called a reciprocal of a formal power series $A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}$ (and vice versa) if $A(z) B(z)=B(z) A(z)=1$.

Propostion 1. A formal power series $A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}$ has a reciprocal if and only if $a_{0} \neq 0$. In that case, the reciprocal is unique and so we denote the reciprocal of $A(z)$ by $\frac{1}{A(z)}$.

Proof. Exercise!
In Example 13 we wished to have

$$
\begin{aligned}
& (1-2 z) A(z)=1 \quad \stackrel{?}{\Longleftrightarrow} A(z)=\frac{1}{1-2 z} \\
& \sum_{n=0}^{\infty} z^{n} \stackrel{?}{=} \frac{1}{1-z}, \\
& \sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1} \stackrel{?}{=} 2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n} .
\end{aligned}
$$

From definition, equality $(1-2 z) A(z)=1$ and Proposition $1, A(z)$ is the (unique) reciprocal of $1-2 z$ and vice versa, so

$$
(1-2 z) A(z)=1 \quad \Longleftrightarrow \quad A(z)=\frac{1}{1-2 z}
$$

For the second equality $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$, we shall show that the reciprocal of the formal power series $A(z):=\sum_{n=0}^{\infty} z^{n}$ is $B(z):=1-z$ and vice versa. Letting $A(z):=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ with $a_{n}=1$ for $n \geq 0$ and $B(z):=\sum_{n=0}^{\infty} b_{n} z^{n}$ with $b_{0}=1, b_{1}=-1$ and $b_{n}=0$ for $n \geq 2$, we have

$$
A(z) B(z) \stackrel{(1.7)}{=} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) z^{n}=a_{0} b_{0}+\sum_{n=1}^{\infty}\left(a_{n-1} b_{1}+a_{n} b_{0}\right) z^{n}=1
$$

By Proposition 1, $A(z)$ is the unique reciprocal of $B(z)$ and so $A(z)=\frac{1}{B(z)}=\frac{1}{1-z}$, that is, we have

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}
$$

in the ring $\mathbb{K}[[z]]$.
Analogously one can show that for any $a \in \mathbb{K}$, the reciprocal of the formal power series $A(z):=\sum_{n=0}^{\infty}(a z)^{n}$ is $B(z):=1-a z$ and vice versa. In other words, for any $a \in \mathbb{K}$,

$$
\begin{equation*}
\sum_{n=0}^{\infty}(a z)^{n}=\frac{1}{1-a z} \tag{1.9}
\end{equation*}
$$

in the ring $\mathbb{K}[[z]]$.
For the third equality $\sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1}=2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n}$, we use (1.6) and (1.7) to have

$$
\sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1} \stackrel{(1.6)}{=} \quad \sum_{n=0}^{\infty} 2 a_{n} z^{n+1}+\sum_{n=0}^{\infty} z^{n+1} \stackrel{(1.7)}{=} 2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n}
$$

That is, $\sum_{n=0}^{\infty}\left(2 a_{n}+1\right) z^{n+1}=2 z \sum_{n=0}^{\infty} a_{n} z^{n}+z \sum_{n=0}^{\infty} z^{n}$ in the ring $\mathbb{K}[[z]]$.
Given a formal power series $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and a constant $\beta \in \mathbb{K}$ we have the following properties:

- $A(\beta z)=\sum_{n \geq 0} a_{n} \beta^{n} z^{n}, \quad$ so $\left[z^{n}\right] A(\beta z)=a_{n} \beta^{n}=\beta^{n} a_{n}=\beta^{n}\left[z^{n}\right] A(z) \quad$ (scaling)
- $\left(A(z)-a_{0}\right) / z=\sum_{n \geq 1} a_{n} z^{n-1}=\sum_{n \geq 0} a_{n+1} z^{n} \quad$ (left shift)
- $z A(z)=\sum_{n \geq 0} a_{n} z^{n+1}=\sum_{n \geq 1} a_{n-1} z^{n} \quad$ (right shift)
- $A(z) /(1-z)=A(z) \cdot \sum_{n \geq 0} z^{n}=\sum_{n \geq 0}\left(\sum_{0 \leq k \leq n} a_{k}\right) z^{n} \quad$ (partial sum)

Example 14. Let us study the recursion for the Fibonacci sequence

$$
\begin{cases}a_{0} & =0 \\ a_{1} & =1 \\ a_{n+2} & =a_{n+1}+a_{n}, \quad n \geq 0\end{cases}
$$

using the generating function $A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}$. Multiplying both sides of the recursion by z^{n+2} and summing over $n \in \mathbb{N} \cup\{0\}$, we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n+2} z^{n+2} & =\sum_{n=0}^{\infty}\left(a_{n+1}+a_{n}\right) z^{n+2} \\
\Longleftrightarrow \sum_{n=2}^{\infty} a_{n} z^{n} & =z \sum_{n=1}^{\infty} a_{n} z^{n}+z^{2} \sum_{n=0}^{\infty} a_{n} z^{n} \\
\Longleftrightarrow A(z)-z & =z A(z)+z^{2} A(z) \\
\Longleftrightarrow\left(1-z-z^{2}\right) A(z) & =z \\
\Longleftrightarrow A(z)=\frac{z}{1-z-z^{2}} & =\frac{1}{\beta_{1}-\beta_{2}}\left(\frac{1}{1-\beta_{1} z}-\frac{1}{1-\beta_{2} z}\right) \\
& \stackrel{(1.9)}{=} \frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty}\left(\beta_{1} z\right)^{n}-\sum_{n=0}^{\infty}\left(\beta_{2} z\right)^{n}\right) \\
& \stackrel{(1.7)}{=}\left(\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} \beta_{1}^{n} z^{n}-\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} \beta_{2}^{n} z^{n}\right) \\
& \stackrel{(1.6)}{=} \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}}\left(\beta_{1}^{n}-\beta_{2}^{n}\right) z^{n},
\end{aligned}
$$

where $\beta_{1}=\frac{1+\sqrt{5}}{2}$ and $\beta_{2}=\frac{1-\sqrt{5}}{2}$. Therefore we have

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right), \quad n \geq 0
$$

1.3.2 Ordinary and Exponential Generating Functions

Throughout the lecture we take $\mathbb{K}=\mathbb{C}$.
Definition 9 (Generating Functions). The ordinary generating function, OGF, of a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ is the formal power series

$$
A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

The exponential generating function, EGF, of a sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ is the formal power series

$$
A(z):=\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}
$$

Definition 10 (Combinatorial Class, Counting Sequence and Generating Function).

- A combinatorial class \mathscr{A} is a finite or denumerable set on which a size function is defined such that the size $|\alpha|$ of an element α is a non-negative integer and the number of elements of any given size is finite.
- An element of size 1 in a combinatorial class is an atom.
- Given a combinatorial class \mathscr{A} we denote by \mathscr{A}_{n} the set of elements in \mathscr{A} of size n for any $n \in \mathbb{N} \cup\{0\}$.
- The counting sequence of a combinatorial class \mathscr{A} is the sequence $\left(a_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ where a_{n} is the number of elements in \mathscr{A}_{n}, which is often denoted by $\left|\mathscr{A}_{n}\right|\left(\mathscr{A}_{n}\right.$ is also a combinatorial class).
- The ordinary generating function of a combinatorial class \mathscr{A} is the ordinary generating function of the sequence of numbers $a_{n}=\left|\mathscr{A}_{n}\right|$. Therefore we have

$$
A(z):=\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{\alpha \in \mathscr{A}} z^{|\alpha|} .
$$

Notation: $\quad\left[z^{n}\right] A(z):=a_{n}$.

- The exponential generating function of a combinatorial class \mathscr{A} is the exponential generating function of the sequence of numbers $a_{n}=\left|\mathscr{A}_{n}\right|$. Therefore we have

$$
A(z):=\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}=\sum_{\alpha \in \mathscr{A}} \frac{z^{|\alpha|}}{|\alpha|!}
$$

Notation: $\quad\left[z^{n}\right] A(z):=\frac{a_{n}}{n!}$.
We say the variable z marks the size in the generating function $A(z)$.
Two combinatorial classes are said to be combinatorially equivalent if their counting sequences are identical.

Propostion 2. For the product of two exponential generating functions we have

$$
\left(\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} \frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}\right) \frac{z^{n}}{n!} .
$$

Proof. Exercise!

Example 15 (Triangulations of Convex Polygon). Let \mathscr{T} denote the class of all triangulation of convex polygons with one distinguished edge, in which the size of a triangulation in \mathscr{T} is defined as the number of triangles it is composed of. Then \mathscr{T} is a combinatorial class. For $n \geq 1$ we let \mathscr{T}_{n} denote the class of all triangulation of convex polygons of size n and let $t_{n}:=\left|\mathscr{T}_{n}\right|$. Set $t_{0}:=1$. That is, \mathscr{T}_{n} is the set of all triangulations of convex $(n+2)$-gons (i.e. with n triangles) with one distinguished edge.

The sequence $\left(t_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ begins with $1,1,2,5,14,42, \ldots$
By deleting the triangle incident to the distinguished edge we obtain the recursion

$$
t_{n}=\sum_{k=0}^{n-1} t_{k} t_{n-1-k}, \quad n \geq 1
$$

Let $T(z):=\sum_{n=0}^{\infty} t_{n} z^{n}$ be the ordinary generating function of \mathscr{T}. Multiplying both sides of $t_{n}=\sum_{k=0}^{n-1} t_{k} t_{n-1-k}$ by z^{n} and summing over $n \geq 1$ we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} t_{n} z^{n}=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1} t_{k} t_{n-1-k}\right) z^{n} \\
\Longleftrightarrow \quad T(z)-t_{0}=z \sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1} t_{k} t_{n-1-k}\right) z^{n-1} \\
\Longleftrightarrow \quad T(z)-1=z \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} t_{k} t_{n-k}\right) z^{n} \\
T(z)-1 \stackrel{(1.8)}{=} z T(z)^{2} .
\end{gathered}
$$

Therefore $T(z)$ satisfies the quadratic equation

$$
z T(z)^{2}-T(z)+1=0
$$

among whose two solutions we choose

$$
T(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

because the coefficients of $T(z)$ are non-negative.
From this, we get for $n \geq 1$:

$$
\begin{aligned}
& t_{n}=\left[z^{n}\right] T(z)=-\frac{1}{2}\left[z^{n+1}\right] \sqrt{1-4 z} \\
& \quad \stackrel{\text { rescaling }}{=}-\frac{1}{2}(-4)^{n+1}\left[z^{n+1}\right](1+z)^{1 / 2}
\end{aligned}
$$

Using the generalised binomial theorem

$$
\left[z^{n+1}\right](1+z)^{1 / 2}=\binom{\frac{1}{2}}{n+1}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-n\right)}{(n+1)!}=\frac{(-1)^{n} \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1}(n+1)!}
$$

we obtain

$$
\begin{aligned}
t_{n} & =-\frac{1}{2}(-4)^{n+1} \frac{(-1)^{n} \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1}(n+1)!}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1) \cdot 2^{n}}{(n+1)!} \\
& =\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1) \cdot 2 \cdot 4 \cdot 6 \cdots(2 n)}{(n+1)!n!}=\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

Using Stirling's formula

$$
n!=\left(1+O\left(\frac{1}{n}\right)\right) \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n}
$$

we can derive the asymptotic number of triangulations of size n (i.e. of a convex $n+2$ gon)

$$
t_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{n+1} \frac{(2 n)!}{n!n!} \sim \frac{1}{\sqrt{\pi}} 4^{n} n^{-3 / 2}
$$

Lecture 4

1.4 Symbolic method

1.4.1 Unlabelled combinatorial objects

For a given combinatorial class \mathscr{A}, denote by \mathscr{A}_{n} the set of elements of size n in \mathscr{A}, and let $a_{n}=\left|\mathscr{A}_{n}\right|$. We say the OGF

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}=\sum_{\alpha \in \mathscr{A}} z^{|\alpha|}
$$

enumerates \mathscr{A}.

Basic constructions and OGF's

(1) \mathscr{E} is the neutral class that consists of a single element of size 0 . The OGF of \mathscr{E} is 1 .
(2) \mathscr{Z} is the atomic class that consists of a single element of size 1 . The OGF of \mathscr{Z} is z.
(3) The combinatorial sum (disjoint union) $\mathscr{A}+\mathscr{B}$ of two combinatorial classes \mathscr{A} and \mathscr{B} with $\mathscr{A} \cap \mathscr{B}=\emptyset$ is the set of objects consisting of two disjoint copies of \mathscr{A} and \mathscr{B}, in which the size of an element $\alpha \in \mathscr{A}+\mathscr{B}$ is defined as $|\alpha|_{\mathscr{A}}$ if $\alpha \in \mathscr{A}$ and $|\alpha|_{\mathscr{B}}$ if $\alpha \in \mathscr{B}$ (i.e. the size of an element in $\alpha \in \mathscr{A}+\mathscr{B}$ is inherited from its size in its class of origin). In order to formalise $\mathscr{A}+\mathscr{B}$ we introduce red marker to \mathscr{A} and blue marker to \mathscr{B}. The combinatorial sum $\mathscr{A}+\mathscr{B}$ is a well-defined combinatorial class. Its OGF satisfies

$$
\sum_{\alpha \in \mathscr{A}+\mathscr{B}} z^{|\alpha|}=\sum_{\alpha \in \mathscr{A}} z^{|\alpha|}+\sum_{\alpha \in \mathscr{B}} z^{|\alpha|} .
$$

(4) The Cartesian product $\mathscr{A} \times \mathscr{B}$ of two combinatorial classes \mathscr{A} and \mathscr{B} is defined as

$$
\mathscr{A} \times \mathscr{B}=\{(\alpha, \beta) \mid \alpha \in \mathscr{A}, \beta \in \mathscr{B}\},
$$

in which the size of a pair (α, β) is defined as $|\alpha|+|\beta|$. The Cartesian product $\mathscr{A} \times \mathscr{B}$ is a well-defined combinatorial class. Its OGF satisfies

$$
\sum_{(\alpha, \beta) \in \mathscr{A} \times \mathscr{B}} z^{|(\alpha, \beta)|}=\sum_{(\alpha, \beta) \in \mathscr{A} \times \mathscr{B}} z^{|\alpha|+|\beta|}=\sum_{\alpha \in \mathscr{A}} z^{|\alpha|}+\sum_{\beta \in \mathscr{B}} z^{|\beta|}=A(z) \cdot B(z) .
$$

For any $n \geq 1$, we define $\mathscr{A}^{n}=\mathscr{A}^{n-1} \times \mathscr{A}=\mathscr{A} \times \cdots \times \mathscr{A}$ recursively.
(5) The sequence $\operatorname{SEQ}(\mathscr{A})$ of a combinatorial class \mathscr{A} with $\mathscr{A}_{0}=\emptyset$ that consists of sequences of elements from \mathscr{A} is the infinite sum

$$
\mathscr{E}+\mathscr{A}+\mathscr{A}^{2}++\mathscr{A}^{3}+\ldots
$$

Note that the condition $\mathscr{A}_{0}=\emptyset$ (equiv. $a_{0}=0$) guarantees the finiteness condition for sizes, and therefore the sequence construction $\operatorname{SEQ}(\mathscr{A})$ is a well-defined combinatorial class. Its OGF satisfies

$$
1+A(z)+A(z)^{2}+A(z)^{3}+\ldots=\frac{1}{1-A(z)}
$$

where the latter equality is because $\left[z^{0}\right] A(z)=0$.
(6) The multiset construction $\operatorname{MSET}(\mathscr{A})$ of a combinatorial class \mathscr{A} with $\mathscr{A}_{0}=\emptyset$ is the collection of all finite multisets (i.e. repetition allowed) of elements from \mathscr{A}, more precisely, we define

$$
\operatorname{MSET}(\mathscr{A}):=\operatorname{SEQ}(\mathscr{A}) / \mathscr{R}
$$

where \mathscr{R} is the equivalence class of sequences defined by

$$
\left(\alpha_{1}, \ldots, \alpha_{n}\right) \sim_{\mathrm{R}}\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

iff there is a permutation σ of $[1 \ldots n]$ such that for all $1 \leq i \leq n, \beta_{i}=\alpha_{\sigma(i)}$.
We determine its generating sequence.
Case \mathscr{A} finite
For a finite set \mathscr{A}, we let $\alpha_{1}, \alpha_{2}, \ldots$ be a canonical listing of the elements of \mathscr{A}. Then any multiset can be sorted in such a way that it can be viewed as formed by a sequence of repeated elements of α_{1}, followed by a sequence of repeated elements of α_{2}, and so on. It follows that

$$
\operatorname{MSET}(\mathscr{A})=\prod_{\alpha \in A} \operatorname{SEQ}(\alpha)
$$

(a finite product). Therefore, the OGF of $\mathscr{C}=\operatorname{MSET}(\mathscr{A})$ satisfies

$$
C(z)=\prod_{\alpha \in \mathscr{A}} \frac{1}{1-z^{|\alpha|}}=\prod_{n \geq 1}\left(\frac{1}{1-z^{n}}\right)^{a_{n}}
$$

where the latter equality holds because $a_{0}=0$.
Consider the formal power series

$$
\exp (z):=\sum_{n \geq 0} \frac{z^{n}}{n!}, \quad \ln (z):=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n}(z-1)^{n}
$$

Applying the exp-ln transformation we have

$$
\begin{aligned}
C(z) & =\exp \left(\ln \left(\prod_{n \geq 1}\left(1-z^{n}\right)^{-a_{n}}\right)\right)=\exp \left(\sum_{n \geq 1} a_{n} \ln \left(\frac{1}{1-z^{n}}\right)\right) \\
& =\exp \left(\sum_{n \geq 1} a_{n} \sum_{k \geq 1} \frac{\left(z^{n}\right)^{k}}{k}\right)=\exp \left(\sum_{k \geq 1} \frac{1}{k} \sum_{n \geq 1} a_{n}\left(z^{k}\right)^{n}\right)=\exp \left(\sum_{k \geq 1} \frac{1}{k} A\left(z^{k}\right)\right) \\
& =\exp \left(A(z)+\frac{A\left(z^{2}\right)}{2}+\frac{A\left(z^{3}\right)}{3}+\ldots\right) .
\end{aligned}
$$

Infinite class \mathscr{A} : The case of infinite class \mathscr{A} follows by a limit argument.
(7) The power set construction $\operatorname{PSET}(\mathscr{A})$ of a combinatorial class \mathscr{A} with $\mathscr{A}_{0}=\emptyset$ is the collection of all finite subsets of \mathscr{A} (without repetition).
For a finite set \mathscr{A}, we have

$$
\operatorname{PSET}(\mathscr{A})=\prod_{\alpha \in \mathscr{A}}(\mathscr{E}+\{\alpha\})
$$

because the distributing the products in all possible ways forms all possible combinations of elements of \mathscr{A} (i.e. the sets of elements from \mathscr{A} without repetition). So, the OGF of $\mathscr{C}=\operatorname{PSET}(\mathscr{A})$ satisfies

$$
\begin{aligned}
C(z) & =\prod_{\alpha \in \mathscr{A}}\left(1+z^{|\alpha|}\right)=\prod_{n \geq 1}\left(1+z^{n}\right)^{a_{n}}=\exp \left(\sum_{n \geq 1} a_{n} \ln \left(1+z^{n}\right)\right) \\
& =\exp \left(\sum_{n \geq 1} a_{n} \sum_{k \geq 1}(-1)^{k-1} \frac{z^{n k}}{k}\right)=\exp \left(\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} A\left(z^{k}\right)\right) \\
& =\exp \left(A(z)-\frac{A\left(z^{2}\right)}{2}+\frac{A\left(z^{3}\right)}{3} \pm \ldots\right)
\end{aligned}
$$

(8) A further construction is the substitution (see Chapter 2, Example 1 for an example with substitution). Let \mathscr{B}, C be combinatorial classes. Then the substitution of \mathscr{C} into \mathscr{B} (or the composition of \mathscr{B} and \mathscr{C}), note d $\mathscr{B} \circ \mathscr{C}$ or $\mathscr{B}[\mathscr{C}]$ is defined as

$$
\mathscr{B} \circ \mathscr{C}=\mathscr{B}[\mathbb{C}]=\sum_{k \geq 0} \mathscr{B}_{k} \times \operatorname{SEQ}_{k}(\mathscr{C})
$$

$\mathscr{B}[\mathscr{C}]$ means "substitute elements of \mathscr{C} for atoms of \mathscr{B} ".

Applications

Example 16. A binary tree is a combinatorial structure that is recursively defined such that

- It is either a single external node \circ, or
- it consists of an internal node (the root $\bullet)$ and two binary trees attached to the root (left tree \triangle_{ℓ} and right tree \triangle_{r}),
or

Let \mathscr{B} denote the class of all binary trees, in which the size of a binary tree is defined as the number of internal nodes. Then \mathscr{B} is a combinatorial class. For $n \geq 0$ we let \mathscr{B}_{n} denote the class of all binary trees of size n and let $b_{n}:=\left|\mathscr{B}_{n}\right|$. (Note that if a binary tree has n internal nodes, then it has $n+1$ external nodes. Thus b_{n} counts the number of binary trees with $n+1$ external nodes.)

The sequence $\left(b_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ begins with $1,1,2,5,14,42, \ldots$ Let $B(z):=\sum_{n=0}^{\infty} b_{n} z^{n}$ be the ordinary generating function of the combinatorial class \mathscr{B}. We have $b_{0}=1$, since the only (binary) tree is \circ and for $n \geq 1$,

Thus its OGF satisfies

$$
B(z)=1+z B(z)^{2}
$$

The solution for the quadratic equation

$$
z B(z)^{2}-B(z)+1=0
$$

is

$$
B(z)=\frac{1 \pm \sqrt{1-4 z}}{2 z}
$$

Since $b_{n} \geq 0, B(z)$ increases along the real axis and therefore it increases. Thus the right solution of $B(z)$ is

$$
B(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

As in Example 15 we get for $n \geq 1$:

$$
b_{n}=\left[z^{n}\right] B(z)=-\frac{1}{2}\left[z^{n+1}\right] \sqrt{1-4 z}=\frac{1}{n+1}\binom{2 n}{n}
$$

Theorem 9 (Number of binary trees). The number b_{n} of binary trees with n internal nodes (equiv. $n+1$ external nodes) is given by the so-called Catalan number

$$
b_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Remark 2. Using Stirling's formula

$$
n!=\left(1+O\left(\frac{1}{n}\right)\right) \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n}
$$

we can derive the asymptotic number of binary trees

$$
b_{n}=\frac{1}{n+1}\binom{2 n}{n} \sim \frac{1}{\sqrt{\pi}} 4^{n} n^{-3 / 2}
$$

Example 17. Let us return to triangulations of convex polygons we saw in Example 15.
Let \mathscr{T}_{n} be the set of all triangulations of convex $(n+2)$-gons (n triangles) with one edge distinguished. Using the basic constructions described above we have

$$
\mathscr{T}=\biguplus_{n \geq 0} \mathscr{T}_{n}=\sum_{n \geq 0} \mathscr{T}_{n}, \quad \mathscr{T}_{0}=\mathscr{E}, \quad \mathscr{T}_{1}=\mathscr{Z}
$$

\mathscr{T}_{0} contains only one edge, \mathscr{T}_{1} one triangle. By removing one edge of the convex $(n+2)$-gon, we end up with two separate convex triangulations (sharing one node), so

$$
\mathscr{T}=\mathscr{E}+\mathscr{T} \times \mathscr{Z} \times \mathscr{T}
$$

$$
T(z)=1+z T^{2}(z)
$$

among whose two solutions we choose

$$
T(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

because the coefficients of $T(z)$ are non-negative.
As in Example 15,

$$
t_{n}=\left[z^{n}\right] T(z)=-\frac{1}{2}\left[z^{n+1}\right] \sqrt{1-4 z}=\ldots=\frac{1}{n+1}\binom{2 n}{n}
$$

This suggests a bijection between binary trees and triangulations, where each node corresponds to one triangle (or alternatively, the root node of a binary tree B corresponds to the distinguished edge of a triangulation T, and each internal node of B to a diagonal edge of T, and each external node to the external edges of T except the distinguished edge of T.

Example 18. Let \mathscr{S} be the set of binary strings with no two consecutive 0 bits; for example, $\emptyset, 0,1,01,10,11,010,011, \ldots$..

$$
\mathscr{S}=\mathscr{E}+\{0\}+\{1\} \times \mathscr{S}+\{01\} \times \mathscr{S} .
$$

From (3) and (4) in Section 1.4.1 we get

$$
S(z)=1+z+z S(z)+z^{2} S(z)
$$

and thus

$$
S(z)=\frac{1+z}{1-z-z^{2}}
$$

Exercise 3. Let $S(z)$ be as above.

- Find the closed solution form of $s_{n}=\left|\mathscr{S}_{n}\right|$.
- Find a recurrence of s_{n} that leads to $S(z)$.

1.4.2 Labelled combinatorial objects

A labelled combinatorial class \mathscr{A} is a combinatorial class, where each atom carries an integer label in such a way that the labels of atoms occurring in an object are distinct, and the collection of the labels of atoms occurring in an object of size n is the complete integer interval $[n]$.

Given a labelled combinatorial class \mathscr{A}, we consider the EGF

$$
A(z)=\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}=\sum_{\alpha \in \mathscr{A}} \frac{z^{|\alpha|}}{|\alpha|!}
$$

Basic constructions and EGFs

(1) Neutral class: \mathscr{E}. The EGF of \mathscr{E} is 1 .
(2) Atomic class: \mathscr{Z}. The EGF of \mathscr{Z} is z.
(3) Disjoint union: $\mathscr{A}+\mathscr{B}$, for \mathscr{A} and \mathscr{B} labelled combinatorial classes. The EGF of $\mathscr{A}+\mathscr{B}$ is $A(z)+B(z)$.
(4) Labelled product $\mathscr{A} * \mathscr{B}$ of two labelled combinatorial classes \mathscr{A} and \mathscr{B} is defined as

$$
\mathscr{A} * \mathscr{B}:=\sum_{\alpha \in \mathscr{A}, \beta \in \mathscr{B}} \alpha * \beta .
$$

Given $\alpha \in \mathscr{A}, \beta \in \mathscr{B}$, let $\alpha * \beta$ denote the set of all pairs ($\alpha^{\prime}, \beta^{\prime}$) where the atoms of $\left(\alpha^{\prime}, \beta^{\prime}\right)$ get distinct labels from $[n]$ where $n=|\alpha|+|\beta|$, such that the labelling preserves the relative order of labels of α, β. There are $\binom{|\alpha|+|\beta|}{|\alpha|}$ possibilities for such labelling (choose which labels go to the first substructure, then the previous relative order determines which label belongs to which element). In other words, if $\mathscr{C}=\mathscr{A} * \mathscr{B}, C(z)=A(z) \cdot B(z)$.
(5) Labelled sequence $\operatorname{SEQ}(\mathscr{A})$ of a (labelled) combinatorial class \mathscr{A} with $\mathscr{A}_{0}=\emptyset$ is defined as

$$
\operatorname{SEQ}(\mathscr{A})=\mathscr{E}+\mathscr{A}+\mathscr{A} * \mathscr{A}+\ldots=\sum_{k \geq 0} \operatorname{SEQ}_{k}(\mathscr{A})
$$

where $\operatorname{SEQ}_{k}(\mathscr{A})=\mathscr{A} * \cdots * \mathscr{A}$ is the labelled product of k copies of \mathscr{A}. The EGF of $\operatorname{SEQ}(\mathscr{A})$ satisfies

$$
1+A(z)+A(z)^{2}+A(z)^{3}+\ldots=\frac{1}{1-A(z)}
$$

(6) Set $\operatorname{SET}(\mathscr{A})$ of a (labelled) combinatorial class \mathscr{A} with $\mathscr{A}_{0}=\emptyset$ is defined as

$$
\operatorname{SET}(\mathscr{A}):=\operatorname{SEQ}(\mathscr{A}) / \mathscr{R}
$$

where \mathscr{R} is an equivalence relation such that $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \sim_{\mathscr{R}}\left(\beta_{1}, \ldots, \beta_{n}\right)$ if there exists a permutation σ of $[n]$ such that for each $1 \leq i \leq n, \beta_{i}=\alpha_{\sigma(i)}$. The EGF of $\operatorname{SET}(\mathscr{A})$ satisfies

$$
1+A(z)+\frac{A(z)^{2}}{2!}+\frac{A(z)^{3}}{3!}+\ldots=\exp (A(z))
$$

(7) Cylces $\operatorname{CyC}(\mathscr{A})$ of a (labelled) combinatorial class \mathscr{A} with $\mathscr{A}_{0}=\emptyset$ is defined as

$$
\operatorname{CYC}(\mathscr{A}):=\operatorname{SEQ}(\mathscr{A}) / \mathscr{S}
$$

where \mathscr{S} is the equivalence relation such that $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \sim_{\mathscr{R}}\left(\beta_{1}, \ldots, \beta_{n}\right)$ if there exists a cyclic permutation σ of $[n]$ such that for each $1 \leq i \leq n, \beta_{i}=\alpha_{\sigma(i)}$. The EGF of $\operatorname{CyC}(\mathscr{A})$ satisfies

$$
1+A(z)+\frac{A(z)^{2}}{2}+\frac{A(z)^{3}}{3}+\ldots=\log \frac{1}{1-A(z)}
$$

Recall that a tree is a connected graph without cycles.
Example 19 (Plane trees, ordered trees). Plane trees are trees embedded in the plane, so that subtrees attached to each vertex are ordered, say from left to right. There is a root vertex, implicitly defined; to a root vertex, subtrees are attached in a specified order.

So,

$$
\mathscr{P}=\mathscr{Z} * \operatorname{SEQ}(\mathscr{P})
$$

The generating function is then

$$
P(z)=z \cdot \frac{1}{1-P(z)}
$$

This is a quadratic equation. As previously, since $P(z)$ increases along the real axis, the negative solution is the correct one,

$$
P(z)=\frac{1-\sqrt{1-4 z}}{2}=z \cdot B(z)
$$

where $B(z)$ is the OGF of binary trees.
Let p_{n} be the number of plane trees on n vertices, and b_{n} the number of binary trees on $n+1$ external nodes, so $p_{n+1}=b_{n} . \quad P(z)=z B(z)$ suggests that there is a combinatorial bijection between plane trees on $n+1$ vertices and binary trees on $n+1$ external nodes.

Exercise 4. Find such a bijection between plane trees and binary trees.
Example 20 (2-regular graphs). Let \mathscr{R} be the set of all 2-regular labelled graphs, i.e. each vertex has exactly 2 neighbours. Note that connected 2-regular graphs are undirected cycles of length ≥ 3.

$$
\mathscr{R}=\operatorname{SET}(\text { connected 2-regular graphs })=\operatorname{SET}\left(\operatorname{UCYC}_{\geq 3}(\mathscr{Z})\right)
$$

where UCYC is the undirected cyclic construction. Then, the generating function is

$$
R(z)=\exp \left(\operatorname{UCYC}_{\geq 3}(z)\right)=\frac{e^{-z / 2-z^{2} / 4}}{\sqrt{1-z}}
$$

since the generating function for $\mathrm{UCYC}_{\geq 3}(\mathscr{Z})$ is $\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)$.
How can we derive $\left[z^{n}\right] R(z)$?

Lecture 5

1.5 Analytic Methods

1.5.1 Analytic functions

Definition 11. Let $\Omega \subset \mathbb{C}$ be a region (i.e. open and connected). A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called complex differentiable or holomorphic at $z_{0} \in \Omega$, if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists. It is called holomorphic in Ω if f is holomorphic for every point in Ω.
Definition 12. Let $\Omega \subset \mathbb{C}$ be a region. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called analytic at $z_{0} \in \Omega$ if $\exists \varepsilon>0$ such that $\forall z \in B_{\varepsilon}\left(z_{0}\right), f(z)$ is representable by a convergent power series expansion around z_{0}

$$
f(z)=\sum_{n \geq 0} c_{n}\left(z-z_{0}\right)^{n}, \quad \text { for some } c_{n} \in \mathbb{C} .
$$

It is called analytic in Ω if f is analytic for every point in Ω.
Theorem 10. Let $\Omega \subset \mathbb{C}$ be a region. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic in Ω iff it is analytic in Ω.

Definition 13. Let $\Omega \subset \mathbb{C}$ be a region and $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic at $z_{0} \in \Omega$. Set $f^{(0)}\left(z_{0}\right):=f\left(z_{0}\right)$. Then the power series

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{f^{\prime \prime}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\ldots=\sum_{n \geq 0} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

is called the Taylor series expansion of $f(z)$ around z_{0}.
Exercise 5. Find the maximum regions, in which the functions $z \mapsto e^{z}, z \mapsto \frac{1}{1-z}, z \mapsto$ $(1+z)^{m}$ (for fixed $m \in \mathbb{N}$) are analytic. Show that their Taylor series expansions around the origin are given by

$$
e^{z}=\sum_{n \geq 0} \frac{z^{n}}{n!}, \quad \frac{1}{1-z}=\sum_{n \geq 0} z^{n}, \quad(1+z)^{m}=\sum_{n \geq 0}\binom{m}{n} z^{n}
$$

Exercise 6. Find the Taylor series expansions of

$$
\frac{1}{\sqrt{1-4 z}}, \quad \sin z, \quad \cos z, \quad z \cdot e^{z}, \quad \ln z, \quad \frac{1}{1-z} \ln \frac{1}{1-z}, \quad \frac{1}{\sqrt{1-z}} \ln \frac{1}{1-z}
$$

around the origin and find the maximum regions where these power series converge.

Exercise 7. Prove

$$
\sum_{n \geq m}\binom{n}{m} z^{n}=\frac{z^{m}}{(1-z)^{m+1}}
$$

Exercise 8. Prove

$$
\sum_{n \geq 0} H_{n} z^{n}=\frac{1}{1-z} \ln \frac{1}{1-z}
$$

where $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is the n-th harmonic number.
Exercise 9. Find OGF for each of the following sequences:

$$
\left\{2^{n+1}\right\}_{n \geq 0}, \quad\left\{n 2^{n+1}\right\}_{n \geq 0}, \quad\left\{n H_{n}\right\}_{n \geq 1}, \quad\left\{n^{3}\right\}_{n \geq 2}
$$

1.5.2 Cauchy's coefficient formula

Theorem 11 (Cauchy's coefficient formula, 1st version). Let $\Omega \subset \mathbb{C}$ be a region, f be analytic in Ω and γ be a simple loop in Ω. Then

$$
\int_{\gamma} f=0 .
$$

Theorem 12 (Cauchy's coefficient formula, 2 nd version). Let $\Omega \subset \mathbb{C}$ be a region and f be analytic in Ω. Let $z_{0} \in \Omega$ and γ be a simple loop encircling z_{0} such that the image of γ is contained in Ω. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

In general, for $n \geq 0$

$$
\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

1.5.3 Lagrange Inversion Theorem

Theorem 13 (Langrange Inversion, 1st version). Let $\phi(u)=\sum_{k \geq 0} \phi_{k} u^{k}$ be a power series in $\mathbb{C}[[u]]$ with $\phi_{0} \neq 0$. Then the equation

$$
A=z \phi(A)
$$

admits a unique solution in $\mathbb{C}[[z]]$ and the coefficients of

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

are given by

$$
a_{n}=\frac{1}{n}\left[u^{n-1}\right] \phi(u)^{n} .
$$

Furthermore, for any holomorphic function H,

$$
\left[z^{n}\right] H(A(z))=\frac{1}{n}\left[u^{n-1}\right]\left(H^{\prime}(u) \phi(u)^{n}\right)
$$

In particular, for $k \geq 1$,

$$
\left[z^{n}\right] A(z)^{k}=\frac{k}{n}\left[u^{n-k}\right] \phi(u)^{n} .
$$

Theorem 14 (Langrange Inversion, 2nd version). Let the generating function

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

satisfy the functional equation

$$
z=\psi(A(z))
$$

where $\psi(0)=0$ but $\psi^{\prime}(0) \neq 0$ (i.e. ψ is the compositional inverse of A).
If

$$
\psi(A)=\frac{A}{\phi(A)}
$$

i.e. $A=\psi(A) \cdot \phi(A)=z \phi(A)$, then

$$
a_{n}=\frac{1}{n}\left[z^{n-1}\right] \phi(z)^{n}=\frac{1}{n}\left[z^{n-1}\right]\left(\frac{z}{\psi(z)}\right)^{n}
$$

Application of Lagrange Inversion to Binary Trees

Let $\tilde{\mathscr{B}}$ denote the class of all binary trees, in which the size of a binary tree is defined as the total number of all vertices (internal nodes and leaves alike). For $n \geq 1$ we let $\tilde{\mathscr{B}}_{n}$ denote the class of all binary trees of size n and let $\tilde{b}_{n}:=\left|\tilde{\mathscr{B}}_{n}\right|$ and set $\tilde{b}_{0}=0$.

Let $\tilde{B}(z)$ be the ordinary generating function of the combinatorial class $\tilde{\mathscr{B}}$. Then

$$
\begin{equation*}
\tilde{B}(z)=z+z \tilde{B}(z)^{2} \tag{1.10}
\end{equation*}
$$

Let $\tilde{B}=\tilde{B}(z)$ and $\phi(u):=1+u^{2}$. Then (1.10) can be rewritten as

$$
\begin{equation*}
\tilde{B}=z \phi(\tilde{B}) \tag{1.11}
\end{equation*}
$$

Note that $\phi(u):=1+u^{2}=\sum_{k=0}^{\infty} \phi_{k} u^{k}$ is a formal power series in the ring $\mathbb{C}[[u]]$ with $\phi_{0}=1 \neq 0$. Therefore by Lagrange Inversion Theorem, the equation (1.11) admits a unique solution $\tilde{B}(z):=\sum_{n=0}^{\infty} \tilde{b}_{n} z^{n}$ in the ring $\mathbb{C}[[z]]$ where the coefficients are given by

$$
\begin{aligned}
\tilde{b}_{n} & =\frac{1}{n}\left[u^{n-1}\right] \phi(u)^{n} \\
& =\frac{1}{n}\left[u^{n-1}\right]\left(1+u^{2}\right)^{n} \\
& =\frac{1}{n}\left[u^{n-1}\right]\left(\sum_{k=0}^{n}\binom{n}{k} u^{2 k}\right) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
\frac{1}{n}\binom{n-1}{2} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

In other words, we have, for any $n \in \mathbb{N}$,

$$
\tilde{b}_{2 n+1}=\frac{1}{2 n+1}\binom{2 n+1}{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Remark 3. Recall that b_{n} was defined in Theorem 9 as the number of binary trees of size n, in which the size of a binary tree is defined as the number of internal nodes. If a binary tree has n internal nodes, then it has $n+1$ external nodes and therefore $2 n+1$ vertices in total. Thus we have $\tilde{b}_{2 n+1}=b_{n}$.

Application of Lagrange Inversion to Labelled Trees

Definition 14. - A labelled tree (also called Cayley tree) is a tree whose vertices are distinctly labelled by numbers in \mathbb{N}. The vertices of a Cayley tree on n vertices are labelled by distinct numbers from $[n]$.

- A rooted labelled tree on n vertices is a labelled tree on n vertices, in which one vertex is distinguished by a mark from the other vertices.

Let \mathscr{C} denote the class of all labelled trees, in which the size of a tree is defined as the number of vertices, and let \mathscr{C}_{n} denote the set set of all Cayley tree on n vertices. Then \mathscr{C} is a (labelled) combinatorial class. (\mathscr{C}_{n} is also a (labelled) class, it is a subclass of $\mathscr{C})$. For $n \geq 1$ we let $c_{n}:=\left|\mathscr{C}_{n}\right|$ and set $c_{0}=0$. Let $C(z):=\sum_{n=0}^{\infty} c_{n} \frac{z^{n}}{n!}$ be the exponential generating function of the combinatorial class \mathscr{C}. The sequence $\left(c_{n}\right)_{n \geq 0}$ begins with $0,1,1,3,16,125 \ldots$

Theorem 15 (Cayley's formula (Cayley 1889)).

$$
c_{n}=n^{n-2}, \quad n \geq 2
$$

Proof. Let \mathscr{T} denote the (labelled combinatorial) class of all rooted labelled trees (i.e. the set of all Cayley trees in \mathscr{C}, in which one vertex is distinguished by a mark from
the other vertices) and let \mathscr{T}_{n} denote the class of all rooted labelled tree on n vertices. For $n \geq 1$ we let $t_{n}:=\left|\mathscr{T}_{n}\right|$ and set $t_{0}=0$. Because there are n ways to choose a root vertex of a labelled tree on n vertices, the number of Cayley trees on n vertices is equal to $t_{n}=n c_{n}$.

Let $T(z):=\sum_{n=0}^{\infty} t_{n} \frac{z^{n}}{n!}$ be the exponential generating function of the combinatorial labelled class \mathscr{T}.

$$
\mathscr{T}=\mathscr{Z} * \operatorname{SET}(\mathscr{T}) .
$$

Its EGF

$$
\begin{equation*}
T(z)=z \exp (T(z)) \tag{1.12}
\end{equation*}
$$

So $T(z)$ is implicitly defined.
Let $T=T(z)$ and $\phi(u):=\exp (u)=\sum_{k \geq 0} \frac{u^{k}}{k!}$. Then (1.12) can be rewritten as

$$
\begin{equation*}
T=z \phi(T) \tag{1.13}
\end{equation*}
$$

Note that $\phi(u):=\exp (u)=\sum_{k=0}^{\infty} \phi_{k} u^{k}$ is a formal power series in the ring $\mathbb{C}[[u]]$ with $\phi_{0}=1 \neq 0$. Therefore by Lagrange Inversion Theorem, the equation (1.13) admits a unique solution in the ring $\mathbb{C}[[u]]$ whose coefficients are given by $T(z)=\sum_{n=0}^{\infty} t_{n} z^{n}$, where

$$
\begin{aligned}
t_{n} & =\frac{1}{n}\left[u^{n-1}\right] \phi(u)^{n}=\frac{1}{n}\left[u^{n-1}\right](\exp (u))^{n}=\frac{1}{n}\left[u^{n-1}\right] \exp (u n) \\
& =\frac{1}{n}\left[u^{n-1}\right]\left(\sum_{k=0}^{\infty} \frac{(u n)^{k}}{k!}\right)=\frac{1}{n} \frac{n^{n-1}}{(n-1)!}=\frac{n^{n-1}}{n!}
\end{aligned}
$$

In other words, for any $n \in \mathbb{N}$,

$$
t_{n}=n^{n-1}
$$

Therefore, we have

$$
c_{n}=\frac{t_{n}}{n}=n^{n-2} .
$$

Remark 4. There are several interesting proofs for this in The Book by M. Aigner and G. Ziegler. We shall see one proof in Section 2.3.2 (Chapter 2).

Lecture 6

1.5.4 Singularities

Definition 15. Let f be an analytic function in a region Ω and z_{0} be a point on the boundary of Ω.

We say f is analytically continuable at z_{0} if there is an analytic function g defined in a region Ω^{\prime} containing z_{0} such that $g(z)=f(z)$ in $\Omega \cap \Omega^{\prime}$.

Example 21. $f(z)=\frac{1}{1-z}$ is analytic for $|z|<1$, and is analytically continuable except for $z_{0}=1$.

Definition 16. A function f is said to be singular at $z_{0} \in \bar{\Omega}$ or z_{0} is called a singularity of f if f is not analytically continuable at z_{0}.

Theorem 16 (Boundary singularities). Let f be analytic at the origin and let R be the finite radius of convergence of a power series expansion of f at the origin. Then f has necessarily a singularity on the boundary of the disc of convergence.

Definition 17. If f is analytic at the origin with radius R of convergence then a dominant singularity is a singularity on the circle around 0 with radius $R>0$.

Theorem 17 (Pringsheim's Theorem). Let f be analytic at the origin and $f(z)=$ $\sum_{n \geq 0} f_{n} z^{n}$ be its convergence power series expansion at the origin with the radius of convergence $R>0$. If $f_{n} \geq 0, \forall n \geq 0$, then the point $z=R$ is a singularity of f; in this case, $z=R$ is a dominant singularity of f.

The singularity $z=R$ of Theorem 17 is often called the dominant singularity of f.
Remark 5. The radius R of convergence of $\sum_{n \geq 0} f_{n} z^{n}$ is

$$
R=\frac{1}{\limsup _{n \rightarrow \infty}\left|f_{n}\right|^{\frac{1}{n}}},
$$

so we have

$$
f_{n}=R^{-n} \theta(n)
$$

where

$$
\limsup _{n \rightarrow \infty}|\theta(n)|^{\frac{1}{n}}=1
$$

1.5.5 Meromorphic functions

Definition 18. A function $f(z)$ is meromorphic at z_{0} if $\forall z$ in a neighbourhood $B_{\varepsilon}\left(z_{0}\right)$ of z_{0} with $z \neq z_{0}$, it can be represented as

$$
f(z)=\frac{h(z)}{g(z)},
$$

where $h(z)$ and $g(z)$ are analytic at z_{0} and $g(z) \not \equiv 0$. In this case $f(z)$ admits an expansion of the form

$$
f(z)=\sum_{n \geq-M} f_{n}\left(z-z_{0}\right)^{n}
$$

for $z \in B_{\mathcal{E}}\left(z_{0}\right)$, for some $M \in \mathbb{Z}$. If $f_{-M} \neq 0, M \geq 1$, we say $f(z)$ has a pole of order M at z_{0}. In this case, we have

$$
\begin{aligned}
f(z) & =f_{-M}\left(z-z_{0}\right)^{-M}+O\left(\left(z-z_{0}\right)^{-M+1}\right) \\
& =f_{-M}\left(-z_{0}\right)^{-M}\left(1-\frac{z}{z_{0}}\right)^{-M}+O\left(\left(1-\frac{z}{z_{0}}\right)^{-M+1}\right) .
\end{aligned}
$$

Remark 6. Scaling rule: If $f(z)$ analytic around 0 and singular at z_{0}, then $g(z)=$ $f\left(z_{0} z\right)$ is singular at 1 . If $z_{0}>0$ is a dominant singularity of $f(z)$, then $f(z)$ admits a convergent series expansion (around 0):

$$
f(z)=\sum_{n \geq 0} f_{n} z^{n}, \quad|z|<z_{0}
$$

Therefore, $g(z)$ admits a convergent series expansion

$$
g(z)=\sum_{n \geq 0} g_{n} z^{n}, \quad|z|<1, \quad g_{n}=f_{n} z_{0}^{n}
$$

1.5.6 Newton's generalised binomial theorem

For any $\alpha \in \mathbb{C}$,

$$
\left[z^{n}\right](1-z)^{-\alpha}=\binom{-\alpha}{n} \stackrel{?}{=}\binom{n+\alpha-1}{\alpha-1} \stackrel{?}{=} \Theta\left(n^{\alpha-1}\right)
$$

Theorem 18. Let $\alpha \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$.

$$
\left[z^{n}\right](1-z)^{-\alpha}=\frac{n^{\alpha-1}}{\Gamma(\alpha)}\left(1+O\left(\frac{1}{n}\right)\right)
$$

where the Γ-function is defined as

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha-1} \mathrm{~d} t
$$

Properties of the Gamma function

$$
\begin{gathered}
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} e^{-t} t^{-\frac{1}{2}} \mathrm{~d} t=\sqrt{\pi} \\
\left\{\begin{array}{l}
\Gamma(t+1)=t \Gamma(t) \\
\Gamma(1)=1
\end{array}\right.
\end{gathered}
$$

For $n \in \mathbb{N}$,

$$
\Gamma(n+1)=n \Gamma(n)=\ldots=n!
$$

1.5.7 Transfer theorem

Transfer theorems allow to extract the asymptotit order of coefficients of error terms in singular expansions. For details see chapter VI in [2].

Definition 19. Given two numbers R, ϕ with $R>1$ and $0<\phi<\frac{\pi}{2}$, then the set

$$
\Delta=\Delta(R, \phi)=\{z| | z|<R, z \neq 1,|\arg (z-1)|>\phi\}
$$

is called Δ-domain at 1 .
A function f is called Δ-analytic at 1 if it is analytic at some Δ-domain at 1 .

Theorem 19 (Transfer theorem). Let $\alpha \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$ and assume that $f(z)$ is Δ-analytic at 1 .

If $f(z)=O\left((1-z)^{-\alpha}\right)$, then

$$
\left[z^{n}\right] f(z)=O\left(n^{\alpha-1}\right)
$$

If $f(z)=o\left((1-z)^{-\alpha}\right)$, then

$$
\left[z^{n}\right] f(z)=o\left(n^{\alpha-1}\right)
$$

Therefore, if $f(z)=(1-z)^{-\alpha}+o\left((1-z)^{-\alpha}\right)$, then

$$
\left[z^{n}\right] f(z)=\frac{n^{\alpha-1}}{\Gamma(\alpha)}\left(1+O\left(\frac{1}{n}\right)\right)+o\left(n^{\alpha-1}\right)
$$

Example 22 (2-regular graphs). Consider the EGF of 2-regular graphs,

$$
\mathscr{G}=\operatorname{SET}\left(\mathrm{UCYC}_{\geq 3} \mathscr{Z}\right) .
$$

Then

$$
G(z)=\exp \left(\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)\right)=\frac{1}{\sqrt{1-z}} e^{-\frac{z}{2}-\frac{z^{2}}{4}}
$$

$\frac{1}{\sqrt{1-z}}$ is analytic in $\mathbb{C} \backslash[1, \infty) . G(z)$ is in particular Δ-analytic at 1 .

To derive the singular expansion of G (an expansion of the singularity of G) near 1, we use the Taylor expansion of $e^{-\frac{z}{2}-\frac{z^{2}}{4}}$ at 1 .

$$
\begin{aligned}
h(z) & =e^{-\frac{z}{2}-\frac{z^{2}}{4}}=h(1)+h^{\prime}(1)(z-1)+\frac{h^{\prime \prime}(1)}{2}(z-1)^{2}+\ldots \\
& =e^{-\frac{3}{4}}+e^{-\frac{3}{4}}(1-z)+e^{-\frac{3}{4}}(z-1)^{2}+\ldots
\end{aligned}
$$

The singular expansion of $G(z)$ near 1 is

$$
\begin{aligned}
G(z) & =\frac{e^{-\frac{3}{4}}}{\sqrt{1-z}}+e^{-\frac{3}{4}}(1-z)^{\frac{1}{2}}+e^{-\frac{3}{4}}(1-z)^{\frac{3}{2}}+\ldots \\
& =e^{-\frac{3}{4}}(1-z)^{-\frac{1}{2}}+o\left((1-z)^{-\frac{1}{2}}\right)
\end{aligned}
$$

Using the transfer theorem, we get

$$
\left[z^{n}\right] G(z)=e^{-\frac{3}{4}} \frac{n^{-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right)}\left(1+O\left(\frac{1}{n}\right)\right)+o\left(n^{-\frac{1}{2}}\right)=\frac{e^{-\frac{3}{4}}}{\sqrt{n \pi}}(1+o(1))
$$

The first term corresponds to $h(1)$, the second is from the theorem.

1.5.8 Multiple singularities

Theorem 20. Let $f(z)$ be analytic in $|z|<\rho$. Suppose that f has a finite number of singularities on the circle $|z|=\rho$, at points $\rho_{j}=\rho \cdot e^{i \theta_{j}}$ for $j=1, \ldots, m$. Assume there exists a Δ-domain Δ_{0} at 1 such that $f(z)$ is analytic in the region

$$
D=\bigcap_{j=1}^{m} \rho_{j} \Delta_{0}
$$

where $\rho_{j} \Delta_{0}$ is the dilation (rotation) of the Δ-domain Δ_{0} for each ρ_{j}.

Let

$$
S=\left\{(1-z)^{-\alpha} \mid \alpha \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}\right\}
$$

Assume there exist m functions $g_{1}(z), \ldots, g_{m}(z)$, each a linear combination of the functions in S, and there exists a function $h(z)=(1-z)^{-\alpha_{0}}$ such that

$$
f(z)=g_{j}\left(\frac{z}{\rho_{j}}\right)+O\left(h\left(\frac{z}{\rho_{j}}\right)\right) \quad \text { as } z \rightarrow \rho_{j} \text { in } D .
$$

Then

$$
\begin{aligned}
{\left[z^{n}\right] f(z) } & =\sum_{j=1}^{m}\left(\left[z^{n}\right] g_{j}\left(\frac{z}{\rho_{j}}\right)+O\left(\left[z^{n}\right] h\left(\frac{z}{\rho_{j}}\right)\right)\right) \\
& =\sum_{j=1}^{m} \rho_{j}^{-n}\left[z^{n}\right] g_{j}(z)+O\left(\rho_{j}^{-n} n^{\alpha_{0}-1}\right)
\end{aligned}
$$

Remark 7.

$$
\left[z^{n}\right] g_{j}(z)=\left[z^{n}\right] \sum_{k=1}^{\ell} c_{j k}(1-z)^{-\alpha_{j, k}}=\sum_{k=1}^{\ell} c_{j k} \frac{n^{\alpha_{j, k}-1}}{\Gamma\left(\alpha_{j, k}\right)}
$$

Remark 8 (Recipe for singularity analysis).

- Find the grammar that determines the combinatorial class and the corresponding generating function
- Locate the singularities
- Check the Δ-analyticity of the generating function
- Do the singular expansion at each singularity separately
- Extract and sum the asymptotics using the Transfer Theorem and basic scaling.

Example 23. Let \mathscr{P} be the class of permutations with cycles of odd length. Then

$$
\begin{aligned}
\mathscr{P} & =\operatorname{SET}(\mathscr{A}), \\
\mathscr{A}(\mathscr{Z}) & =\operatorname{CYC}_{o d d}(\mathscr{Z}) .
\end{aligned}
$$

For the generating functions, this means

$$
\begin{aligned}
& A(z)=\sum_{k=o d d} \frac{z^{k}}{k}=\frac{1}{2} \log \frac{1+z}{1-z} \\
& P(z)=e^{A(z)}=\exp \left(\frac{1}{2} \log \frac{1+z}{1-z}\right)=\sqrt{\frac{1+z}{1-z}}
\end{aligned}
$$

The dominating singularities of this function are $\{ \pm 1\}$. Let Δ_{0} be a Δ-domain at 1 .
$P(z)$ is analytic in the region $D=\Delta_{0} \cap(-1) \Delta_{0}$ since $\sqrt{1-z}$ is analytic in $\mathbb{C} \backslash[1, \infty)$ and $\sqrt{1+z}$ is analytic in $\mathbb{C} \backslash(-\infty,-1]$.

Singular expansions, with $g(z)=\sqrt{1+z}$ and writing $P^{+}(z)$ for $P(z)$ as $z \rightarrow+1$ in $D, P^{-}(z)$ for $P(z)$ as $z \rightarrow-1$ in D :

$$
\begin{aligned}
P^{+}(z) & =\frac{g(1)}{\sqrt{1-z}}+\frac{g^{\prime}(1)(z-1)}{\sqrt{1-z}}+\ldots & & (\text { as } z \rightarrow+1 \text { in } D) \\
& =\frac{\sqrt{2}}{\sqrt{1-z}}-2^{-\frac{3}{2}} \sqrt{1-z}+O\left((1-z)^{\frac{3}{2}}\right) & & \\
P^{-}(z) & =\frac{1}{\sqrt{2}} \sqrt{1+z}+O\left((1+z)^{\frac{3}{2}}\right) . & & (\text { as } z \rightarrow-1 \text { in } D)
\end{aligned}
$$

Extract asymptotics:

$$
\begin{gathered}
{\left[z^{n}\right] P(z)=\frac{2^{\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right)} n^{-\frac{1}{2}}-\frac{2^{-\frac{3}{2}}}{\Gamma\left(-\frac{1}{2}\right)} n^{-\frac{3}{2}}+O\left(n^{-\frac{5}{2}}\right)} \\
+\frac{2^{-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right)} n^{-\frac{3}{2}}+O\left(n^{-\frac{5}{2}}\right)
\end{gathered}
$$

where $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \Gamma\left(-\frac{1}{2}\right)=-2 \sqrt{\pi}$.

Chapter 2

Graph Theory

Lecture 7

Suggested reading for Chapter 2: [1] and [4].

2.1 Matchings, Eulerian Tours, and Hamiltorian Cycles

2.1.1 Basic Terminologies

Notation 1 (Subsets). Given a set X and $k \in \mathbb{N}$, we denote by $\binom{X}{k}$ the set of all k element subsets of X.
Definition 20 (Graphs). A graph is a pair (V, E) where $E \subseteq\binom{V}{2}$.
The elements of V are called vertices (or nodes, points) and the elements of E are called edges. Two vertices v, w are called adjacent or neighbours if $\{v, w\} \in E$. A vertex v is said to be incident with an edge $e \in E$ if $v \in e$. We call v an end of e.

Note that all graphs considered will be simple (by the above definition) and finite (finitely many vertices, thus finitely many edges).

If G is a graph we will write $V(G)$ to denote the set of vertices of G and $E(G)$ to denote the set of edges of G.

Definition 21 (Walk, Paths, Cycles, Distance). Let $G=(V, E)$ be a graph.
(1) A walk in G is an alternating sequence

$$
W=v_{0} e_{0} v_{1} e_{1} v_{2} \ldots v_{k-1} e_{k-1} v_{k}
$$

of vertices and edges of G such that $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for each $0 \leq i \leq k-1$. It is said to be closed if $v_{0}=v_{k}$.
(2) A walk $v_{0} e_{0} v_{1} e_{1} v_{2} \ldots v_{k-1} e_{k-1} v_{k}$ in G is called a path if $v_{0}, v_{1}, \ldots, v_{k}$ are all distinct. We write $P=v_{0} v_{1} v_{2} \ldots v_{k-1} v_{k}$ and call it a $v_{0}-v_{k}$ path. The length of P is k, i.e. the number of its edges.
(3) A cycle in G is an alternating sequence $C=v_{0} e_{0} v_{1} e_{1} v_{2} \ldots v_{k-1} e_{k-1} v_{k} e_{k} v_{0}$ of vertices and edges of G such that $v_{0}, v_{1}, \ldots, v_{k}$ are distinct, $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $0 \leq i \leq k-1$, and $e_{k}=\left\{v_{k}, v_{0}\right\}$.
(4) The distance of two vertices v, w in G is the length of a shortest $v-w$ path (a shortest path starting at v and ending in w) in G.

Definition 22 (Subgraphs, induced subgraphs, spanning subgraphs). Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, we set

$$
\begin{aligned}
& G \cup G^{\prime}:=\left(V \cup V^{\prime}, E \cup E^{\prime}\right) \\
& G \cap G^{\prime}:=\left(V \cap V^{\prime}, E \cap E^{\prime}\right) .
\end{aligned}
$$

(1) If $G \cap G=\emptyset$, then we say that G and G^{\prime} are disjoint.
(2) If $V \subset V^{\prime}$ and $E \subset E^{\prime}$, then G^{\prime} is a subgraph of G. We write $G^{\prime} \subseteq G$.
(3) If $G^{\prime} \subset G$ and $G^{\prime} \neq G$, then G^{\prime} is a proper subgraph of G. We write $G^{\prime} \subsetneq G$.
(4) If $G^{\prime} \subseteq G$ and G^{\prime} contains all edges $\{v, w\} \in E$ with $v, w \in V^{\prime}$, then G^{\prime} is called an induced subgraph of G. We write $G^{\prime}=G\left[V^{\prime}\right]$.
(5) If $G^{\prime} \subseteq G$ and $V=V^{\prime}$, then G^{\prime} is called a spanning subgraph of G.

Definition 23 (Components, connectedness). Let $G=(V, E)$ be a graph.
(1) G is called connected if G contains a subgraph which is isomorphic to a path from v to w for any two vertices $v, w \in V$.
(2) A maximal connected subgraph of G is called a component of G.
(3) For $k \in \mathbb{N}, G$ is called k-connected if $|V|>k$ and $G[V \backslash X]$ is connected for every set $X \subseteq V$ with $|X|<k$.

Definition 24 (Degrees). Let $G=(V, E)$ be a graph.
(1) For $v \in V$,

$$
d(v):=|\{w \in V:\{v, w\} \in E\}|
$$

is called the degree of the vertex v. A vertex of degree 0 is called isolated.
(2) The number

$$
\delta(G):=\min |\{d(v): v \in V\}|
$$

is called minimum degree of G, the number

$$
\Delta(G):=\max |\{d(v): v \in V\}|
$$

is called maximum degree of G, and the number

$$
d(G):=\frac{1}{|V|} \sum_{v \in V} d(v)
$$

is called average degree of G.
(3) If all the vertices have the same degree d, then G is called d-regular.

A 3-regular graph is also called cubic.
Remark 9. Clearly we have

$$
\begin{aligned}
& |V| d(G)=\sum_{v \in V} d(v)=2|E| \\
& \delta(G) \leq d(G) \leq \Delta(G)
\end{aligned}
$$

Definition 25 (Graph isomorphism). We say that two graphs $G=(V, E)$ and $G^{\prime}=$ $\left(V^{\prime}, E^{\prime}\right)$ are isomorphic and write $G \simeq G^{\prime}$, if there is a bijection $\phi: V \rightarrow V^{\prime}$ with

$$
\{v, w\} \in E \quad \Leftrightarrow \quad\{\phi(v), \phi(w)\} \in E^{\prime}, \forall v, w \in V
$$

Definition 26 (Graph property). A class of graphs that is closed under isomorphism is called a graph property.

An example of a graph property is the class of graphs containing a triangle. A graph property only depends on the abstract structure, not on a representation of a graph (like a drawing).

Example 24.

G

G^{\prime}

G"

G"'
(1) Determine whether $G^{\prime}, G^{\prime \prime}, G^{\prime \prime \prime}$ are induced subgraphs of G or not
(2) Determine whether $G^{\prime}, G^{\prime \prime}, G^{\prime \prime \prime}$ are spanning subgraphs of G or not

2.1.2 Matchings

Definition 27 (Independent set, matchings, vertex-cover). Let $G=(V, E)$ be a graph.
(1) A set of vertices or a set of edges of G is called independent if no two of its elements are adjacent. An independent set is also called a stable set.
(2) A set M of independent edges in G is called a matching of G. In other words, a matching is a set of pairwise non-adjacent edges.
A vertex is called matched (or saturated) if it is an endpoint of an edge in the matching.
(3) A d-regular spanning subgraph of G is called a d-factor of G.

A 1-factor (indeed, its edge set) is called a perfect matching.
(4) A set $U \subseteq V$ is called a vertex cover of G if every edge of G is incident with a vertex in U.

Definition 28 (Independence number, clique number). Let $G=(V, E)$ be a graph.
(1) The independence number of G, denoted by, $\alpha(G)$, is the number of vertices in a maximum independent set (of vertices) in G.
(2) The clique number of G, denoted by $\omega(G)$, is the number of vertices in a maximum clique (=complete graph) in G.

Example 25. In Example 24, $\alpha(G)=$?? and $\omega(G)=$??.
Remark 10 (Perfect matching). Let $H \subseteq G$ be a subgraph of $G=(V, E)$.
$H \subseteq G$ is a 1-factor
$\Longleftrightarrow E(H)$ is a perfect matching of G
$\Longleftrightarrow \quad$ Every vertex in G is incident to exactly one edge of H
Definition 29 (Bipartite graph). A graph $G=(V, E)$ is called bipartite if V admits a partition into two sets, $V=A \dot{\cup} B$, such that every edge $e \in E$ has its ends in different classes.

Lemma 21. A graph $G=(V, E)$ is bipartite if and only if it contains no odd cycle
Proof. Exercise!

Problem 1 (Maximum bipartite matching).
Input: A bipartite graph $G=(A \dot{\cup} B, E)$
Output: A matching in G with as many edges as possible

Definition 30 (Alternating paths, augmenting paths). Let $G=(A \cup B, E)$ be a bipartite graph and M be an arbitrary matching in G.
(1) A path which begins with an unmatched vertex and contains alternatingly edges from $E \backslash M$ and from M is called an alternating path (with respect to M).
(2) An alternating path that ends also at an unmatched vertex is called an augmenting path.
Remark 11. An augmenting path P can be used to turn M into a larger matching

$$
M \triangle E(P):=(M \backslash E(P)) \cup(E(P) \backslash M)
$$

It has one edge more than M, whose ends are the ends of P.

Example 26.

Let $G=(A \cup B, E)$ be a bipartite graph given below.

- $M=\left\{\left\{a_{1}, b_{2}\right\},\left\{a_{4}, b_{3}\right\},\left\{a_{5}, b_{1}\right\}\right\}$ is a matching
- $P=a_{2}\left\{a_{2}, b_{1}\right\} b_{1}\left\{b_{1}, a_{5}\right\} a_{5}\left\{a_{5}, b_{4}\right\} b_{4}$ is an augmenting path (with respect to M)
- $M \triangle E(P)=\left\{\left\{a_{1}, b_{2}\right\},\left\{a_{4}, b_{3}\right\},\left\{a_{2}, b_{1}\right\},\left\{a_{5}, b_{4}\right\}\right\}$ is also a matching

Exercise 1. Let M be a matching in a bipartite graph $G=(A \dot{\cup} B, E)$.

- Show that if M contains fewer edges than some other matching in G (i.e. M is suboptimal), then G contains an augmenting path with respect to M.
- Describe an algorithm that finds as efficiently as possible a matching of maximum cardinality.

Theorem 22 (König 1931). Let $G=(A \cup B B, E)$ be a bipartite graph.
The number of edges in a maximum matching in G equals the number of vertices in a minimum vertex cover of G.

Proof. Exercise!

Theorem 23 (Hall 1935). Let $G=(A \dot{\cup} B, E)$ be a bipartite graph.
G contains a matching that saturates all vertices in A if and only if

$$
|N(S)| \geq|S|, \quad \forall S \subseteq A
$$

where $N(S)=\{v \in B:\{u, v\} \in E$ for some $u \in S\}$ is the neighborhood of S in B.
Proof. Exercise!

2.1.3 Eulerian Tours and Hamiltorian Cycles

Definition 31 (Eulerian tour). A closed walk in a graph is called Eulerian tour if it traverses (= visits) every edge of the graph exactly once. A graph is called Eulerian if it contains an Eulerian tour.

Theorem 1 (Euler 1736). A connected graph is Eulerian if and only if every vertex has even degree.

Proof. Exercise!

Definition 32 (Hamiltonian cycle). A Hamiltonian cycle in a graph G is a closed walk that contains every vertex in G exactly once.

If $|V(G)| \geq 3$, any such a walk forms a cycle. Therefore, such a walk is called a Hamiltonian cycle.

Problem 2.

When does a graph contain a Hamiltonian cycle?

Theorem 2 (Dirac 1952). Every graph $G=(V, E)$ with $|V| \geq 3$ and minimum degree $\delta(G) \geq \frac{n}{2}$ contains a Hamiltonian cycle.

Proof. Exercise! (cf. Ore's theorem)

Definition 33 (Graph power).
Given a graph $G=(V, E)$ and $d \in \mathbb{N}$, we denote by G^{d} (e.g. G^{2} is called the square of G) the graph with vertex set V in which two vertices are adjacent if they have distance at most d in G.

Theorem 3 (Fleischner 1974). If G is a 2-connected graph, then G^{2} has a Hamiltonian cycle.

Remark 12. Problem 2 is still studied in the contemporary research.

Lecture 8

2.2 Graph Decompositions

2.2.1 Connected Graphs

Remark 13. To define connectedness, we can equivalently define a relation \sim on the vertices of $G=(V, E)$ by letting $v \sim w$ if and only if there is a walk from v to w. Then \sim is an equivalence relation, and induces a partition of V into equivalent classes $\left\{V_{1}, V_{2}, \ldots, V_{l}\right\}$ with $V=V_{1} \dot{\cup} V_{2} \dot{\cup} \cdots \dot{\cup} V_{l}$. The induced subgraphs on each equivalence class $V_{i}, 1 \leq i \leq l$ are called the components of G.

Remark 14 (Decomposition of a graph into components). Let \mathscr{G} denote the set of all graphs in which the size is defined as the number of vertices and \mathscr{C} denote the set of all connected graphs. Both \mathscr{G} and \mathscr{C} are combinatorial classes. Let $G(z)$ and $C(z)$ be the corresponding (exponential) generating functions defined as

$$
\begin{aligned}
G(z) & :=\sum\left|\mathscr{G}_{n}\right| \frac{z^{n}}{n!} \\
C(z) & :=\sum\left|\mathscr{C}_{n}\right| \frac{z^{n}}{n!} .
\end{aligned}
$$

Note that every graph is the union of its components. This can be formulated as

$$
\mathscr{G}=\operatorname{Set}(\mathscr{C}) \Leftrightarrow G(z)=\exp (C(z))
$$

2.2.2 2-Connected Graphs

Definition 34 (Separator, cut vertex, bridge, block). Let $G=(V, E)$ be a graph.
(1) We say a set $X \subseteq V$ separates G if $G[V \backslash X]$ is disconnected.
(2) A vertex separating two other vertices in the same component (i.e. increasing the number of connected components) is called a cut vertex (or articulation point).
(3) An edge separating its ends (i.e. increasing the number of connected components) is called a bridge.
(4) A maximal connected subgraph without a cut vertex is called a block.

Remark 15.

(1) What does a block look like? Every block is either

- a maximal 2-connected subgraph,
- a bridge (together with its ends), or
- an isolated vertex.

Conversely, every such graph is a block.
(2) By maximality, different blocks of G overlap in at most one vertex, which is a cut vertex of G, and every edge of G lies in a unique block.

Definition 35 (Block graph). Given a graph G, let A be the set of cut vertices in G and B be the set of its blocks. Then there is a natural bipartite graph on the vertex set $A \cup B$, in which there is an edge $\{a, b\}$ for each $b \in B$ and $a \in A \cap V(b)$ (where $V(b)$ is the set of vertices of the block b). This graph is called a block graph of G.

Remark 16. The block graph of a connected graph is a bipartite tree.
Example 1 (Combinatorial class of biconnected graphs). Remark 16 says "every connected graph can be decomposed into 2-connected graphs which are arranged in a tree-like way". This can be made rigorous in terms of compositions of combinatorial classes.

Let \mathscr{B}_{n} denote the set of all 2-connected graphs on vertex set $[n]:=\{1, \ldots, n\}$ and $B(z):=\sum b_{n} \frac{z^{n}}{n!}$ where $b_{n}:=\left|\mathscr{B}_{n}\right|, n \geq 3$. For an isolated vertex and a bridge we let

$$
\begin{gathered}
b_{1}=1 \\
b_{2}=1 .
\end{gathered}
$$

Let $\tilde{\mathscr{B}}$ be the set of all 2-connected graphs with one distinguished vertex and analogously define \tilde{C}. Then

$$
\tilde{b}_{n}=n \cdot b_{n} \quad \Longleftrightarrow \quad \tilde{B}(z)=z B^{\prime}(z)
$$

and the same holds for \tilde{C} as well. Now, given a connected graph, consider a distinguished (cut)vertex \mathscr{Z} and study how the blocks are arranged around this vertex: it is a union of blocks. Note that this particular vertex is contained in every block, so \mathscr{Z} is taken out to avoid multiple counting. Each block consists of vertices and further blocks, i.e. a connected graph.

$$
\begin{aligned}
\tilde{\mathscr{C}} & =\mathscr{Z}+\operatorname{Set}(\tilde{\mathscr{B}}(\tilde{\mathscr{C}})-\mathscr{Z}) \\
z C^{\prime}(z) & =z \cdot \exp \left(B^{\prime}\left(z C^{\prime}(z)\right)\right)
\end{aligned}
$$

Leting $f(z)=z C^{\prime}(z)$ we have

$$
f(z)=z \cdot \exp \left(B^{\prime}(f(z))\right.
$$

(Recall that $\tilde{\mathscr{B}}(\tilde{\mathscr{C}})$ is substitution). See the book "Random Trees" (Chapter 9.2) by Michael Drmota for this and related topics.

2.2.3 3-Connected Graphs

Definition 36 (Subdivision, topological minor, minor). Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be graphs.
(1) G^{\prime} is a subdivision of G if G^{\prime} is obtained from G by inserting new vertices on some or all of its edges.
(2) G is a topological minor of G^{\prime} if a subdivision of G is isomorphic to a subgraph of G^{\prime}.
(3) G is a minor of G^{\prime} if there is a map $\phi: B \subseteq V^{\prime} \rightarrow V$ such that

- for every vertex $v \in V$, the subgraph induced of its pre-image $G^{\prime}\left[\varphi^{-1}(v)\right]$ is connected in G^{\prime} and
- for every edge $\{u, w\} \in E$ there is an edge in G^{\prime} between $\varphi^{-1}(v)$ and $\varphi^{-1}(w)$.

In words: a graph G is a minor of G^{\prime} if it can be obtained from G^{\prime} by contracting edges in G^{\prime}.

In particular, if $G^{\prime}\left[\varphi^{-1}(v)\right]$ consists of a single edge $e^{\prime} \in E^{\prime}$ and every other pre-image $G^{\prime}\left[\varphi^{-1}(w)\right]$ contains just a single vertex, then we say G arises from G^{\prime} by contracting the edge e^{\prime} and denote it by $G=G^{\prime} / e^{\prime}$.

Theorem 4 (Tutte 1961). A graph G is 3-connected if and only if there is a sequence $G_{0}=K_{4}, G_{1}, \ldots, G_{n}=G$ of graphs such that G_{i+1} has an edge $e=\{v, w\}$ with $d(v)$, $d(w) \geq 3$ and $G_{i}=G_{i+1} / e, \quad \forall 0 \leq i \leq n-1$.

2.3 Planar Graphs and Trees

2.3.1 Planar and Plane Graphs

Definition 37 (Planar graph).
(1) A graph is called planar if it can be embedded/drawn in the plane without crossing edges.
(2) A planar graph with a given planar embedding is called plane graph. A face of a plane graph is an area bounded by vertices and edges (the outside is also a face).

Example 2. K_{5} and $K_{3,3}$ are not planar and neither are topological minors of them.

Theorem 5 (Kuratowski 1930, Wagner 1937).

- A graph G is planar if and only if G contains neither K_{5} nor $K_{3,3}$ as a topological minor.
- A graph G is planar if and only if G contains neither K_{5} nor $K_{3,3}$ as a minor.

Theorem 6 (Euler characteristics). Let $G=(V, E)$ be a connected plane graph then the number of faces equals $|E|-|V|+2$.

Proof. Induction
Remark 17 (Number of faces). Note that the number of faces is independent of the plane embedding.

Corollary 24.

- A plane graph with $n \geq 3$ vertices hast at most $3 n-6$ edges.
- Every plane triangulation with $n \geq 3$ vertices (i.e. every face is bounded by a triangle) has exactly $3 n-6$ edges.

Proof. Exercise!
Use double counting argument (each face contains (at most) 3 edges, on the other hand each edge contains exactly 2 faces) and then use Euler characteristics.

Lecture 9

2.3.2 Trees

Definition 38 (Forest, tree, leaf).
(1) An acyclic graph is called a forest.
(2) A connected forest is called a tree.
(3) The vertices of degree one in a tree are called leaves.

Remark 18. A graph is acyclic if and only if it does not contain a K_{3} as a minor.
Lemma 25. Every tree with at least two vertices (at least one edge) contains at least two leaves.

Proof. Exercise!
Lemma 26 (Tree growing lemma). Let $G=(V, E)$ be a graph and $d(v)=1$ for some $v \in V$. Then G is a tree if and only if $G[V \backslash\{v\}]$ is a tree.

Proof. Exercise!
Theorem 7 (Cayley's formula). Let $n \geq 2$ be an integer and let $T\left(K_{n}\right)$ denote the number of all spanning trees of the complete graph K_{n}. Then $T\left(K_{n}\right)=n^{n-2}$.

For an illustration see the pictures for Theorem 15 in Section 1.5.
Proof (Prüfer Code). Let \mathscr{T}_{n} be the set of all spanning trees of K_{n} and let

$$
\mathscr{S}_{n-2}:=\left\{\left(s_{1}, s_{2}, \ldots, s_{n-2}\right): 1 \leq s_{i} \leq n\right\}=[n]^{n-2}
$$

be the set of all strings of length $n-2$ over the alphabet $[n]$. A bijection (known as Prüfer code)

$$
\begin{aligned}
f: \mathscr{T}_{n} & \rightarrow \mathscr{S}_{n-2} \\
T & \mapsto f(T):=s=\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)
\end{aligned}
$$

is defined successively as follows: We start with $T_{0}=T$. Suppose the tree T_{i-1} has already been constructed for $i \geq 1$. We

- prune the smallest (labelled) leaf in T_{i-1};
- remove it from T_{i-1} together with the edge incident to it;
- call the resulting graph T_{i};
- define the i-th term s_{i} of the sequence s as the neighbour of the leaf that is removed from T_{i-1}.
Doing this successively for $i=1,2, \ldots, n-2$ we obtain the sequence $s=\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)$.

Example 3. Let $T_{0}=T$ be the following three with 8 vertices:

Conversely, we shall show how to construct the original tree $T=f^{-1}(s)$ from the sequence $s=\left(s_{1}, \ldots, s_{n-2}\right)$ (that arose from some $\left.T \in \mathscr{T}_{n}\right)$.
Let $s=\left(s_{1}, \ldots, s_{n-2}\right) \in[n]^{n-2}$ be given. Let l_{1} denote the leaf of T that was removed first. Then l_{1} cannot occur anywhere in s and any vertex v that is not contained in s has to be a leaf of the tree T_{0}. For otherwise we would remove a leaf w adjacent to v at some step of "removal" process and therefore it would appear in s at that moment. According to the removal rule, l_{1} must be

$$
l_{1}=\min \left(\{1,2, \ldots, n\} \backslash\left\{s_{1}, s_{2}, \ldots, s_{n-2}\right\}\right)
$$

Now draw the vertices l_{1} and s_{1} and connect them by an edge. We shall proceed this process successively as follows: Suppose we have reconstructed the leaves l_{1}, \ldots, l_{i-1} removed from $T_{0}=T$. To determine the leaf l_{i} we observe as before that $l_{i} \notin\left\{s_{i}, s_{i+1}, \ldots, s_{n-2}\right\}$ and also $l_{i} \notin\left\{l_{1}, \ldots, l_{i-1}\right\}$. Therefore,

$$
l_{i}=\min \left([n] \backslash\left\{s_{i}, s_{i+1}, \ldots, s_{n-2}, l_{1}, \ldots, l_{i-1}\right\}\right) .
$$

If l_{i} and s_{i} have not been drawn yet, then draw them. Connect l_{i} and s_{i} by an edge e_{i}. After $n-2$ steps, we have reconstructed $n-2$ edges $e_{1}, e_{2}, \ldots, e_{n-2}$ of T (those edges that were removed in order to construct the sequence s). It remains to deduce the last edge e_{n-1}. One of its end must be s_{n-2}. The other end is

$$
l_{n-1}=[n] \backslash\left\{l_{1}, \ldots, l_{n-2}, s_{n-2}\right\} .
$$

This produces a subgraph G of K_{n} with e_{1}, \ldots, e_{n-1} edges.
To complete the proof it remains to show that firstly G is a tree, secondly the Prüfer code "encoding" applied to G yields the original sequence s, and thirdly that f is surjective.

Let $E_{i}=\left\{e_{i}, e_{i+1}, \ldots, e_{n-1}\right\}$ for $1 \leq i \leq n-1$ and $G_{i}=\left([n], E_{i}\right)$. To show that G is a tree, note that none of the edges e_{i+1}, \ldots, e_{n-1} can be incident to l_{i} and therefore l_{i} is a leaf of G_{i} and by Lemma 26, G_{i} is a tree (up to isolated vertices) for $1 \leq i \leq n-1$. In particular, $G_{1}=G$ is a tree.

To show that the encoding applied to G yields the original sequence s, it suffices to verify that l_{i} is the smallest leaf of G_{i} for $1 \leq i \leq n-2$. Observe that by definition of $l_{i}=\min \left([n] \backslash\left\{s_{i}, s_{i+1}, \ldots, s_{n-2}, l_{1}, \ldots, l_{i-1}\right\}\right)$, a smaller leaf of G_{i} can occur among l_{1}, \ldots, l_{i-1} or $s_{i}, s_{i+1}, \ldots, s_{n-2}$. Because $l_{1}, l_{2}, \ldots, l_{i-1}$ are isolated vertices in G_{i}, the first case does not occur. So consider s_{k} for some $i \leq k \leq n-2$. In G_{k}, s_{k} is a neighbour of l_{k} and has another neighbour, so it is not a leaf of G_{k}. Because $G_{k} \subset G_{i}$, s_{k} is not a leaf of G_{i}. Therefore, none of $s_{i}, s_{i+1}, \ldots, s_{n-2}$ is a leaf of G_{i}.

For the surjectivity of $f: \mathscr{T}_{n} \rightarrow \mathscr{S}_{n-2}$ note that the above algorithm associates a tree to every string $\left(s_{1}, \ldots, s_{n-2}\right)$ in \mathscr{S}_{n-2}.

Example (Example 3 cont.). $S=\left(s_{1}, s_{2}, \ldots, s_{6}\right)=(5,1,1,4,5,1)$. We show how to get a tree from this. (Try the same on an arbitrary word, say in \mathscr{S}_{5} to illustrate the surjectivity of f)

Step 1

$$
l_{2}=3
$$

$$
l_{2}=\min \text { of }[n] \backslash\left\{s_{2}, \ldots, s_{6}, l_{1}\right\}
$$

Step 2

$$
\begin{aligned}
l_{1} & =\min \text { of }[8] \backslash\{1,4,5\} \\
& =\min \{1,3,6,7,8\} \\
& =2
\end{aligned}
$$

$$
l_{3}=\stackrel{e_{3}}{6} \stackrel{e_{1}^{2}}{s_{2}} \stackrel{s_{2}}{s_{3}}=1
$$

$$
=\min \{3,6,7,8\}
$$

$$
=3
$$

$$
l_{3}=\min \text { of }[n] \backslash\left\{s_{3}, \ldots, s_{6}, l_{1}, l_{2}\right\}
$$

$$
=\min \{6,7,8\}
$$

$$
=6
$$

Step $4 \quad \stackrel{4}{\bullet} e_{4} \quad l_{4}=7$

$$
\begin{aligned}
l_{4} & =\min \text { of }[n] \backslash\left\{s_{4}, \ldots, s_{6}, l_{1}, l_{2}, l_{3}\right\} \\
& =\min \{7,8\} \\
& =7
\end{aligned}
$$

Step 5

$$
\begin{aligned}
& l_{2}=3 \\
& l_{3}=6 \\
& l_{7}=8 \\
& e_{3} \\
& s_{2}=1 \\
& s_{3}=s_{6} \\
& s_{4}=4=s_{5}=l_{6} \\
& \bullet
\end{aligned}
$$

Step 6
Step 7

$$
\begin{aligned}
l_{5} & =\min \text { of }[n] \backslash\left\{s_{5}, s_{6}, l_{1}, l_{2}, l_{3}, l_{4}\right\} \\
& =\min \{4,8\} \\
& =4 \\
l_{6} & =\min \text { of }[n] \backslash\left\{s_{6}, l_{1}, \ldots, l_{5}\right\} \\
& =\min \{5,8\}=5 \\
l_{7} & =\min \text { of }[n] \backslash\{\ldots\}=8
\end{aligned}
$$

Chapter 3

Stochastic Aspects - Random Graphs

Lecture 10

Suggested reading for Chapter 3: [3] and [4].

3.1 Basics

Lemma 27 (Union bound).
For a finite or countable set of events A_{1}, A_{2}, \ldots,

$$
\mathbb{P}\left[\bigcup A_{i}\right] \leq \sum \mathbb{P}\left[A_{i}\right]
$$

In words, "the probability that at least on of the events A_{1}, A_{2}, \ldots happens is no greater than the sume of the probabilities of individual events".

Proof. Exercise!

- For the finite case induction on n
- For the countable case σ-subadditivity of (probabilistic) measure

Lemma 28 (Markov's inequality).
For any non-negative random variable X and any constant $t>0$,

$$
\mathbb{P}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof. Exercise!
Remark 19 (First moment method). For a non-negative integral random variable X and $t=1$, Markov's inequality implies that

$$
\mathbb{P}[X \neq 0]=\mathbb{P}[X \geq 1] \leq \mathbb{E}[X] .
$$

In particular, if $\mathbb{E}[X] \rightarrow 0$, then $\mathbb{P}[X \neq 0] \rightarrow 0$. Therefore it is useful to prove the nonexistence of certain events.

Remark 20 (Variant of Markov's inequality).
Markov's inequality in terms of deviation from the expectation:

$$
\mathbb{P}[X \geq t \mathbb{E}[X]] \leq \frac{1}{t}
$$

Definition 39 (Variance and covariance). The variance of a random variable X is defined as

$$
\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

The covariance of two random variables X, Y is defined as

$$
\operatorname{Cov}[X, Y]:=\mathbb{E}[(X-\mathbb{E}[X]) \cdot(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Lemma 29 (Chebyshev's inequality). For any random variable X and any constant $t>0$,

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Proof. Apply Markov's inequality!
Remark 21 (Second moment method). Let X be a random variable with $\mathbb{E}[X]>0$. Then Chebyshev's inequality implies

$$
\mathbb{P}[X=0] \leq \mathbb{P}[|X-\mathbb{E}[X]| \geq \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\frac{\mathbb{E}\left[X^{2}\right]}{\mathbb{E}[X]^{2}}-1
$$

Therefore, if $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, equivalently $\mathbb{E}\left[X^{2}\right]=(1+o(1)) \mathbb{E}[X]^{2}$, then $\mathbb{P}[X=0] \rightarrow$ 0 , in other words, $\mathbb{P}[X>0] \rightarrow 1$. Therefore it is useful to prove the existence of certain events.

Remark 22 (Application of Chebyshev's inequality). Lemma 29 implies that for any $\varepsilon>0$,

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq \varepsilon \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2} \mathbb{E}[X]^{2}}
$$

Thus, if $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, then $\mathbb{P}[|X-\mathbb{E}[X]| \geq \varepsilon \mathbb{E}[X]] \rightarrow 0$, equivalently, if $\operatorname{Var}[X]=$ $o\left(\mathbb{E}[X]^{2}\right)$, then $\mathbb{P}[|X-\mathbb{E}[X]| \leq \varepsilon \mathbb{E}[X]] \rightarrow 1$.

Let $X=X_{1}+X_{2}+\ldots$ be a sum of indicator random variables ${ }^{1}$. Then

$$
\begin{aligned}
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[\left(\sum_{i} X_{i}\right)\left(\sum_{i} X_{i}\right)\right]-\mathbb{E}\left[\sum_{i} X_{i}\right] \mathbb{E}\left[\sum_{i} X_{i}\right] \\
& =\sum_{i}\left(\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2}\right)+\sum_{i \neq j}\left(\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]\right) \\
& =\sum_{i} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right]
\end{aligned}
$$

Since the X_{i} 's are indicator variables, we have $\mathbb{E}\left[X_{i}^{2}\right]=\mathbb{E}\left[X_{i}\right]$, and therefore

$$
\begin{gathered}
\operatorname{Var}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2} \leq \mathbb{E}\left[X_{i}^{2}\right]=\mathbb{E}\left[X_{i}\right] \\
\sum_{i} \operatorname{Var}\left[X_{i}\right] \leq \sum_{i} \mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{i} X_{i}\right]=\mathbb{E}[X]
\end{gathered}
$$

[^0]and
$$
\operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \leq \mathbb{E}\left[X_{i} X_{j}\right]
$$

Note that if X_{i} and X_{j} are independent, then

$$
\operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]=\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]=0
$$

Hence,

$$
\begin{equation*}
\operatorname{Var}[X]=\sum_{i} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \leq \mathbb{E}[X]+\sum_{i \neq j, X_{i}, X_{j} \text { dependent }} \mathbb{E}\left[X_{i} X_{j}\right] \tag{3.1}
\end{equation*}
$$

Remark 23 (Sum of indicator random variables). Let $X=X_{1}+X_{2}+\ldots$ be a sum of indicator random variables with $\mathbb{E}[X]>0$. Lemma 29 and (3.1) imply that

$$
\mathbb{P}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \leq \frac{\mathbb{E}[X]+\sum_{i \neq j} \mathbb{E}\left[X_{i} X_{j}\right]}{\mathbb{E}[X]^{2}}
$$

and Remark 22 and (3.1) imply that

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq \varepsilon \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2} \mathbb{E}[X]^{2}} \leq \frac{\mathbb{E}[X]+\sum_{i \neq j X_{i} X_{j} \text { dependent }} \mathbb{E}\left[X_{i} X_{j}\right]}{\varepsilon^{2} \mathbb{E}[X]^{2}}
$$

Therefore, if $\mathbb{E}[X] \rightarrow \infty$ and $\sum_{i \neq j} X_{i}, X_{j}$ dependent $\mathbb{E}\left[X_{i} X_{j}\right]=o\left(\mathbb{E}[X]^{2}\right)$, then

$$
\mathbb{P}[X \geq 1] \rightarrow 1 \quad \text { and } \quad \mathbb{P}[|X-\mathbb{E}[X]| \leq \varepsilon \mathbb{E}[X]] \rightarrow 1
$$

(Cf. Remark 22).

Definition 40 (Erdős-Rényi random graph). Let $p \in[0,1]$ be a constant independent of n or let $p=p(n) \in[0,1]$ be a function in n.

The binomial random graph $G(n, p)$, also known as the Erdös-Rényi random graph, is a graph with vertex set $[n]:=\{1,2, \ldots, n\}$, in which each pair of vertices is joined by an edge with probability p, independently of each other. Equivalently, given $p \in[0,1]$, let Ω be the set of all graphs with vertex set $[n]$ and define, for each $G \in \Omega$,

$$
\mathbb{P}[G]:=p^{|E(G)|}(1-p)^{\binom{n}{2}-|E(G)|},
$$

where $E(G)$ is the edge set of G.
Example 4 (Expected number of edges in $G(n, p)$).

Let $G=G(n, p)$. Let X be the number of edges in G. This can be written as the sum of indicator random variables

$$
X:=|E(G)|=\sum X_{\{u, v\}},
$$

where

$$
X_{\{u, v\}}= \begin{cases}1, & \{u, v\} \in E(G) \\ 0, & \{u, v\} \notin E(G)\end{cases}
$$

Using the linearity of expectation we obtain

$$
\mathbb{E}[X]=\sum \mathbb{E}\left[X_{\{u, v\}}\right]=\sum \mathbb{P}[\{u, v\} \in E(G)]=\sum p=\binom{n}{2} p
$$

Therefore,

$$
\mathbb{E}[X]=\binom{n}{2} p \rightarrow \begin{cases}0, & p \ll n^{-2} \\ \infty, & p \gg n^{-2}\end{cases}
$$

By Markov's inequality (cf. Remark 19), if $p \ll n^{-2}$, then

$$
\mathbb{P}[X \neq 0]=\mathbb{P}[X \geq 1] \leq \mathbb{E}[X] \rightarrow 0
$$

3.2 Ramsey Number and First Moment Method

Definition 41 (Ramsey number). The Ramsey number $R(k, l)$ is defined as the smallest integer n such that any graph G on n vertices contains either a clique of order k or an independent set of order l, i.e.

$$
R(k, l):=\min \{n \in \mathbb{N}: \forall G \text { on } n \text { vertices } \omega(G) \geq k \vee \alpha(G) \geq l\}
$$

Equivalently, $R(k, l)$ is the smallest integer n such that in any two-coloring of the edges of the complete graph K_{n} by red and blue, there exists a either a red K_{k} or a blue K_{l}.

Remark 24 (Ramsey number).
(0) $R(k, 1)=R(1, k)=1$
(1) $R(k, l)=R(l, k)$
(2) $R(k, 2)=R(2, k)=k$
(3) $\quad R(k, l) \leq R(k-1, l)+R(k, l-1)$
(4) $R(k, l) \leq\binom{ k+l-2}{k-1}$

Proof. Exercise!

Example. $R(3,3)=6$: one can show that $R(3,3) \leq 6$ (exercise). To see that $R(3,3)>$ 5, consider the colouring of K_{5} where all the outer edges are of one colour, all the crossing edges of the inner star of the other colour:

Theorem 8 (Erdős-Szekeres 1935).

$$
R(k, k) \leq(1+o(1)) \frac{4^{k-1}}{\sqrt{\pi k}}
$$

Proof. Using Remark 24 (4) and applying Stirling's formula we have

$$
\begin{aligned}
R(k, k) \leq\binom{ 2 k-2}{k-1} & =\frac{(2 k-2)!}{((k-1)!)^{2}} \\
& =\frac{\left(1+O\left(\frac{1}{2(k-1)}\right)\right) \sqrt{4 \pi(k-1)}\left(\frac{2(k-1)}{e}\right)^{2(k-1)}}{\left(\left(1+O\left(\frac{1}{k-1}\right)\right) \sqrt{2 \pi(k-1)}\left(\frac{k-1}{e}\right)^{k-1}\right)^{2}} \\
& =(1+o(1)) \frac{2^{2(k-1)}}{\sqrt{\pi(k-1)}} \\
& =(1+o(1)) \frac{4^{k-1}}{\sqrt{\pi k}}
\end{aligned}
$$

Theorem 9 (Erdős 1947).

$$
R(k, k) \geq(1+o(1)) \frac{k}{e \sqrt{2}} \sqrt{2}^{k}
$$

Proof. We shall apply the first moment method.
Consider a random graph $G=G\left(n, \frac{1}{2}\right)$. For each subset $S \subseteq[n]$ of size k,

$$
\mathbb{P}[S \text { forms a clique }]=\left(\frac{1}{2}\right)^{\binom{k}{2}}=2^{-\binom{k}{2}}
$$

So, using the union bound (Lemma 27) we have

$$
\begin{aligned}
\mathbb{P}[\omega(G) \geq k] & =\mathbb{P}[G \text { contains a clique of size } k] \\
& =\mathbb{P}\left[\bigcup_{S \in\binom{n]}{k}}[S \text { forms a clique }]\right] \\
& \leq \sum_{S \in\binom{[n]}{k}} \mathbb{P}[S \text { forms a clique }] \\
& =\binom{n}{k} 2^{-\binom{k}{2}}
\end{aligned}
$$

Similarly, for each subset $S \subseteq[n]$ of size k,

$$
\mathbb{P}[S \text { is an independent set }]=\left(1-\frac{1}{2}\right)^{\binom{k}{2}}=2^{-\binom{k}{2}}
$$

and thus we have

$$
\begin{aligned}
\mathbb{P}[\alpha(G) \geq k] & =\mathbb{P}\left[\bigcup_{S \in\binom{[n]}{k}}[S \text { is an independent set }]\right] \\
& \leq \sum_{S \in\binom{n n]}{k}} \mathbb{P}[S \text { is an independent set }] \\
& =\binom{n}{k} 2^{-\binom{k}{2}}
\end{aligned}
$$

Summing up, we have

$$
\mathbb{P}[\omega(G) \geq k \vee \alpha(G) \geq k] \leq \mathbb{P}[\omega(G) \geq k]+\mathbb{P}[\alpha(G) \geq k] \leq\binom{ n}{k} 2^{1-\binom{k}{2}}
$$

Therefore, if

$$
\binom{n}{k} 2^{1-\binom{k}{2}}<1
$$

then

$$
\mathbb{P}[\omega(G) \geq k \vee \alpha(G) \geq k]<1
$$

In other words,

$$
\mathbb{P}[\omega(G)<k \wedge \alpha(G)<k]=1-\mathbb{P}[\omega(G) \geq k \vee \alpha(G) \geq k]>0
$$

This means that there exists a graph G on n vertices with

$$
\omega(G)<k \wedge \alpha(G)<k
$$

This implies

$$
R(k, k)>n
$$

To find the asymptotically largest n such that $\binom{n}{k} 2^{1-\binom{k}{2}}<1$, we observe the following using the binomial coefficient approximation:

$$
\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

and so,

$$
\binom{n}{k} 2^{1-\binom{k}{2}} \leq\left(\frac{e n}{k}\right)^{k} \cdot 2 \cdot 2^{-\frac{k(k-1)}{2}}=\left(\frac{e n}{k} \cdot 2^{\frac{1}{k}} \cdot 2^{-\frac{k-1}{2}}\right)^{k}=\left(n \cdot \frac{e \sqrt{2}}{k \sqrt{2}^{k}} 2^{\frac{1}{k}}\right)^{k}=^{!} 1
$$

if

$$
n=\left(\frac{e \sqrt{2}}{k \sqrt{2}^{k}} \cdot 2^{\frac{1}{k}}\right)^{-1}=\frac{k \sqrt{2}^{k}}{e \sqrt{2}} \underbrace{2^{-\frac{1}{k}}}_{\rightarrow 1 \text { as } k \rightarrow \infty}=(1+o(1)) \frac{k}{e \sqrt{2}} \sqrt{2}^{k}
$$

Lecture 11

3.3 Independence Number and Deletion Method

Theorem 10 (Weak Turán Theorem). For any graph G with vertex set $[n]$,

$$
\alpha(G) \geq \frac{n}{2 d(G)}
$$

where $d(G)$ is the average degree of G.
Proof. We shall apply the so-called Deletion Method.
Let $S \subset[n]$ be a random set defined by

$$
\mathbb{P}[v \in S]:=\frac{1}{d(G)},
$$

the events $v \in S$ being mutually independent.
Let $X=|S|$ and Y be the number of edges in the induced subgraph $G[S]$. For each $\{u, v\} \in E(G)$, let

$$
Y_{\{u, v\}}= \begin{cases}1, & \{u, v\} \in S \\ 0, & \{u, v\} \notin S\end{cases}
$$

Obviously we have

$$
Y=\sum_{\{u, v\} \in E(G)} Y_{\{u, v\}}
$$

and using the linearity of expectation we have

$$
\mathbb{E}[Y]=\sum_{\{u, v\} \in E(G)} \mathbb{E}\left[Y_{\{u, v\}}\right]=|E(G)|\left(\frac{1}{d(G)}\right)^{2}=\frac{n d(G)}{2 d(G)^{2}}=\frac{n}{2 d(G)},
$$

where the penultimate equality follows from $d(G):=\frac{1}{n} \sum_{v \in[n]} d(v)=\frac{2|E(G)|}{n}$. On the other hand, we have

$$
\mathbb{E}[X]=\mathbb{E}[|S|]=\frac{n}{d(G)}
$$

By the linearity of expectation we have

$$
\begin{equation*}
\mathbb{E}[X-Y]=\mathbb{E}[X]-\mathbb{E}[Y]=\frac{n}{d(G)}-\frac{n}{2 d(G)}=\frac{n}{2 d(G)} \tag{3.2}
\end{equation*}
$$

This implies that there exists a set $S_{0} \subset[n]$, for which the number of vertices in the induced subgraph $G\left[S_{0}\right]$ minus the number of edges in $G\left[S_{0}\right]$ satisfies

$$
|V(G[S])-E(G[S])| \geq \frac{n}{2 d(G)}
$$

for otherwise (i.e. if for all $S \subset[n], \mid V(G[S])-E(G[S])<n / 2 d(G)$)

$$
\mathbb{E}[X-Y]<\frac{n}{2 d(G)}
$$

which contradicts (3.2).
Now select one vertex from each edge of $G\left[S_{0}\right]$ and delete it from S_{0}. This results in a set S^{*} which contains at least $\frac{n}{2 d(G)}$ vertices and no edges, in other words, S^{*} is an independent set of size at least $\frac{n}{2 d(G)}$, which implies that $\alpha(G) \geq \frac{n}{2 d(G)}$ as desired.

3.4 Subgraphs and Second Moment Method

Definition 42 (Monotone family).
Let Γ be the set of all 2-element subsets of $[n]$ and 2^{Γ} be the set of all subsets of Γ. A family $\mathscr{F} \subseteq 2^{\Gamma}$ (i.e. a family of subsets of Γ) is called increasing if

$$
A \subseteq B \wedge A \in \mathscr{F} \quad \Rightarrow \quad B \in \mathscr{F}
$$

It is called decreasing if the family of complements in Γ is increasing. It is called monotone if it is increasing or decreasing.

Remark 25 (Monotone property). We identify a property of subsets of Γ with the corresponding family of all subsets having that property.

In case of graph properties, a property is increasing (resp. decreasing) if adding (resp. deleting) edges does not violate the property.

Example 5 (Monotone properties). (1) Being connected (increasing property)
(2) Containing a triangle (increasing property)
(3) Having an isolated vertex (decreasing property)
(4) Being planar (decreasing property)

Theorem 11 (Increasing property). For any increasing property $\mathscr{F} \subseteq 2^{\Gamma}$ and $0 \leq p_{1} \leq$ $p_{2} \leq 1$,

$$
\mathbb{P}\left[G\left(n, p_{1}\right) \in \mathscr{F}\right] \leq \mathbb{P}\left[G\left(n, p_{2}\right) \in \mathscr{F}\right]
$$

Proof. Define $p_{0} \in[0,1]$ by

$$
p_{1}+\left(1-p_{1}\right) p_{0}=p_{2}
$$

Then

$$
G\left(n, p_{0}\right) \cup G\left(n, p_{1}\right)=G\left(n, p_{2}\right)
$$

("two-round exposure"). Because \mathscr{F} is increasing, we have

$$
G\left(n, p_{1}\right) \in \mathscr{F} \quad \Rightarrow \quad G\left(n, p_{0}\right) \cup G\left(n, p_{1}\right) \in \mathscr{F}
$$

and therefore

$$
\mathbb{P}\left[G\left(n, p_{1}\right) \in \mathscr{F}\right] \leq \mathbb{P}\left[G\left(n, p_{0}\right) \cup G\left(n, p_{1}\right) \in \mathscr{F}\right] \leq \mathbb{P}\left[G\left(n, p_{2}\right) \in \mathscr{F}\right]
$$

Exercise 2. Is it true that for any decreasing property $\mathscr{F} \subseteq 2^{\Gamma}$ and $0 \leq p_{1} \leq p_{2} \leq 1$,

$$
\mathbb{P}\left[G\left(n, p_{1}\right) \in \mathscr{F}\right] \geq \mathbb{P}\left[G\left(n, p_{2}\right) \in \mathscr{F}\right] ?
$$

Definition 43 (Threshold).
For a monotone property $\mathscr{F} \subseteq 2^{\Gamma}$, a sequence $(f(n))_{n \geq 1}$ is a threshold if

$$
\mathbb{P}[G(n, p) \in \mathscr{F}] \rightarrow\left\{\begin{array}{ll}
0, & \text { if } p \ll f(n) \\
1, & \text { if } p \gg f(n)
\end{array} \quad \text { as } \quad n \rightarrow \infty\right.
$$

Note that a threshold is a family of functions (defined up to constant).
Theorem 12 (Bollobás-Thomason 1987). Every monotone property has a threshold.

Theorem 13 (Triangle threshold).

$$
\mathbb{P}[G(n, p) \text { contains a triangle }] \rightarrow \begin{cases}0, & \text { if } p \ll \frac{1}{n} \\ 1, & \text { if } p \gg \frac{1}{n}\end{cases}
$$

In other words, $f(n)=\frac{1}{n}$ is a threshold for the property of containing a triangle.
Proof. Let X denote the number of triangles contained in $G(n, p)$. Define indicator variables

$$
X_{S}= \begin{cases}1, & \text { if } S \text { forms a triangle } \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
X=\sum_{S \in\binom{[n]}{3}} X_{S}
$$

and

$$
\mathbb{E}[X]=\sum_{S \in\binom{[n]}{3}} \mathbb{E}\left[X_{S}\right]=\sum_{S \in\binom{[n]}{3}} \mathbb{P}[S \text { forms a triangle }]=\binom{n}{3} p^{3}=\Theta\left(n^{3} p^{3}\right)
$$

For the first statement of the theorem, we apply Markov's inequality (the first moment method) to obtain

$$
\mathbb{P}[G(n, p) \text { contains a triangle }]=\mathbb{P}[X \geq 1] \leq \mathbb{E}[X] \rightarrow 0, \quad \text { if } p \ll \frac{1}{n}
$$

In order to prove the second part we observe that

$$
\mathbb{E}[X]=\Theta\left(n^{3} p^{3}\right) \rightarrow \infty, \quad \text { if } p \gg \frac{1}{n}
$$

But does it imply what we want? Not necessarily! We shall use the second moment method to prove

$$
P[X=0] \rightarrow 0, \quad \text { if } p \gg \frac{1}{n}
$$

Assume that $p \gg \frac{1}{n}$ (p fixed). Then $\mathbb{E}[X] \rightarrow \infty$ and by Chebyshev's inequality, more precisely Remark 23, we have

$$
\mathbb{P}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \leq \frac{\mathbb{E}[X]+\sum_{S \neq T \in\binom{n n]}{3} x_{S}, X_{T} \text { dependent }} \mathbb{E}\left[X_{S} X_{T}\right]}{\mathbb{E}[X]^{2}}
$$

Thus it suffices to show

$$
\sum_{S \neq T \in\binom{[n]}{3} X_{S}, X_{T} \text { dependent }} \mathbb{E}\left[X_{S} X_{T}\right]=o\left(\mathbb{E}[X]^{2}\right)
$$

Let S and T be two distinct 3-element subsets of $[n]$. Then they may share exactly two vertices or at most one vertex. In the latter case, S and T can not share any edge in common in $G(n, p)$, and so X_{S} and X_{T} are independent. So we consider only pairs of $S \neq T \in\binom{[n]}{3}$ that share two vertices. If S and T form triangles, then $S \cup T$ forms a graph with two triangles sharing one edge in common (as in the following picture).

In this case we have

$$
\mathbb{E}\left[X_{S} X_{T}\right]=p^{5}
$$

Summing up we have

$$
\sum_{S \neq T \in\binom{[n]}{3} X_{S}, X_{T} \text { dependent }} \mathbb{E}\left[X_{S} X_{T}\right]=\Theta\left(n^{4} p^{5}\right) \ll \Theta\left(n^{6} p^{6}\right)=\mathbb{E}[X]^{2}
$$

as desired.
Remark 26 (Subgraph threshold). Given a fixed graph H with $|V(H)|=v_{h}$ and $|E(H)|=$ e_{H}, what is the threshold for the property that $G(n, p)$ contains a subgraph isomorphic to H (a copy of H)?

To answer this question we let X denote the number of copies of H. Then

$$
\mathbb{E}[X]=\binom{n}{v_{H}} p^{e_{H}}=\Theta\left(n^{v_{h}} p^{e_{H}}\right) \rightarrow \begin{cases}0, & \text { if } p \ll n^{-\frac{v_{H}}{e_{H}}} \\ \infty, & \text { if } p \gg n^{-\frac{v_{H}}{e_{H}}}\end{cases}
$$

Is it true that

$$
\mathbb{P}[X>0] \rightarrow \begin{cases}0, & \text { if } p \ll n^{-\frac{v_{H}}{e_{H}}} \\ 1, & \text { if } p \gg n^{-\frac{v_{H}}{e_{H}}}\end{cases}
$$

This is indeed not true in general. To see this let us consider the kite graph H and the diamond graph D defined as follows.

H

Let X_{H} denote the number of kite graphs contained in $G(n, p)$ and X_{D} denote the number of diamond graphs contained in $G(n, p)$. Then we have

$$
\begin{array}{ll}
\mathbb{P}\left[X_{D} \geq 1\right] \leq \mathbb{E}\left[X_{D}\right]=O\left(n^{4} p^{5}\right) \rightarrow 0, & \text { if } p \ll n^{-\frac{4}{5}} \\
\mathbb{P}\left[X_{H} \geq 1\right] \leq \mathbb{E}\left[X_{H}\right]=O\left(n^{6} p^{7}\right) \rightarrow 0, & \text { if } p \ll n^{-\frac{6}{7}}
\end{array}
$$

On one hand we have

$$
n^{-\frac{v_{H}}{e_{H}}}=n^{-\frac{6}{7}} \ll n^{-\frac{4}{5}}=n^{-\frac{v_{D}}{e_{D}}}
$$

but on the other hand we $\mathbb{P}\left[X_{H} \geq 1\right] \leq \mathbb{P}\left[X_{D} \geq 1\right]$, because D is a subgraph of H.
What's wrong here?
Definition 44 (Maximum density). Let

$$
m_{H}:=\max \left\{\frac{e_{H^{\prime}}}{v_{H^{\prime}}}: H^{\prime} \subseteq H \quad \text { with } \quad v_{H^{\prime}}>0\right\}
$$

Theorem 14 (Bollobás 1981).
For any graph H with $e_{H}, v_{H}>0$,

$$
\mathbb{P}[G(n, p) \text { contains a copy of } H] \rightarrow \begin{cases}0, & \text { if } p \ll n^{-\frac{1}{m_{H}}} \\ 1, & \text { if } p \gg n^{-\frac{1}{m_{H}}}\end{cases}
$$

Proof. Follow the lines of the proof of Theorem 13.

Bibliography

[1] R. Diestel, Graph Theory, GTM 173, 5th edition, 2016.
[2] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press 2009.
[3] S. Janson, T. Luczak, A. Rucinski, Random Graphs, Wiley, 2000
[4] J. Matousek, J. Nesetril, An Invitation to Discrete Mathematics, 2nd Edition, Oxford University Press

[^0]: ${ }^{1}$ A random variable associated with the occurence of an event; X_{A} has value 1 if A occurs and 0 otherwise.

