Discrete and algebraic structures, Winter Semester 2016/17

K. Baur

December 6, 2016

Contents

II 5
4 Multilinear algebra 7
4.1 Multilinear maps and tensor maps 7
4.2 Tensor products and unique factorization 13
4.3 Basic properties of tensors and induced inner products 15
4.4 Induced maps 20
4.5 Some models of tensor products 23
4.6 Exterior spaces 27
4.7 Reminder from linear algebra 34
4.7.1 Reminder on inner products 34
4.7.2 Reminder on adjoints 34
5 Rings and modules 37
5.1 Basic definitions 37
5.2 Submodules; intersections and sums 40
5.3 Morphisms; exact sequences 44
5.4 Quotient modules; basic isomorphism theorem 55
Notation for Chapters 4 and 5 65

Part II

Chapter 4

Multilinear algebra

[Lecture 1, 22.11.2016]

In this chapter, we discuss multilinear maps, tensor maps, tensor products and alternating maps. Chapter 4 is important for differential geometry. Multilinear maps can be viewed as a generalization of linear maps between vector spaces.
Some notations are explained at the very end of the document (just before the bibliography).

Unless mentioned otherwise, all vector spaces are finite dimensional vector spaces over some field K. Most of the time we will tacitly assume $K=\mathbb{C}$.

An important idea of this chapter is to convert a multilinear map on a product space into a linear map on the tensor product of its factor spaces and to study the relationship between these two maps.

4.1 Multilinear maps and tensor maps

Definition 4.1. Let $V_{1}, V_{2}, \ldots, V_{m}$ and W be vector spaces over a field K. A map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is m-multilinear or multilinear if it is linear in every argument, i.e. if

$$
\varphi\left(v_{1}, \ldots, v_{i}+\lambda v_{i}^{\prime}, \ldots, v_{m}\right)=\varphi\left(v_{1}, \ldots, v_{i}, \ldots, v_{m}\right)+\lambda \varphi\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{m}\right)
$$

holds for all $i=1, \ldots, m$, and for all $\lambda \in K$.
A linear map $f \in \operatorname{Hom}(V, W)$ can be viewed as a 1-multilinear map.
Remark. Linear map and multilinear maps are not the same!
Consider the linear map $f \in \operatorname{Hom}\left(V_{1} \times V_{2}, W\right)$ and a multilinear map $\varphi: V_{1} \times V_{2} \rightarrow W$. f is linear and so,

$$
f\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right)=f\left(v_{1}, v_{2}\right)+f\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=f\left(v_{1}, 0\right)+f\left(0, v_{2}\right)+f\left(v_{1}^{\prime}, 0\right)+f\left(0, v_{2}^{\prime}\right)
$$

φ is multilinear, and so,
$\varphi\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right)=\varphi\left(v_{1}, v_{2}+v_{2}^{\prime}\right)+\varphi\left(v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right)=\varphi\left(v_{1}, v_{2}\right)+\varphi\left(v_{1}, v_{2}^{\prime}\right)+\varphi\left(v_{1}^{\prime}, v_{2}\right)+\varphi\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$
Note that $\varphi\left(v_{1}, 0\right)=0=\varphi\left(0, v_{2}\right)$ but that $f\left(v_{1}, 0\right)$ and $f\left(0, v_{2}\right)$ are not necessarily 0 .
Example 4.2. The following maps are multilinear (please convince yourself of this!)
(a) $f: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x, y)=x y$.
(b) $\varphi: V^{*} \times V \rightarrow \mathbb{C}$ defined by $\varphi(f, v)=f(v)$.
(c) $\varphi: \mathbb{C}^{m} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by $\varphi(x, y)=x^{T} A y$ for some matrix $A \in \mathbb{C}_{m \times n}$.
(d) $\otimes: \mathbb{C}^{m} \times \mathbb{C}^{n} \rightarrow \mathbb{C}_{m \times n}$ defined by $\otimes(x, y)=x y^{T}$. This is a tensor map (see below).
(e) det: $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by $\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det} A$ where A is the $n \times n$ matrix $\left[x_{1}, \ldots, x_{n}\right]$ formed by the column vectors x_{i}.
(f) $f: V_{1} \times \cdots \times V_{m} \rightarrow \mathbb{C}$ defined by $f\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)$ for given $f_{i} \in V_{i}^{*}$, $i=1, \ldots, m$.
(g) $g: V_{1}^{*} \times \cdots \times V_{m}^{*} \rightarrow W$ defined by $g\left(f_{1}, \ldots, f_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)$ for $v_{i} \in V_{i}$ given, $i=1, \ldots, m$.
(h) Let $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow \mathbb{C}$ and $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ be multilinear. Then $\alpha \varphi+\beta \psi$ is also multilinear (for all $\alpha, \beta \in K)$. So the set $M\left(V_{1}, \ldots, V_{m}, W\right)$ of multilinear maps from $V_{1} \times \cdots \times V_{m}$ to W is a vector space.

Let $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ be a multilinear map. If we describe how ψ acts on a basis of $V_{1} \times \cdots \times V_{m}, \psi$ is determined. Let $n_{i}=\operatorname{dim} V_{i}$ for $i=1, \ldots, m$, let $E_{i}:=\left\{e_{i 1}, \ldots, e_{i, n_{i}}\right\}$ be a basis of V_{i}. Then each $v_{i} \in V_{i}$ can be written as $v_{i}=\sum_{j=1}^{n_{i}} a_{i j} e_{i j}(i=1, \ldots, m)$.

To describe the basis of a product of m vector spaces of dimensions n_{1}, \ldots, n_{m}, we use the following notation.

$$
\Gamma:=\Gamma\left(n_{1}, \ldots, n_{m}\right):=\left\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)) \mid 1 \leq \gamma(i) \leq n_{i}, i=1, \ldots, m\right\} .
$$

with $|\Gamma|=\prod_{i=1}^{m} n_{i}$. For an example, take $\mathbb{C}^{3} \times \mathbb{C}^{2} \times \mathbb{C}^{2}$, with

$$
\Gamma=\Gamma(3,2,2)=\left\{\begin{array}{l}
(1,1,1),(1,1,2),(1,2,1),(1,2,2), \\
(2,1,1),(2,1,2),(2,2,1),(2,2,2), \\
(3,1,1),(3,1,2),(3,2,1),(3,2,2)
\end{array}\right\}
$$

We can order Γ according to the lexicographic order, as in the example. Moreover, we have (please check):

$$
\begin{equation*}
\prod_{i=1}^{m} \sum_{j=1}^{n_{i}} a_{i j}=\sum_{\gamma \in \Gamma} \prod_{i=1}^{m} a_{i \gamma(i)} \tag{4.1}
\end{equation*}
$$

as will be used later.
From the set-up, we have

$$
\begin{align*}
\psi\left(v_{1}, \ldots, v_{m}\right) & =\psi\left(\sum_{j_{1}=1}^{n_{1}} a_{1, j_{1}} e_{1, j_{1}}, \ldots, \sum_{j_{m}}^{n_{m}} a_{m, j_{m}} e_{m, j_{m}}\right) \\
& =\sum_{j_{1}}^{n_{1}} \cdots \sum_{j_{m}}^{n_{m}} a_{1, j_{1}} \cdots a_{m, j_{m}} \psi\left(e_{1, j_{1}}, \ldots, e_{m, j_{m}}\right) \\
& =\sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots a_{m, \gamma(m)} \psi\left(e_{1, \gamma(1)}, \ldots, e_{m, \gamma(m)}\right) \\
& =\sum_{\gamma \in \Gamma} a_{\gamma} \psi\left(e_{\gamma}\right) \tag{4.2}
\end{align*}
$$

where for $\gamma \in \Gamma$, we write

$$
\begin{align*}
& a_{\gamma}:=\prod_{i=1}^{m} a_{i, \gamma(i)} \in \mathbb{C} \tag{4.3}\\
& e_{\gamma}:=\left(e_{1, \gamma(1)}, \ldots, e_{m, \gamma(m)}\right) \in V_{1} \times \cdots \times V_{m} \tag{4.4}
\end{align*}
$$

so e_{γ} is the basis vector of $V_{1} \times \cdots \times V_{m}$ with label γ.
Then the $\psi\left(e_{\gamma}\right)$ in (4.2) completely determine ψ.
Theorem 4.3 (Multilinear extension). Let $E_{i}=\left\{e_{i, 1}, \ldots, e_{i, n_{i}}\right\}$ be a basis of $V_{i}, i=$ $1 \ldots, m$. Let e_{γ} be as in (4.4). Let w_{γ} in W, for all $\gamma \in \Gamma=\Gamma\left(n_{1}, \ldots, n_{m}\right)$ be arbitrary. Then there exists a unique multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ such that $\varphi\left(e_{\gamma}\right)=w_{\gamma}$ for all γ.

Proof. Since we want $\varphi\left(e_{\gamma}\right)=w_{\gamma}$ for all $\gamma \in \Gamma$, we need to define (by (4.2)

$$
\varphi\left(v_{1}, \ldots, v_{m}\right)=\sum_{\gamma \in \Gamma} a_{\gamma} w_{\gamma}
$$

for a_{γ} as in (4.3) and $v_{i}=\sum_{j=1}^{n_{i}} a_{i j} e_{i j}$. Let $v_{i}^{\prime}=\sum_{j=1}^{n_{i}} a_{i j}^{\prime} e_{i j}$ for $i \in\{1, \ldots, m\}$ arbitrary. From the definition of φ, for $c \in K$,

$$
\begin{aligned}
& \varphi\left(v_{1}, \ldots, v_{i}+c v_{i}^{\prime}, \ldots, v_{m}\right) \\
= & \sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots\left(a_{i, \gamma(i)}+c a_{i, \gamma(i)}^{\prime}\right) \cdots a_{m, \gamma(m)} w_{\gamma} \\
= & \sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots a_{i, \gamma(i)} \cdots a_{m, \gamma(m)} w_{\gamma}+c \sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots a_{i, \gamma(i)}^{\prime} \cdots a_{m, \gamma(m)} w_{\gamma} \\
= & \varphi\left(v_{1}, \ldots, v_{i}, \ldots, v_{m}\right)+c \varphi\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{m}\right)
\end{aligned}
$$

i.e. φ is multilinear.

Now we show that $\varphi\left(e_{\alpha}\right)=w_{\alpha}$ for all $\alpha \in \Gamma$.
For $\alpha \in \Gamma$, write

$$
e_{i, \alpha(i)}=\sum_{j=1}^{n_{j}} \delta_{\alpha(i), j} e_{i j} .
$$

From the definition of φ and $e_{\alpha}=\left(e_{1, \alpha(1)}, \ldots, e_{m, \alpha(m)}\right)$, we have

$$
\varphi\left(e_{\alpha}\right)=\varphi\left(e_{1, \alpha(1)}, \ldots, e_{m, \alpha(m)}\right)=\sum_{\gamma \in \Gamma} \delta_{\alpha(1), 1} \ldots \delta_{\alpha(m), m} w_{\gamma}=\sum_{\gamma \in \Gamma} \delta_{\alpha, \gamma} w_{\gamma}=w_{\alpha}
$$

(with $\delta_{\alpha, \gamma}$ the obvious generalization of the Kronecker delta). So we have established the existence.

Uniqueness: Suppose there is another multilinear map $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ such that $\psi\left(e_{\gamma}\right)=w_{\gamma}$ for all $\gamma \in \Gamma$. Then from (4.2) we have (for all $\left(v_{1}, \ldots, v_{m}\right) \in$ $\left.V_{1} \times \cdots \times V_{m}\right)$:

$$
\psi\left(v_{1}, \ldots, v_{m}\right)=\sum_{\gamma \in \Gamma} a_{\gamma} \psi\left(e_{\gamma}\right)=\sum_{\gamma \in \Gamma} a_{\gamma} w_{\gamma}=\varphi\left(v_{1}, \ldots, v_{m}\right)
$$

So $\psi=\varphi$.
Let us point out some differences between linear and multilinear maps. When T : $V \rightarrow W$ is linear, T is completely determined by the $n:=\operatorname{dim} V$ images $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ where $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V. But to determine a multilinear map φ, we need $|\Gamma|=\prod_{i=1}^{m} \operatorname{dim} V_{i}$ images. In general, this is much more than $\operatorname{dim}\left(V_{1} \times \cdots \times V_{m}\right)=$ $\sum_{i=1}^{m} \operatorname{dim} V_{i}$.

Recall Example 4.2(d) with $m=n=2$, i.e. $\otimes: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}_{2 \times 2}$ defined by $\otimes(x, y)=$ $x y^{T}$. Since $\operatorname{rk}\left(x y^{T}\right) \leq \min \left\{\operatorname{rk} x, \operatorname{rk} y^{T}\right\} \leq 1$, we have $\operatorname{det}(\otimes(x, y))=0$. But if we take $x_{1}=(1,0)^{T}$ and $x_{2}=(0,1)^{T}$, then

$$
\operatorname{det}\left(\otimes\left(x_{1}, x_{1}\right)+\otimes\left(x_{2}, x_{2}\right)\right)=\operatorname{det} I_{2}=1
$$

(for I_{2} the identity matrix in $\mathbb{C}_{2,2}$).
Hence $\otimes\left(x_{1}, x_{1}\right)+\otimes\left(x_{2}, x_{2}\right)$ is not in the image of \otimes and $\operatorname{im} \otimes$ is not a subspace.
In general, the image $\operatorname{im} \varphi=\left\{\varphi\left(v_{1}, \ldots, v_{m}\right) \mid v_{i} \in V_{i}, i_{1}, \ldots, m\right\}$ is not necessarily a subspace of W. But we can consider the $\operatorname{span}\langle\operatorname{im} \varphi\rangle$ of the image of φ. Clearly, $\operatorname{dim}\langle\operatorname{im} \varphi\rangle \leq \prod_{i=1}^{m} \operatorname{dim} V_{i}$.

Definition 4.4. The rank of φ is defined to be

$$
\operatorname{rk} \varphi=\operatorname{dim}\langle\operatorname{im} \varphi\rangle
$$

The multilinear map φ is called a tensor map if $\operatorname{rk} \varphi=\prod_{i=1}^{m} \operatorname{dim} V_{i}$. In other words, a tensor map is a multilinear map with maximal image span.

Example 4.2(a) is a tensor map. Example 4.2(d) is a tensor map.
Theorem 4.5. The multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ is a tensor map if and only if the set $\left\{\varphi\left(e_{\gamma}\right) \mid \gamma \in \Gamma\right\}$ is linearly independent (for e_{γ} as in (4.4)).
Proof. From (4.2), $\left\langle\varphi\left(e_{\gamma}\right) \mid \gamma \in \Gamma\right\rangle=\langle\operatorname{im} \varphi\rangle$ and $|\Gamma|=\prod_{i=1}^{m} \operatorname{dim} V_{i}$.
Theorem 4.6. Tensor maps exist, i.e. for V_{1}, \ldots, V_{m} there exist W and $\varphi: V_{1} \times \cdots \times$ $V_{m} \rightarrow W$ such that φ is a tensor map.
Proof. By Theorem 4.3, pick W a vector space with $\operatorname{dim} W=\prod_{i=1}^{m} \operatorname{dim} V_{i}$ and let $\left\{w_{\gamma}: \gamma \in \Gamma\right\}$ be a basis so that the $w_{\gamma}(\gamma \in \Gamma)$ determine the multilinear map φ which is obviously a tensor map.

Clearly, tensor maps on $V_{1} \times \cdots \times V_{m}$ are not unique. What makes them useful is the fact that every multilinear map can be factored as a tensor map composed with a linear map: The study of multilinear maps is reduced to the study of some linear map (not unique) via a tensor map.
Definition 4.7. A multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ is said to have the universal factorization property if for any multilinear map $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$, there is $T \in \operatorname{Hom}(P, W)$ such that $\psi=T \circ \varphi . \quad{ }^{1}$

[Lecture 2, 28.11.2016]
Theorem 4.8. The multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ is a tensor map if and only if φ has universal factorization property.
Proof. Suppose that φ is a tensor map. Then $\left\{\varphi\left(e_{\gamma}\right) \mid \gamma \in \Gamma\right\}$ is a basis of $\langle\operatorname{im} \varphi\rangle$. There is a unique ${ }^{2} T \in \operatorname{Hom}(\langle\operatorname{im} \varphi\rangle, W)$ such that $T \varphi\left(e_{\gamma}\right)=\psi\left(e_{\gamma}\right)$ for all $\gamma \in \Gamma$. Since $T \varphi$ and ψ are multilinear maps $V_{1} \times \cdots \times V_{m} \rightarrow W$ (Exercise 2 below or Problem 7.1 (a)), Theorem 4.3 implies $T \varphi=\psi$.

Conversely, suppose that φ has the universal factorization property. In particular consider a tensor $m a p$ on $V_{1} \times \cdots \times V_{m}$, i.e., $\operatorname{dim}\langle\operatorname{im} \psi\rangle=\Pi \operatorname{dim} V_{i}$. (Such a map ψ exists by Theorem 4.6).

Then $T \varphi=\psi$ for some linear map T. Thus, $T(\langle\operatorname{im} \varphi\rangle)=\langle\operatorname{im} \psi\rangle$. Hence

$$
\prod_{i} \operatorname{dim} V_{i} \stackrel{\psi \text { tensor map }}{=} \operatorname{dim}\langle\operatorname{im} \psi\rangle \stackrel{T \varphi=\psi}{\leq} \operatorname{dim}\langle\operatorname{im} \varphi\rangle \leq \prod_{i} \operatorname{dim} V_{i}
$$

So $\operatorname{rk} \varphi=\prod \operatorname{dim} V_{i}$ and φ is a tensor map.

[^0]Definition 4.9. A multilinear map $\varphi: V_{1} \times \cdots \times V_{r} \rightarrow K$ is called a multilinear form or an r-form. If $V_{1}=\cdots=V_{r}=: V$ (and $W=K$), then φ is called an r-form on V or a multilinear form on V.

Exercises for Section 4.1

1. Let $V_{1}, \ldots, V_{m}, W_{1}, \ldots, W_{m}$ and W be \mathbb{C}-vector spaces.

Let $\varphi: W_{1} \times \cdots \times W_{m} \rightarrow W$ be multilinear and $T_{i}: V_{i} \rightarrow W_{i}$ linear for all i.
Define $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ by $\psi\left(v_{1}, \ldots, v_{m}\right)=\varphi\left(T_{1} v_{1}, \ldots, T_{m} v_{m}\right)$.
Show that ψ is multilinear.
2. Let V_{1}, \ldots, V_{m}, W and W^{\prime} be \mathbb{C}-vector spaces.

Prove that if $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is multilinear and $T: W \rightarrow W^{\prime}$ is linear, then $T \circ \varphi$ is multilinear.
3. Show that for $n>1$, the determinant function det: $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ is not a tensor map.
4. Suppose that the multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ has the universal factorization property. Show that the linear map T (from the defn of the universal factorization property) is unique if and only if $\langle\operatorname{im} \varphi\rangle=P$.

4.2 Tensor products and unique factorization

Let P be a vector space. If there is a tensor map $\otimes: V_{1} \times \cdots \times V_{m} \rightarrow P$ such that $\langle\mathrm{im} \otimes\rangle=P$, then P is said to be a tensor product of V_{1}, \ldots, V_{m} or a tensor space. It is written as $\otimes_{i=1}^{m} V_{i}$ or as $V_{1} \otimes \cdots \otimes V_{m}$. If $V_{1}=\cdots=V_{m}=: V$, we also write $V^{\otimes m}$. We will see below that all tensor product spaces of V_{1}, \ldots, V_{m} are isomorphic and hence we will just say that $\otimes_{i=1}^{m} V_{i}$ is the tensor product of V_{1}, \ldots, V_{m}. We have

$$
\operatorname{dim}\left(\otimes_{i=1}^{m} V_{i}\right)=\operatorname{dim}\langle\operatorname{im} \otimes\rangle=\prod_{i=1}^{m} \operatorname{dim} V_{i}
$$

The elements of $\otimes_{i=1}^{m} V_{i}$ are tensors. The tensors of the form

$$
\otimes\left(v_{1}, \ldots, v_{m}\right)=: v_{1} \otimes \cdots \otimes v_{m}
$$

are the decomposable tensors (or pure tensors), i.e., tensors in im \otimes are decomposable. The decomposable tensors span $\otimes_{i=1}^{m} V_{i}$, so we can find a basis of decomposable tensors for $\otimes_{i=1}^{m} V_{i}$. The tensors which are not decomposable, i.e., the tensors in $\langle\operatorname{im} \otimes\rangle \backslash \operatorname{im} \otimes$ are called indecomposable tensors. From Theorem 4.6, we get the following.

Corollary 4.10. Let P be a vector space with $\operatorname{dim} P=\prod_{i=1}^{m} \operatorname{dim} V_{i}$. Then there exists $\otimes: V_{1} \times \cdots \times V_{m} \rightarrow P$, so that P is the tensor space.

Theorem 4.11. Tensor spaces of V_{1}, \ldots, V_{m} are isomorphic:
If $P=\otimes_{i=1}^{m} V_{i}$ and $Q=\boxtimes_{i=1}^{m} V_{i}$ are tensor products of V_{1}, \ldots, V_{m}, then there exists an invertible $T \in \operatorname{Hom}(P, Q)$ such that $T \circ \otimes=\boxtimes$.

Proof. Since P and Q are tensor spaces of $V_{1}, \ldots, V_{m}, \operatorname{dim} P=\operatorname{dim} Q$. The sets

$$
\left\{\otimes e_{\gamma} \mid \gamma \in \Gamma\right\}, \quad\left\{\boxtimes e_{\gamma} \mid \gamma \in \Gamma\right\}
$$

are bases of P and Q. We get T by sending basis elements to basis elements.
By Theorem 4.8 (universal factorization property) there exists $T \in \operatorname{Hom}(P, Q)$ such that $T \otimes\left(e_{\gamma}\right)=\boxtimes e_{\gamma}$, for all $\gamma \in \Gamma$. Thus T is invertible and $T \otimes=\boxtimes$.

Theorem 4.12 (Unique factorization property). Let $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ be multilinear. Then there exists a unique linear map $T: \otimes_{i=1}^{m} V_{i} \rightarrow W$ such that $\psi=T \circ \otimes$, i.e.,

$$
\psi\left(v_{1}, \ldots, v_{m}\right)=T \otimes\left(v_{1}, \ldots, v_{m}\right)=T\left(v_{1} \otimes \cdots \otimes v_{m}\right) .
$$

Proof. Use Exercise 4.1.4 or Problem 8.2 (a)
In other words, the tensor map on $\otimes_{i=1}^{m} V_{i}$ has the unique factorization property.
Corollary 4.13. Let φ : $V_{1} \times \cdots \times V_{m} \rightarrow P$ be multilinear. Then φ is a tensor map and $\langle\operatorname{im} \varphi\rangle=P$ if and only if φ has the unique factorization property.

Exercises for Section 4.2

1. Show that if some $v_{i}=0$, then $v_{1} \otimes \cdots \otimes v_{m}=0$.
2. Let $z \in U \otimes V$ so that z can be represented as $z=\sum_{i=1}^{k} u_{i} \otimes v_{i}$. Prove that if k is the smallest number among all such representations, then $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets.
3. Suppose that $e_{1}, e_{2} \in V$ are linearly independent. Prove that $e_{1} \otimes e_{2}+e_{2} \otimes e_{1} \in$ $V \otimes V$ is indecomposable.
4. Let $P=\otimes_{i=1}^{m} V_{i}$ with tensor map φ and let $T \in \operatorname{Hom}(P, Q)$ be invertible. Prove that $\psi=T \circ \varphi$ is also a tensor map and that Q is the tensor space with tensor $\operatorname{map} \psi$.

4.3 Basic properties of tensors and induced inner products

As before, let V_{1}, \ldots, V_{m} be vector spaces over $K=\mathbb{C}$.
Theorem 4.14. Consider the tensor product $\otimes_{i=1}^{m} V_{i}$ and tensors $u_{1} \otimes \cdots \otimes u_{m}, \ldots, w_{1} \otimes$ $\cdots \otimes w_{m} \in \otimes_{i} V_{i}$.
If $u_{1} \otimes \cdots \otimes u_{m}+\cdots+w_{1} \otimes \cdots \otimes w_{m}=0$ then $\varphi\left(u_{1}, \ldots, u_{m}\right)+\cdots+\varphi\left(w_{1}, \ldots, w_{m}\right)=0$ for any multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$.

Proof. By Theorem 4.12 we can write $\varphi=T \circ \otimes$ for some $T \in \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, W\right)$. So

$$
\varphi\left(u_{1}, \ldots, u_{m}\right)=T \otimes\left(u_{1}, \ldots, u_{m}\right)=T\left(u_{1} \otimes \cdots \otimes u_{m}\right)
$$

and similarly for all decomposable tensors in the sum. Hence

$$
\begin{aligned}
& \varphi\left(u_{1}, \ldots, u_{m}\right)+\cdots+\varphi\left(w_{1}, \ldots, w_{m}\right) \\
= & T\left(u_{1} \otimes \cdots \otimes u_{m}\right)+\cdots+T\left(w_{1} \otimes \cdots \otimes w_{m}\right) \\
= & T(\underbrace{u_{1} \otimes \cdots \otimes u_{m}+\cdots+w_{1} \otimes \cdots \otimes w_{m}}_{=0}) \\
= & 0
\end{aligned}
$$

Theorem 4.15. Let $v_{i} \in V_{i}, i=1, \ldots, m$. Then $v_{1} \otimes \cdots \otimes v_{m}=0$ if and only if there exists i with $v_{i}=0$.

Proof. \Longleftarrow is clear.
\Longrightarrow : Suppose $v_{1} \otimes \cdots \otimes v_{m}=0$ but $v_{i} \neq 0$ for all i. Then for each i there exists $f_{i} \in V_{i}^{*}$ such that $f_{i}\left(v_{i}\right)=1$. Define

$$
\varphi:=\prod_{i=1}^{m} f_{i}: V_{1} \times \cdots \times V_{m} \rightarrow \mathbb{C}
$$

This is a multilinear map (cf. Example 4.2 (f)). Then

$$
\varphi\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)=1
$$

But by Theorem $4.14, \varphi\left(v_{1}, \ldots, v_{m}\right)=0$, a contradiction.
Theorem 4.16. Let $u_{1} \otimes \cdots \otimes u_{m}$ and $v_{1} \otimes \cdots \otimes v_{m}$ be in $V_{1} \otimes \cdots \otimes V_{m}$.
$u_{1} \otimes \cdots \otimes u_{m}=v_{1} \otimes \cdots \otimes v_{m} \neq 0 \Longleftrightarrow v_{i}=c_{i} u_{i}$ for all $i=1, \ldots, m$ and $\prod_{i=1}^{m} c_{i}=1$.
Proof. \Longleftarrow is clear.
\Longrightarrow : Suppose $u_{1} \otimes \cdots \otimes u_{m}=v_{1} \otimes \cdots \otimes v_{m} \neq 0$. From Theorem 4.15, all u_{i} and v_{i} are non-zero. From Theorem 4.14 (applied to $u_{1} \otimes \cdots \otimes u_{m}-v_{1} \otimes \cdots \otimes v_{m}$) we know that

$$
\varphi\left(u_{1}, \ldots, u_{m}\right)=\varphi\left(v_{1}, \ldots, v_{m}\right)
$$

holds for any multilinear map φ from $V_{1} \times \cdots \times V_{m}$ to some \mathbb{C}-vector space W.
Suppose that u_{k} and v_{k} are not linearly dependent for some k (i.e. assume that there is an index k such that u_{k} is not a (non-zero) multiple of v_{k}). Then there is $f_{k} \in V_{k}^{*}$ such that $f_{k}\left(v_{k}\right)=1$ and $f_{k}\left(u_{k}\right)=0$. For $i \neq k$ choose $f_{i} \in V_{i}^{*}$ such that $f_{i}\left(v_{i}\right)=1$. Set $\varphi:=\prod_{i=1}^{m} f_{i}$. (This is multilinear, cf. Example 4.2 (f)). Then

$$
\varphi\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)=1
$$

and since $f_{k}\left(u_{k}\right)=0$

$$
\varphi\left(u_{1}, \ldots, u_{m}\right)=\prod_{i=1}^{m} f_{i}\left(u_{i}\right)=0
$$

contradicting $\varphi\left(u_{1}, \ldots, u_{m}\right)=\varphi\left(v_{1}, \ldots, v_{m}\right)$. Hence for all k there exists $c_{k} \neq 0$ such that $v_{k}=c_{k} u_{k}$. From

$$
0 \neq u_{1} \otimes \cdots \otimes u_{m}=v_{1} \otimes \cdots \otimes v_{m}=\left(\prod_{i=1}^{m} c_{i}\right) u_{1} \otimes \cdots \otimes u_{m}
$$

we have $\prod_{i=1}^{m} c_{i}=1$.
Since the decomposable elements span the tensor space $\otimes_{i=1}^{m} V_{i}$, each $z \in \otimes_{i=1}^{m} V_{i}$ is a linear combination of decomposable tensors. Let k be the smallest number of decomposable tensors in all such linear combinations for z. We call k the rank or the smallest length of z. The rank of $z \neq 0$ is one if and only if z is decomposable.

Theorem 4.17. Assume that $z \in U \otimes V$ can be represented as $z=\sum_{i=1}^{r} u_{i} \otimes v_{i}$ for some $r \geq 1$. Then the smallest length of z is k if and only if $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets, respectively.

Proof. The implication \Longrightarrow is Exercise 2 of Section 4.2 or Problem 8.1 (b).
\Longleftarrow : Assume that $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets. Let $z=$ $\sum_{j=1}^{r} x_{j} \otimes y_{j}$, we show that $k \leq r$. Let $l \in\{1, \ldots, k\}$ be arbitrary. Since the v_{i} are linearly independent, there is $g \in V^{*}$ such that $g\left(v_{l}\right)=1$ and $g\left(v_{j}\right)=0$ for $j \neq l$. Let $f \in U^{*}$ be arbitrary. Then the map $\varphi:=f g: U \times V \rightarrow \mathbb{C}$ is bilinear (cf. Example 4.2 (f)). By assumption,

$$
\sum_{i=1}^{k} u_{i} \otimes v_{i}=\sum_{j=1}^{r} x_{j} \otimes y_{j}
$$

Using Theorem 4.14 for $\varphi=f g$, we have (first equality by the choice of g)

$$
f\left(u_{l}\right)=\sum_{i=1}^{k} f\left(u_{i}\right) g\left(v_{i}\right)=\sum_{j=1}^{r} f\left(x_{j}\right) g\left(y_{j}\right)=f\left(\sum_{j=1}^{r} g\left(y_{i}\right) x_{j}\right)
$$

Since f is arbitrary, this holds for all $f \in U^{*}$. And so we get $u_{l}=\sum_{j=1}^{r} g\left(y_{i}\right) x_{j}$, so u_{l} is in $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ for all $l=1, \ldots, k$. (choosing other linear maps g when l varies). Since $\left\{u_{1}, \ldots, u_{k}\right\}$ is linearly independent, we have $k \leq r$.
[Lecture 3, 29.11.2016]
We now consider an induced inner product (a reminder on inner products is at the end of the chapter, cf. Subsection 4.7.1) of $\otimes_{i=1}^{m} V_{i}$. Suppose that $(\cdot, \cdot)_{i}$ is an inner product on V_{i} and $E_{i}=\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ is an orthonormal basis of V_{i} for all $i=1, \ldots, m$. We know that

$$
E:=\left\{e_{\gamma}^{\otimes}:=e_{1 \gamma(1)} \otimes \cdots \otimes e_{m \gamma(m)}: \gamma \in \Gamma\right\}
$$

is a basis of $\otimes_{i=1}^{m} V_{i}$, where $\Gamma=\Gamma\left(n_{1}, \ldots, n_{m}\right)$. We would like to have an inner product (\cdot, \cdot) on the tensor product $\otimes_{i=1}^{m} V_{i}$ such that E is an orthonormal basis, i.e.

$$
\left(e_{\alpha}^{\otimes}, e_{\beta}^{\otimes}\right)=\left(e_{1 \alpha(1)} \otimes \cdots \otimes e_{m \alpha(m)}, e_{1 \beta(1)} \otimes \cdots \otimes e_{m \beta(m)}\right)=\delta_{\alpha, \beta}
$$

($\delta_{\alpha, \beta}$ is the generalization of the Kronecker delta to m-tuples).
Such an inner product is unique (Section 4.7.1).
We define

$$
\begin{equation*}
(u, v):=\sum_{\gamma \in \Gamma} a_{\gamma} \overline{b_{\gamma}} \tag{4.5}
\end{equation*}
$$

where $u=\sum_{\gamma \in \Gamma} a_{\gamma} e_{\gamma}^{\otimes}, v=\sum_{\gamma \in \Gamma} b_{\gamma} e_{\gamma}^{\otimes} \in \otimes_{i=1}^{m} V_{i}$. With this defintion, E becomes an ONB (cf. Problem 8.4 (a)). The definition appears to depend on the choice of the basis, but it does not (cf. Problem 7.3).

Theorem 4.18. Let V_{1}, \ldots, V_{m} be inner product spaces with orthonormal bases $E_{i}=$ $\left\{e_{i 1}, \ldots, e_{i, n_{i}}\right\}, i=1, \ldots, m$. The inner product obtained from (4.5) satisfies

$$
\begin{equation*}
\left(u_{1} \otimes \cdots \otimes u_{m}, v_{1} \otimes \cdots \otimes v_{m}\right)=\prod_{i=1}^{m}\left(u_{i}, v_{i}\right)_{i} \tag{4.6}
\end{equation*}
$$

(where $u_{i}, v_{i} \in V_{i}$ for all i and $(\cdot, \cdot)_{i}$ is the inner product on $\left.V_{i}\right)$.
Proof. We write u_{i} and v_{i} in terms of the basis E_{i},

$$
u_{i}=\sum_{j=1}^{n_{i}} a_{i j} e_{i j}, \quad v_{i}=\sum_{j=1}^{n_{i}} b_{i j} e_{i j}, \quad i=1, \ldots, m .
$$

Since \otimes is multilinear, from (4.2) we get

$$
\begin{aligned}
& u^{\otimes}:=u_{1} \otimes \cdots \otimes u_{m}=\otimes\left(u_{1}, \ldots, u_{m}\right)=\sum_{\gamma \in \Gamma}(\overbrace{\prod_{i=1}^{m} a_{i \gamma(i)}}^{a_{\gamma}}) e_{\gamma}^{\otimes} \\
& v^{\otimes}:=v_{1} \otimes \cdots \otimes v_{m}=\otimes\left(v_{1}, \ldots, v_{m}\right)=\sum_{\gamma \in \Gamma}(\underbrace{\prod_{i=1}^{m} b_{i \gamma(i)}}_{b_{\gamma}}) e_{\gamma}^{\otimes}
\end{aligned}
$$

By the definition (4.5) of the inner product and since $\prod_{i=1}^{m} \sum_{j=1}^{n_{i}} c_{i j} \stackrel{(4.1)}{=} \sum_{\gamma \in \Gamma} \prod_{i=1}^{m} c_{i \gamma(i)}$,

$$
\begin{aligned}
&\left(u^{\otimes}, v^{\otimes}\right)=\sum_{\gamma \in \Gamma} \prod_{i=1}^{m} a_{i \gamma(i)} \overline{b_{i \gamma(i)}} \\
& \stackrel{(4.1)}{=} \prod_{i=1}^{m} \sum_{j=1}^{n_{i}} a_{i j} \overline{b_{i j}} \\
&=\prod_{i=1}^{m}\left(\sum_{j=1}^{n_{i}} a_{i j} e_{i j}, \sum_{j=1}^{n_{i}} b_{i j} e_{i j}\right)_{i} \\
&=\prod_{i=1}^{m}\left(u_{i}, v_{i}\right)_{i} .
\end{aligned}
$$

(where $(\cdot, \cdot)_{i}$ denotes the inner product on $\left.V_{i}\right)$.
There are many bilinear maps from $\left(\otimes_{i=1}^{k} V_{i}\right) \times\left(\otimes_{i=k+1}^{m} V_{i}\right)$ to $\otimes_{i=1}^{m} V_{i}$ since

$$
\begin{equation*}
\operatorname{dim} \otimes_{i=1}^{m} V_{i}=\prod_{i=1}^{m} n_{i}=\prod_{i=1}^{k} n_{i} \prod_{i=k+1}^{m} n_{i}=\operatorname{dim}\left(\otimes_{i=1}^{k} V_{i}\right) \operatorname{dim}\left(\otimes_{i=k+1}^{m} V_{i}\right) \tag{4.7}
\end{equation*}
$$

What we like is one that maps the pair $\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)$ to $v_{1} \otimes \cdots \otimes v_{m}$.
Theorem 4.19. There is a unique multilinear map $\boxtimes:\left(\otimes_{i=1}^{k} V_{i}\right) \times\left(\otimes_{i=k+1}^{m} V_{i}\right) \rightarrow \otimes_{i=1}^{m} V_{i}$ such that

$$
\begin{equation*}
\boxtimes\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \cdots \otimes v_{m} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(V_{1} \otimes \cdots \otimes V_{k}\right) \boxtimes\left(V_{k+1} \otimes \cdots \otimes V_{m}\right)=V_{1} \otimes \cdots \otimes V_{m} \tag{4.9}
\end{equation*}
$$

Proof. By (4.7), the dimensions are ok, so the tensor map \boxtimes satisfying (4.8) exists (Theorem 4.10) and is unique (Theorem 4.12). From $\langle\mathrm{im} \boxtimes\rangle=\left\langle v_{1} \otimes \cdots \otimes v_{m} \mid v_{i} \in V_{i}\right\rangle=$ $\otimes_{i=1}^{m} V_{i}$, (4.9) follows. (See Exercise no. 4 in 4.3 for details.)

We also write \otimes for \boxtimes in Theorem 4.18. So we can write (4.9) as

$$
\left(V_{1} \otimes \cdots \otimes V_{k}\right) \otimes\left(V_{k+1} \otimes \cdots \otimes V_{m}\right)=V_{1} \otimes \cdots \otimes V_{m}
$$

and (4.8) can be written as

$$
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \otimes\left(v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \cdots \otimes v_{m}
$$

Exercises for Section 4.3

1. Suppose that $v_{1}, \ldots, v_{k} \in V$ are linearly independent and let $u_{1}, \ldots, u_{k} \in U$. Prove that $\sum_{i=1}^{k} u_{i} \otimes v_{i}=0$ if and only if $u_{1}=\cdots=u_{k}=0$.
2. Let $v_{1}, \ldots, v_{k} \in V$ and $A \in \mathbb{C}_{k \times k}$. Suppose $A A^{T}=I_{k}$ and $u_{j}=\sum_{i=1}^{k} a_{i j} v_{i}$, $j=1, \ldots, k$. Prove that $\sum_{i=1}^{k} u_{i} \otimes u_{i}=\sum_{i=1}^{k} v_{i} \otimes v_{i}$.
3. Define $\otimes: \mathbb{C}^{k} \times \mathbb{C}^{n} \rightarrow \mathbb{C}_{k \times n}$ by $x \otimes y:=x y^{T}$. Let \mathbb{C}^{k} and \mathbb{C}^{n} be equipped with the standard inner products. Prove that for any $A, B \in \mathbb{C}_{k \times n}=\mathbb{C}^{k} \otimes \mathbb{C}^{n}$, the induced inner product is given by $(A, B)=\operatorname{tr}\left(B^{*} A\right)$. (notation: $\operatorname{tr}\left(B^{*} A\right)$ is the trace of the square matrix $B^{*} A$)
4. Let $E_{i}=\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ be a basis of $V_{i}, i=1, \ldots, m$. Define

$$
\varphi:\left(V_{1} \otimes \cdots \otimes V_{k}\right) \times\left(V_{k+1} \otimes \cdots \otimes V_{m}\right) \rightarrow V_{1} \otimes \cdots \otimes V_{m}
$$

by $\varphi\left(e_{1 i_{1}} \otimes \cdots \otimes e_{k i_{k}}, e_{k+1 i_{k+1}} \otimes \cdots \otimes e_{m i_{m}}\right)=e_{1 i_{1}} \otimes \cdots \otimes e_{m i_{m}}$ (with bilinear extension). Show that φ is the tensor map satisfying

$$
\varphi\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \ldots \otimes v_{m}
$$

5. Let $z=\sum_{i=1}^{k} u_{i} \otimes v_{i} \otimes w_{i} \in U \otimes V \otimes W$. Prove that if $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent and $w_{i} \neq 0$ for all i, then k is the smallest length of z.

4.4 Induced maps

In this section, we study $\operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$ for all i. Then we define a multilinear map from $V_{1} \times \cdots \times V_{m}$ to $\otimes_{i=1}^{m} W_{i}$ by

$$
\varphi\left(v_{1}, \ldots, v_{m}\right):=T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}
$$

By Theorem 4.12 (with $\otimes_{i=1}^{m} W_{i}$ in the role of W) there is a unique $T \in \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$ such that $(\varphi=T \circ \otimes$, i.e. $)$

$$
T\left(v_{1} \otimes \cdots \otimes v_{m}\right)=T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}
$$

We denote this T by $T_{1} \otimes \cdots \otimes T_{m}$ and call it the induced map of T_{1}, \ldots, T_{m}, i.e.

$$
\left(\otimes_{i=1}^{m} T_{i}\right)\left(v_{1} \otimes \cdots \otimes v_{m}\right)=T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}
$$

(Drawing the corresponding diagram with vector spaces might be helpful).
One can show that $T_{1} \otimes \cdots \otimes T_{m}$ is a tensor (an element) of the tensor product $\otimes_{i=1}^{m} \operatorname{Hom}\left(V_{i}, W_{i}\right)$.

The main focus of this section is to study the map $T_{1} \otimes \cdots \otimes T_{m} \in \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$ as a linear map. We will see how it behaves with respect to composition, how to determine its rank and its adjoint.

Theorem 4.20. Let $S_{i} \in \operatorname{Hom}\left(W_{i}, U_{i}\right), T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right), i=1, \ldots, m$. Then

$$
\left(\otimes_{i=1}^{m} S_{i}\right) \circ\left(\otimes_{i=1}^{m} T_{i}\right)=\otimes_{i=1}^{m}\left(S_{i} \circ T_{i}\right)
$$

(It might be helpful to draw the diagrams with the vector spaces to illustrate the statement).

Proof. It is enough to show the claim on decomposable elements, since $\otimes_{i=1}^{m} V_{i}$ is spanned by them. This is what we do.

$$
\begin{aligned}
\left(\otimes_{i=1}^{m} S_{i}\right)\left(\otimes_{i=1}^{m} T_{i}\right)\left(v_{1} \otimes \cdots \otimes v_{m}\right) & =\left(\otimes_{i=1}^{m} S_{i}\right)\left(T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}\right) \\
& =S_{1} T_{1} v_{1} \otimes \cdots \otimes S_{m} T_{m} v_{m} \\
& =\otimes_{i=1}^{m}\left(S_{i} T_{i}\right)\left(v_{1} \otimes \cdots \otimes v_{m}\right)
\end{aligned}
$$

Theorem 4.21. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right), i=1, \ldots, m$. Then

$$
\operatorname{rk}\left(T_{1} \otimes \cdots \otimes T_{m}\right)=\prod_{i=1}^{m} \operatorname{rk} T_{i}
$$

Proof. Let $\mathrm{rk} T_{i}=k_{i}$ for all i. So there is a basis $\left\{e_{i 1}, \ldots, e_{i k_{i}}, e_{i k_{i}+1}, \ldots, e_{i n_{i}}\right\}$ for V_{i} such that $T_{i} e_{i 1}, \ldots, T_{i} e_{i k_{i}}$ are linearly independent in W_{i} and $T_{i} e_{i k_{i}+1}=\cdots=T_{i} e_{i n_{i}}=0$, $i=1, \ldots, m$. The set $\left\{e_{\gamma}^{\otimes}: \gamma \in \Gamma\left(n_{1}, \ldots, n_{m}\right)\right\}$ is a basis for $\otimes_{i=1}^{m} V_{i}$.

Moreover,

$$
\left(\otimes_{i=1}^{m} T_{i}\right) e_{\gamma}^{\otimes}=T_{1} e_{1 \gamma(1)} \otimes \cdots \otimes T_{m} e_{m \gamma(m)}
$$

so that if $\gamma \notin \Gamma\left(k_{1}, \ldots, k_{m}\right)$, then $\left(\otimes_{i=1}^{m} T_{i}\right) e_{\gamma}^{\otimes}=0$ (as for some $\left.i, \gamma(i)>k_{i}\right)$. Since $T e_{i 1}, \ldots, T e_{i, k_{i}}$ are linearly independent in W_{i} for all i, the vectors

$$
\left(\otimes_{i=1}^{m} T_{i}\right) e_{\gamma}^{\otimes}, \quad \gamma \in \Gamma\left(k_{1}, \ldots, k_{m}\right)
$$

are linearly independent in $\otimes_{i=1}^{m} W_{i}$ (why?), hence

$$
\operatorname{rk} \otimes_{i=1}^{m} T_{i}=\left|\Gamma\left(k_{1}, \ldots, k_{m}\right)\right|=\prod_{i=1}^{m} k_{i}=\prod_{i=1}^{m} \mathrm{rk} T_{i}
$$

The next result describes the adjoint of $T_{1} \otimes \cdots \otimes T_{m}$ viewed as a linear map. For notation/reminder: see Subsection 4.7.2 at the end of this chapter.

Theorem 4.22. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$, where V_{i} and W_{i} are inner product spaces for $i=1, \ldots, m$. Then

$$
\left(\otimes_{i=1}^{m} T_{i}\right)^{*}=\otimes_{i=1}^{m} T_{i}^{*}
$$

Proof. We use the notation (\cdot, \cdot) for the inner products on all the spaces V_{i}, W_{i}.

$$
\begin{array}{rlr}
\left(\left(\otimes_{i=1}^{m} T_{i}\right) v^{\otimes}, w^{\otimes}\right) & \left.=\left(T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}, w_{1} \otimes \cdots \otimes w_{m}\right) \quad \text { (inner product on } \otimes_{i} W_{i}\right) \\
& =\prod_{i=1}^{m}\left(T_{i} v_{i}, w_{i}\right) \quad \quad \text { (defin.: inner prod on } \otimes_{i} W_{i} \text { in terms of inner prod on } W_{i} \text { 's) } \\
& =\prod_{i=1}^{m}\left(v_{i}, T_{i}^{*} w_{i}\right) \\
& =\left(v_{1} \otimes \cdots \otimes v_{m}, T_{1}^{*} w_{1} \otimes \cdots \otimes T_{m}^{*} w_{m}\right) \quad \quad \quad \quad \text { (defin. of inner prod on } \otimes_{i} V_{i} \text {) } \\
& =\left(v^{\otimes}, \otimes_{i=1}^{m} T_{i}^{*} w^{\otimes}\right)
\end{array}
$$

Since $\otimes_{i=1}^{m} V_{i}$ is spanned by decomposable tensors, we have the desired result.

[Lecture 4, 5.12. 2016]

Exercises for Section 4.4

1. Prove that
(a) Prove that $T_{1} \otimes \cdots \otimes T_{m}=0$ if and only if some $T_{i}=0$,
(b) $T_{1} \otimes \cdots \otimes T_{m}$ is invertible if and only if all T_{i} are invertible.
2. Let $S_{i}, T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$ for $i=1, \ldots, m$. Prove that $\otimes_{i=1}^{m} T_{i}=\otimes_{i=1}^{m} S_{i} \neq 0$ if and only if $T_{i}=c_{i} S_{i} \neq 0$ for $i=1, \ldots, m$ and $\prod_{i=1}^{m} c_{i}=1$.
3. Let $T_{i} \in$ End V_{i} for $i=1, \ldots, m$. By $1(\mathrm{~b}), \otimes_{i=1}^{m} T_{i}$ is invertible if and only if T_{i} is invertible for every i. Prove that in this case, $\left(\otimes_{i=1}^{m} T_{i}\right)^{-1}=\otimes_{i=1}^{m} T_{i}^{-1}$.
4. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$ for $i=1, \ldots, m$. Define

$$
\varphi: \operatorname{Hom}\left(V_{1}, W_{1}\right) \times \cdots \times \operatorname{Hom}\left(V_{m}, W_{m}\right) \rightarrow \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)
$$ by $\varphi\left(T_{1}, \ldots, T_{m}\right)=T_{1} \otimes \cdots \otimes T_{m}$. Prove that φ is multilinear.

Exercise 4 can be used to show that $T_{1} \otimes \cdots \otimes T_{m}$ is an element of a tensor product, namely of $\operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$. And then exercises 1-3 follow directly.

4.5 Some models of tensor products

We now consider the special case $V_{1}=\cdots=V_{m}$ where all the spaces V_{i} are equal and where the target space is the field \mathbb{C}.

Recall that $M(V, \ldots, V ; \mathbb{C})$ denotes the \mathbb{C}-vector space of all m-multilinear maps $f: V^{m}:=\underbrace{V \times \cdots \times V}_{m \text { factors }} \rightarrow \mathbb{C}$.

The goal of this section is to see that the tensor product $\overbrace{V \otimes \cdots \otimes V}^{m \text { copies }}$ can be viewed m copies
as $M(\overbrace{V^{*}, \ldots, V^{*}} ; \mathbb{C})$ or as $M(V, \ldots, V ; \mathbb{C})$ and that the tensor product $V^{*} \otimes \cdots \otimes V^{*}$ can be understood as $M(\underbrace{V, \ldots, V}_{m \text { copies }} ; \mathbb{C})$.

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V and let $E^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis of V^{*}, i.e.,

$$
f_{i}\left(e_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, n
$$

In this situation we abbreviate the set $\Gamma(\overbrace{n, \ldots, n}^{m \text { times }})$ as

$$
\Gamma(n: m)=\{\gamma=(\gamma(1), \ldots, \gamma(m)) \mid 1 \leq \gamma(i) \leq n, i=1, \ldots, m\}
$$

We write $V^{\otimes m}$ or also $\otimes^{m}(V)$ for the m-fold tensor product $V \otimes \cdots \otimes V$.
Theorem 4.23. 1. The set $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ is a basis of $M(V, \ldots, V ; \mathbb{C})$.
2. $M(V, \ldots, V ; \mathbb{C})=\left(V^{*}\right)^{\otimes m}$, in other words: there is a tensor map

$$
\otimes: V^{*} \times \cdots \times V^{*} \rightarrow M(V, \ldots, V ; \mathbb{C}) \text { and } \operatorname{dim} M(V, \ldots, V ; \mathbb{C})=n^{m}
$$

3. $M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)=V^{\otimes m}$, in other words: there is a tensor map $\otimes: V \times \cdots \times V \rightarrow M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)$ and $\operatorname{dim} M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)=n^{m}$.

Proof. (1) We first show that the set $S:=\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ spans $M(V, \ldots, V ; \mathbb{C})$. For this, first observe that for each $e_{\beta}=\left(e_{\beta(1)}, \ldots, e_{\beta(m)}\right) \in V \times \cdots \times V$ and $\beta \in \Gamma(n: m)$,

$$
\begin{equation*}
\left(\prod_{i=1}^{m} f_{\alpha(i)}\right) e_{\beta}=\prod_{i=1}^{m} f_{\alpha(i)}\left(e_{\beta(i)}\right)=\delta_{\alpha, \beta} \tag{4.10}
\end{equation*}
$$

Let $f \in M(V, \ldots, V ; \mathbb{C})$. Then we claim we can write f as follows

$$
f=\sum_{\alpha \in \Gamma(n: m)} f\left(e_{\alpha}\right) \prod_{i=1}^{m} f_{\alpha(i)}
$$

where $e_{\alpha}=\left(e_{\alpha(1)}, \ldots, e_{\alpha(m)}\right)$. This works since by (4.10),

$$
\left(\sum_{\alpha \in \Gamma(n: m)} f\left(e_{\alpha}\right) \prod_{i=1}^{m} f_{\alpha(i)}\right)\left(e_{\beta}\right)=\sum_{\alpha \in \Gamma(n: m)} f\left(e_{\alpha}\right) \delta_{\alpha, \beta}=f\left(e_{\beta}\right), \quad \beta \in \Gamma(n: m)
$$

So f can be written as a linear combination of elements of S.
It remains to show that S is a linearly independent set. Assume

$$
\sum_{\alpha \in \Gamma(n: m)} c_{\alpha} \prod_{i=1}^{m} f_{\alpha(i)}=0
$$

Then
$0=\left(\sum_{\alpha \in \Gamma(n: m)} c_{\alpha} \prod_{i=1}^{m} f_{\alpha(i)}\right)\left(e_{\beta}\right)=(\sum_{\alpha \in \Gamma(n: m)} c_{\alpha} \underbrace{\prod_{i=1}^{m} f_{\alpha(i)}\left(e_{\beta}\right)}_{\delta_{\alpha, \beta}})=c_{\beta} \quad$ for every $\beta \in \Gamma(n: m)$
(2) It is easy to see that the map $\otimes:\left(V^{*}\right)^{m} \rightarrow M(V, \ldots, V ; \mathbb{C})$ defined by

$$
\otimes\left(g_{1}, \ldots, g_{m}\right)=\prod_{i=1}^{m} g_{i}
$$

is multilinear. From part (1), $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ is a basis of $M(V, \ldots, V ; \mathbb{C})$. So

$$
\operatorname{dim} M(V, \ldots, V ; \mathbb{C})=|\Gamma(n: m)|=n^{m}=(\operatorname{dim} V)^{m}=\left(\operatorname{dim} V^{*}\right)^{m}
$$

Therefore, \otimes is a tensor map and $\langle\operatorname{im} \otimes\rangle=M(V, \ldots, V ; \mathbb{C})$, i.e. $M(V, \ldots, V ; \mathbb{C})=\otimes^{m} V^{*}$.
(3) Analoguous to the proof of (2): We can define $\otimes: V^{m} \rightarrow M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)$ by $\otimes\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} v_{i}$ where the latter is defined as follows:

$$
\left(\prod_{i=1}^{m} v_{i}\right)\left(g_{1}, \ldots, g_{m}\right):=\prod_{i=1}^{m} g_{i}\left(v_{i}\right)
$$

By Theorem 4.23 (2) and (3), we can say that $M(V, \ldots, V ; \mathbb{C})$ is a model for $\left(V^{*}\right)^{\otimes m}$ and that $M\left(V^{*}, \ldots, V^{*}, \mathbb{C}\right)$ is a model for $V^{\otimes m}$.
Another model for $V^{\otimes m}$ is $M(V, \ldots, V ; \mathbb{C})^{*}$, the dual space of $M(V, \ldots, V ; \mathbb{C})$, as we will see now.

Theorem 4.24. $M(V, \ldots, V ; \mathbb{C})^{*}$ is a model for $\otimes^{m} V$, i.e., there is a tensor map \otimes : $V \times \cdots \times V \rightarrow M(V, \ldots, V ; \mathbb{C})^{*}$ and $\operatorname{dim} M(V, \ldots, V ; \mathbb{C})^{*}=n^{m}$.

Proof. For $v_{1}, \ldots, v_{m} \in V$ define $\prod_{i=1}^{m} v_{i} \in M(V, \ldots, V ; \mathbb{C})^{*}$ by

$$
\left(\prod_{i=1}^{m} v_{i}\right) f=f\left(v_{1}, \ldots, v_{m}\right), \quad f \in M(V, \ldots, V ; \mathbb{C})
$$

From Theorem 4.23 (1), the set $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma_{m, n}\right\}$ is a basis of $M(V, \ldots, V ; \mathbb{C})$. Now from (4.10), $\left\{\prod_{i=1}^{m} e_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ is the dual basis of $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ and thus is a basis of $M(V, \ldots, V ; \mathbb{C})^{*}$. Then define $\otimes: V \times \cdots \times V \rightarrow M(V, \ldots, V ; \mathbb{C})^{*}$ by $\otimes\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} v_{i}$.

Elements of the vector space $M(V, \ldots, V ; \mathbb{C})$ are called contra-variant tensors; elements of $M\left(V^{*}, \ldots, V^{*}, \mathbb{C}\right)$ are called covariant tensors. ${ }^{3}$

The tensor space

$$
V_{q}^{p}:=\overbrace{V \otimes \cdots \otimes V}^{p} \otimes \overbrace{V^{*} \otimes \cdots \otimes V^{*}}^{q}
$$

is called a tensor space of type (p, q) (with covariant type of degree p and with contravariant type of degree q). Analoguous to the previous treatment, under some tensor map, $M\left(V^{*}, \ldots, V^{*}, V, \ldots, V ; \mathbb{C}\right)\left(p\right.$ copies of V and q copies of V^{*}, compare this with Theorem 4.23) is a model of V_{q}^{p} as we will indicate now:

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V and let $E^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis of V^{*}. Then

$$
\left\{\prod_{i=1}^{p} e_{\alpha(i)} \prod_{j=1}^{q} f_{\beta(j)} \mid \alpha \in \Gamma(n: p), \beta \in \Gamma(n: q)\right\}
$$

is a basis for

$$
M\left(V^{*}, \ldots, V^{*}, V, \ldots, V ; \mathbb{C}\right) \quad\left(p \text { copies of } V \text { and } q \text { copies of } V^{*}\right)
$$

Define $\otimes: V \times \cdots \times V \times V^{*} \times \cdots \times V^{*} \rightarrow M\left(V^{*}, \ldots, V^{*}, V, \ldots, V ; \mathbb{C}\right)$ by

$$
\otimes\left(e_{\alpha(1)}, \ldots, e_{\alpha(p)}, f_{\beta(1)}, \ldots, f_{\beta(q)}\right)=\prod_{i=1}^{p} e_{\alpha(i)} \prod_{j=1}^{q} f_{\beta(j)}
$$

Then

$$
\begin{aligned}
& \left\{e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(p)} \otimes f_{\beta(1)} \otimes \cdots \otimes f_{\beta(q)}: \alpha \in \Gamma_{p, n}, \beta \in \Gamma_{q, n}\right\} \\
= & \left\{e_{\alpha}^{\otimes} \otimes f_{\beta}^{\otimes}: \alpha \in \Gamma_{p, n}, \beta \in \Gamma_{q, n}\right\}
\end{aligned}
$$

is a basis of V_{q}^{p}.

[^1]
Exercises for Section 4.5

1. Define a simple tensor map $\boxtimes:\left(V^{*}\right)^{m} \rightarrow\left(\otimes^{m} V\right)^{*}$ such that $\boxtimes^{m} V^{*}=\left(\otimes^{m} V\right)^{*}$.
2. Let $M\left(V_{1}, \ldots, V_{m} ; W\right)$ be the set of all multilinear maps from $V_{1} \times \cdots \times V_{m}$ to W. Prove that $\operatorname{dim} M\left(V_{1}, \ldots, V_{m} ; W\right)=\operatorname{dim} W \cdot \prod_{i=1}^{m} \operatorname{dim} V_{i}$.

4.6 Exterior spaces

In this section, we consider some concrete examples of multilinear maps. The starting point is the space of multilinear maps (forms) $M(V, \ldots, V ; K)$ from m copies of the K vector space V to the field K.

We start by considering a specific notion of multiplication, namely one that relates to area and volume. The basic idea is as follows: Given two vectors v and w, we can form the parallelogram that they span, and write $v \wedge w$ for something as the "area" of the parallelogram. This is not quite the usual notion of area, however, because we want to think of it as not just a single number (in general) but also as having a "two-dimensional direction" (the same way a single vector v both has a size and a direction). That is, if we had a parallelogram pointing in a "different direction", i.e. in a different plane, we would think of it as different.

What would the properties of $v \wedge w$ be. Scaling the entry v or the entry w scales the parallelogram, so it should scale its area. So we expect, for scalars c, to have $(c v) \wedge w=c(v \wedge w)=v \wedge(c w)$. So the operation \wedge should be bilinear. Another property of \wedge would be, that for any vector $v, v \wedge v$ should be 0 - if the vectors point in the same direction, the "parallelogram" they span is just a line segment and has no area. These are the only two properties we really need.

As before, vector spaces are finite dimensional and defined are over some field K mostly over \mathbb{C} or over the real numbers \mathbb{R}.

Definition 4.25. Let V be a vector space. Then the exterior square (product) $\bigwedge^{2}(V)$ of V is the quotient of $V \otimes V$ by the subspace U spanned by the elements $v \otimes v$ for all $v \in V$. We write $v \wedge w$ for the image of $v \otimes w$ under the quotient map $V \otimes V \rightarrow \bigwedge^{2}(V)$.

What does $\wedge^{2}(V)$ look like? First observation (consequence of $v \wedge v=0$):

$$
0=(v+w) \wedge(v+w)=v \wedge v+v \wedge w+w \wedge v+w \wedge w=v \wedge w+w \wedge v .
$$

So for any v and $w, v \wedge w=-w \wedge v$. The operation \wedge is thus anti-commutative or alternating.

In terms of a basis of V, say $\left\{e_{i}\right\}_{i}$, we have that the set $\left\{e_{i} \otimes e_{j}\right\}_{i j}$ is a basis of $V \otimes V$. In $\bigwedge^{2}(V)$, we have $e_{i} \wedge e_{i}=0$ and $e_{i} \wedge e_{j}=-e_{j} \wedge e_{i}$. So $\bigwedge^{2}(V)$ can be spanned by the elements $e_{i} \wedge e_{j}$ for $i<j$. We can show that they are linearly independent:
Theorem 4.26. Suppose $\left\{e_{i}\right\}_{i=1, \ldots, n}$ is a basis for V. Then $\left\{e_{i} \wedge e_{j}\right\}_{1 \leq i<j \leq n}$ is a basis for $\bigwedge^{2}(V)$. In particular, $\operatorname{dim} \bigwedge^{2}(V)=\binom{n}{2}$.

Proof. The idea behind the proof is that $\Lambda^{2}(V)$ is the "free" (or "universal") vector space in which you can multiply two elements of V in an anti-commutative way, so to show that the $e_{i} \wedge e_{j}$ (for $i<j$) are linearly independent, you have to construct some vector space with such a multiplication in which they are linearly independent.

We define a vector space E as follows: an element of E is a formal linear combination of symbols $e_{i j}$ for $i<j$. So the set $\left\{e_{i j}\right\}_{i<j}$ is a basis of E.
We define a map $T: V \otimes V \rightarrow E$ by $T\left(e_{i} \otimes e_{j}\right)=e_{i j}$ if $i<j, T\left(e_{i} \otimes e_{j}\right)=-e_{j i}$ if $i>j$, and $T\left(e_{i} \otimes e_{i}\right)=0$ and extend it linearly to all of $V \otimes V$. So T is a linear map. We want to show that T gives a map $S: \bigwedge^{2}(V) \rightarrow E$; it suffices to show that $T(v \otimes v)=0$ for all $v \in V$. Let $v=\sum c_{i} e_{i}$; then

$$
v \otimes v=\sum_{i j} c_{i} c_{j} e_{i} \otimes e_{j}=\sum_{i} c_{i}^{2} e_{i} \otimes e_{i}+\sum_{i<j} c_{i} c_{j}\left(e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right)
$$

We thus see that $T(v \otimes v)=0$. Hence T gives a map $S: \bigwedge^{2}(V) \rightarrow E$ (also a linear map) which sends $e_{i} \wedge e_{j}$ to $e_{i j}$. Since the $e_{i j}$ (for $i<j$) are linearly independent in E by construction, this implies that the $e_{i} \wedge e_{j}$ (for $i<j$) are linearly independent, and hence a basis.

[Lecture 5, 6.12. 2016]

One thing to note about $\bigwedge^{2}(V)$ (as we know about $\bigotimes^{2}(V)$) is that not every element is of the form $v \wedge w$. For example, if $\left\{e_{i}\right\}$ is a basis of $V, \operatorname{dim} V \geq 4$, then $e_{1} \wedge e_{2}+e_{3} \wedge e_{4}$ cannot be simplified to a single $v \wedge w$.

Definition 4.27. Let $r \geq 0$ be an integer, and V be a vector space. Then the r th exterior power of $V, \bigwedge^{r}(V)$ is the quotient of $V \otimes \cdots \otimes V$ (with r factors) by the subspace U spanned by all tensors $v_{1} \otimes \cdots \otimes v_{r}$ for which two of the v_{i} are equal.
Elements of $\bigwedge^{r}(V)$ are alternating r-tensors or alternating tensors of degree r. Elements of the form $u_{1} \wedge \cdots \wedge u_{r}$ with $u_{i} \in V$ are called simple or decomposable alternating r tensors.
The exterior algebra $\bigwedge(V)$ is the direct sum $\bigoplus_{r \geq 0} \bigwedge^{r}(V)$. It is also called the Grassmann algebra or the alternating algebra.

Remark 4.28. (1) The exterior algebra is an algebra over the field K. This means, $\bigwedge(V)$ is a K-vector space with a bilinear product, it is a set with multiplication, addition and scalar multiplication by elements of the field. (Note that it is finite dimensional, since we assumed that V is finite dimensional, cf. Theorem 4.31).
(2) All through Chapter 4, we could have worked with modules over a commutative ring instead (and this is also done when introducing tensor products, exterior product, etc.), so replacing V and K with a module E over a commutative $\operatorname{ring} R$ and considered r-multilinear maps from E^{r} to the field K. The tensor product $E^{\otimes m}$ and the exterior product $\bigwedge^{r}(E)$ are also modules for R.

By definition, there is an r-multilinear map $\bigwedge^{r}: V^{r} \rightarrow \bigwedge^{r}(V)$ (called canonical
(multilinear map)) obtained from the composition of \otimes with the quotient:

$$
\begin{equation*}
V^{r} \longrightarrow V^{\otimes r} \longrightarrow V^{\otimes r} / U=\bigwedge^{r}(V) \tag{4.11}
\end{equation*}
$$

The map is alternating (should be clear). We also have:
Theorem 4.29 (Unique factorization property of the r th exterior power of a vector space). Let V and W be vector spaces. If $f: V^{r} \rightarrow W$ is r-multilinear and alternating, there exists a unique linear map $f^{\prime}: \bigwedge^{r}(V) \rightarrow W$ such that $f=f^{\prime} \circ \wedge^{r}$, i.e. making the diagram

commutative.
The proof of this works analoguously as the proofs for the statements about tensor products (Theorems 4.8 and 4.12), so we could omit it.

Proof. By the the universal property of tensor maps of Theorem 4.8 and by Theorem 4.12, there is a unique linear map $\tilde{f}: V^{\otimes r} \rightarrow W$ such that $\tilde{f}\left(v_{1} \otimes \cdots \otimes v_{r}\right)=$ $f\left(v_{1}, \ldots, f_{r}\right)$. Since f is alternating, \tilde{f} vanishes on the subspace U from Definition 4.27. Hence it induces $f^{\prime}: V^{\otimes r} / U \rightarrow W$ is as desired.

This induced map vanishes on the subspace U (spanned by all the tensors with repeated entry), hence $f=f^{\prime} \circ \wedge^{r}$.

Corollary 4.30. The space of r-linear alternating maps $\operatorname{Alt}^{r}(V ; W)=\left\{f: V^{r} \rightarrow W:\right.$ f is alternating $\}$ is isomorphic to $\operatorname{Hom}\left(\wedge^{r}(V), W\right)$. In particular, if $W=K$, this yields an isomorphism $\left(\wedge^{r}(V)\right)^{*} \cong \operatorname{Alt}^{r}(V ; K)$.

Similarly as for $r=2$, one can show the following:
Theorem 4.31. Let $\left\{e_{i}\right\}_{i=1, \ldots, n}$ be a basis for V and $r \geq 0$. Then
$\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{r}}\right\}_{i_{1}<\cdots<i_{r}}$ is a basis for $\bigwedge^{r}(V)$. In particular, $\operatorname{dim} \bigwedge^{r}(V)=\binom{n}{r}$.
Proof. The claims can be shown analoguosly as the statements of Theorem 4.26.
Example 4.32. Let V be a vector space with basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then

	basis
$\bigwedge^{0}(V)$	$\{1\}$
$\bigwedge^{1}(V)$	$\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$\bigwedge^{2}(V)$	$\left\{v_{1} \wedge v_{2}, v_{1} \wedge v_{3}, v_{1} \wedge v_{4}, v_{2} \wedge v_{3}, v_{2} \wedge v_{4}, v_{3} \wedge v_{4}\right\}$
$\bigwedge^{3}(V)$	$\left\{v_{1} \wedge v_{2} \wedge v_{3}, v_{1} \wedge v_{2} \wedge v_{4}, v_{1} \wedge v_{3} \wedge v_{4}, v_{2} \wedge v_{3} \wedge v_{4}\right\}$
$\bigwedge^{4}(V)$	$\left\{v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right\}$

We now consider special values of r more generally (using Theorem 4.31):

- $\bigwedge^{0}(V)=K$, since the "empty" tensor product is K.
- $\Lambda^{1}(V)=V$.
- $\bigwedge^{n}(V)$ is 1-dimensional, spanned by $e_{1} \wedge \cdots \wedge e_{n}$ for any basis $\left\{e_{i}\right\}_{i}$ of V.
- $\operatorname{dim} \bigwedge^{r}(V)=0$ if $r>n$.

Remark 4.33. Note that given any linear map $T: V \rightarrow W$ between two vector spaces, we get a linear map $\bigwedge^{r} T: \bigwedge^{r}(V) \rightarrow \bigwedge^{r}(W)$ by setting $\bigwedge^{r} T\left(v_{1} \wedge \cdots \wedge v_{r}\right)=T\left(v_{1}\right) \wedge$ $\cdots \wedge T\left(v_{r}\right)$ (and extending linearly to $\bigwedge^{r}(V)$). To see that this is well-defined, we note that this map is multilinear and vanishes if there exist $i \neq j$ with $v_{i}=v_{j}$. This can be extended to a map $\bigwedge(T): \bigwedge(V) \rightarrow \bigwedge(W)$, by setting $\bigwedge(T)\left(x_{1} \wedge \cdots \wedge x_{t}\right)=$ $T\left(x_{1}\right) \wedge \cdots \wedge T\left(x_{t}\right)$ for any x_{1}, \ldots, x_{t} in V (any $\left.t \geq 0\right)$. (The map $\wedge(T)$ is a homomorphism of graded K-algebras.)

Now in particular, we can consider the case $W=V$ and $r=n=\operatorname{dim} V$. In this case we have a map T from V to itself. What is T doing to (n-dimensional) volume in V ? The space $\bigwedge^{n}(V)$ is 1-dimensional, so $\bigwedge^{n}(T)$ is a linear map from a 1-dimensional space to itself. Any such map is multiplication by some scalar, and this is independent of the choice of basis of V. This scalar is what T multiplies volumes by, from a geometric point of view.

Definition 4.34. Let $T: V \rightarrow V$ be a linear map and $n=\operatorname{dim} V$. Then the determinant $\operatorname{det}(T)$ is the scalar λ such that $\bigwedge^{n} T$ is multiplication by $\operatorname{det}(T)=\lambda$.

Recall that the exterior algebra of V is $\bigwedge(V)=\oplus_{m \geq 0} \bigwedge^{m}(V)$. It is graded by the degree of alternating tensors.

Since V is finite dimensional, say of dimension d, we actually have

$$
\bigwedge(V)=\bigoplus_{m=0}^{d} \bigwedge^{m}(V)
$$

and since each $\bigwedge^{m}(V)$ has dimension $\binom{d}{m}$, we deduce that

$$
\operatorname{dim}(\bigwedge(V))=\sum_{m=0}^{d}\binom{d}{m}=2^{d}=2^{\operatorname{dim}(V)}
$$

[Lecture 7, 16.12. 2016]

Remark 4.35. There is a linear map $\mu^{\prime}: \bigwedge^{r}(V) \otimes \bigwedge^{s}(V) \rightarrow \bigwedge^{r+s}(V)$ induced by the (bilinear) multiplication map $\mu: \bigwedge^{r}(V) \times \bigwedge^{s}(V) \rightarrow \bigwedge^{r+s}(V)$ (cf. Definition 4.7), defined on pairs of decomposable alternating tensors as follows

$$
\mu\left(v_{1} \wedge \cdots \wedge v_{r}, w_{1} \wedge \cdots \wedge w_{s}\right)=v_{1} \wedge \cdots \wedge v_{s} \wedge w_{1} \wedge \cdots \wedge w_{s}
$$

and extended to all of $\bigwedge^{r}(V) \times \bigwedge^{s}(V)$. We write $\mu(x, y)\left(\right.$ with $\left.x \in \bigwedge^{r}(V), y \in \bigwedge^{s}(V)\right)$ as $x \wedge y$. :

The multiplication

$$
\bigwedge^{r}(V) \times \bigwedge^{s}(V) \rightarrow \bigwedge^{r+s}(V)
$$

is skew-symmetric in the following sense:
Theorem 4.36. For all $\alpha \in \bigwedge^{r}(V)$ and for all $\beta \in \bigwedge^{s}(V)$, we have

$$
\beta \wedge \alpha=(-1)^{r s} \alpha \wedge \beta \quad\left(\text { in } \bigwedge^{r+s}(V)\right)
$$

Proof. Since $v \wedge u=-u \wedge v$ for all $u, v \in V$, the claim follows by induction.
Remark 4.37. Note that $\alpha \wedge \alpha=0$ for every simple tensor $\alpha=u_{1} \wedge \cdots \wedge u_{n}$. What about $\alpha \wedge \alpha=0$ for an arbitrary element $\alpha \in \bigwedge(V)$?. If $\operatorname{dim}(V) \leq 3$, one checks that $\alpha \wedge \alpha=0$ for all $\alpha \in \bigwedge(V)$ (please convince yourself). In dimension 4 , this is not true anymore, e.g. if $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a basis for V, and if $\alpha=u_{1} \wedge u_{2}+u_{3} \wedge u_{4}$, we have

$$
\begin{aligned}
\alpha \wedge \alpha & =\left(u_{1} \wedge u_{2}+u_{3} \wedge u_{4}\right) \wedge\left(u_{1} \wedge u_{2}+u_{3} \wedge u_{4}\right) \\
& =\cdots=u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4}+u_{3} \wedge u_{4} \wedge u_{1} \wedge u_{2} \\
& =2 u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4}
\end{aligned}
$$

[Lecture 6, 12.12. 2016]

Pairings

Definition 4.38. Let V and W be vector spaces. A pairing is a bilinear map $\langle\rangle:, V \times W \rightarrow K$. The pairing is non-degenerate if

$$
\begin{gathered}
\left\langle v_{0}, w\right\rangle=0 \forall w \in W \Longrightarrow v_{0}=0 \\
\left\langle v, w_{0}\right\rangle=0 \forall v \in V \Longrightarrow w_{0}=0
\end{gathered}
$$

An example for a non-degenerate pairing is the so-called evaluation map:

$$
V^{*} \times V \rightarrow K, \quad(f, v) \mapsto f(v)
$$

Theorem 4.39. If $b: V \times W \rightarrow K,(v, w) \mapsto b(v, w)$, is a non-degenerate pairing, then $V \cong W^{*}$ and $W \cong V^{*}$

Proof. Define the map $f: V \rightarrow W^{*}$ as follows

$$
(f(v))(w)=b(v, w)
$$

This map is linear and

$$
\operatorname{ker} f=\{v \in V: f(v)=0\}=\{v \in V: b(v, w)=0 \forall w \in W\}=\{0\}
$$

(Note that $f(v)=0$ means that $f(v)$ is the zero map.) The last equality follows from the non-degeneracy of the pairing. So $\operatorname{dim} V \leq \operatorname{dim} W^{*}=\operatorname{dim} W$. Similarly, define a linear map $g: W \rightarrow V^{*}$ by $g(w)(v)=b(v, w)$. Its kernel is also 0 . So $\operatorname{dim} W \leq$ $\operatorname{dim} V^{*}$, therefore $\operatorname{dim} V^{*}=\operatorname{dim} V=\operatorname{dim} W^{*}=\operatorname{dim} W$ and we get that f and g are isomorphisms.

Corollary 4.40. Let $1 \leq k \leq n$. The $\operatorname{map}\langle\cdot, \cdot\rangle: \bigwedge^{k}\left(V^{*}\right) \times \bigwedge^{k}(V) \rightarrow K$ given by

$$
\left\langle v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}, v_{1} \wedge \cdots \wedge v_{k}\right\rangle=\operatorname{det}\left(v_{i}^{*}\left(v_{j}\right)\right)
$$

gives a non-degenerate pairing, hence

$$
\bigwedge^{k}\left(V^{*}\right) \cong \bigwedge^{k}(V)
$$

(The pairing is defined in simple alternating tensors - and then extended to all of $\left.\bigwedge^{k}\left(V^{*}\right) \times \bigwedge^{k}(V)\right)$

Proof. Let $b:\left(V^{*}\right)^{k} \times V^{k} \rightarrow K$ be (the $2 k$-linear map) defined (on simple elements) by

$$
b\left(v_{1}^{*}, \ldots, v_{k}^{*}, v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(v_{i}^{*}\left(v_{j}\right)_{i j}\right)
$$

For fixed $\left(v_{1}^{*}, \ldots, v_{k}^{*}\right)$ in $\left(V^{*}\right)^{k}, b$ is alternating in the v_{j} 's. So there is a map $\bar{b}:\left(V^{*}\right)^{k} \times$ $\bigwedge^{k}(V) \rightarrow K$ with

$$
\left(v_{1}^{*}, \ldots, v_{k}^{*}, v_{1} \wedge \cdots \wedge v_{k}\right) \mapsto \operatorname{det}\left(l_{i}\left(v_{j}\right)\right)
$$

(Theorem 4.29). Similarly, for fixed $v_{1} \wedge \cdots \wedge v_{k}$ in $\bigwedge^{k}(V), \bar{b}$ is alternating in the v_{i}^{*} 's (and k-linear), so there exists a pairing $b^{\prime}: \bigwedge^{k}\left(V^{*}\right) \times \bigwedge^{k}(V) \rightarrow K$.
To check non-degeneracy, evaluate the pairing on the respective bases. The claim then follows from Theorem 4.39.

Remark 4.41. Explicitely, every element $v_{1}^{*} \wedge \cdots \wedge v_{k}^{*} \in \bigwedge^{k}\left(V^{*}\right)$ defines a k-linear alternating map by setting

$$
v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}\left(v_{1}, \ldots, v_{k}\right):=\operatorname{det}\left(l_{i}\left(v_{j}\right)_{i j}\right)
$$

for all $\left(v_{1}, \ldots, v_{k}\right) \in V^{k}$. In particular,

$$
v_{1}^{*} \wedge v_{2}^{*}\left(v_{1}, v_{2}\right)=v_{1}^{*}\left(v_{1}\right) v_{2}^{*}\left(v_{2}\right)-v_{1}^{*}\left(v_{2}\right) v_{2}^{*}\left(v_{1}\right)
$$

Exercises for Section 4.6

1. Identify $\bigwedge^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3} by identifying $e_{1} \wedge e_{2}$ with $e_{3}, e_{2} \wedge e_{3}$ with e_{1} and $e_{3} \wedge e_{1}$ with e_{2}. Show that under this identification, the exterior product $v \wedge w \in \bigwedge^{2}\left(\mathbb{R}^{3}\right)=\mathbb{R}^{3}$ is the same as the cross product $u \times w \in \mathbb{R}^{3}$.
2.

Let V have basis $\left\{e_{1}, e_{2}\right\}$ and let $T: V \rightarrow V$ be given by $T\left(e_{1}\right)=a e_{1}+c e_{2}$ and $T\left(e_{2}\right)=b e_{1}+d e_{2}$. Compute $\bigwedge^{2} T: \bigwedge^{2}(V) \rightarrow \bigwedge^{2}(V)$ in terms of this basis. What is $\operatorname{det}(T)$?
3.

Let $\operatorname{Sym}^{2}(V)$ be the quotient of $V \otimes V$ by the subspace spanned by elements of the form $v \otimes w-w \otimes v$. We write $v w$ for the image of $v \otimes w$ under the quotient map $V \otimes V \rightarrow \operatorname{Sym}^{2}(V)$. If $\left\{e_{i}\right\}$ is a basis for V, show that $\left\{e_{i} e_{j}\right\}_{i \leq j}$ is a basis for $\operatorname{Sym}^{2}(V)$.
Hint: imitate the proof of theorem 4.26
4.

Let $x \in \bigwedge^{r}(V), y \in \bigwedge^{s}(V)$ and $z \in \bigwedge^{t}(V)$. Show that $(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and that $x \wedge y=(-1)^{r s} y \wedge x$ where $x \wedge y$ is defined as in Lemma 4.35.
5.

For any vector space V, the vectors $u_{1}, \ldots, u_{n} \in V$ are linearly independent iff $u_{1} \wedge \cdots \wedge u_{n} \neq 0$.

4.7 Reminder from linear algebra

4.7.1 Reminder on inner products

Let V be a vector space over \mathbb{C}. An inner product on V is a function $(\cdot, \cdot): V \times V \rightarrow \mathbb{C}$ such that

1. $(u, v)=\overline{(v, u)}$ for all $u, v \in V$.
2. $\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}, u\right)=\alpha_{1}\left(v_{1}, u\right)+\alpha_{2}\left(v_{2}, u\right)$ for all $v_{i}, u \in V, \alpha_{i} \in \mathbb{C}$.
3. $(v, v) \geq 0$ for all $v \in V$ and $(v, v)=0$ if and only if $v=0$.
V is then called an inner product space. The norm induced by the inner product is defined as

$$
\|v\|=\sqrt{(v, v)}, \quad v \in V
$$

Vectors v with $\|v\|=1$ are unit vectors. Two vectors $u, v \in V$ are orthogonal if $(u, v)=0$, denoted by $u \perp v$. A basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthogonal basis, if the vectors are pairwise orthogonal. It is orthonormal, if $\left(e_{i}, e_{j}\right)=\delta_{i j}$.

Fact:

Let $F:=\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of the \mathbb{C}-vector space V. Then there exists a unique inner product (\cdot, \cdot) on V such that F is an orthonormal basis. (cf. Problem 7.3 (a))

Proof of this fact: Let (\cdot, \cdot) be an inner product with ONB $E=\left\{e_{1}, \ldots, e_{n}\right\}$. Define $S \in \operatorname{End} V$ by $S f_{i}=e_{i}$. The endomorphism S is invertible. (Why? please give an argument - e.g. by definition, S has rank $n=\operatorname{dim} V$). Set $T:=S^{*} S>0$. (positive semidefiniteness, i.e. $S^{*} S \geq 0$, holds for any homomorphism between inner produc spaces. Positive definiteness, i.e. $S^{*} S>0$, holds for invertible homomorphisms. View S as a square matrix. Then the adjoint S^{*} of S is the complex conjugate transpose of S.) So $\langle u, v\rangle:=(T u, v)$ is an inner product. (Fact: For $T \in$ End $V,\langle u, v\rangle:=(T u, v)$ defines an inner product if and only if T is pos. definite w.r.t. $(\cdot, \cdot))$. The elements f_{1}, \ldots, f_{n} form an ONB w.r.t. $\langle\cdot, \cdot\rangle$. Uniqueness: straightforward.

Exercise:

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V. For any $u=\sum_{i=1}^{n} a_{i} e_{i}$ and $v=\sum_{i=1}^{n} b_{i} e_{i}$, show that $(u, v):=\sum_{i=1}^{n} a_{i} \overline{b_{i}}$ is the unique inner product on V so that E is an orthonormal basis (cf. Problem 7.3 (b)).

4.7.2 Reminder on adjoints

Let V, W be inner product spaces with inner products $(\cdot, \cdot)_{V}$ and $(\cdot, \cdot)_{W}$ respectively. For each $T \in \operatorname{Hom}(V, W)$, the adjoint of T is $S \in \operatorname{Hom}(W, V)$ such that $(T v, w)_{W}=(v, S w)_{V}$ for all $v \in V, w \in W$ and is denoted by T^{*}. Clearly, $\left(T^{*}\right)^{*}=T$.

Fact:

Let W, V be inner product spaces. Each $T \in \operatorname{Hom}(V, W)$ has a unique adjoint.
: we can find an ONB w.r.t. $(\cdot, \cdot)_{V}$. Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be an ONB of V. Then for $w \in W$, one defines $S \in \operatorname{Hom}(W, V)$ by

$$
S w:=\sum_{i=1}^{n}\left(w, T e_{i}\right)_{W} e_{i} .
$$

etc. And show uniqueness.
And then another fact:
If E and $F=\left\{f_{1}, \ldots, f_{m}\right\}$ are ONB's of the inner product spaces V and W and $T \in \operatorname{Hom}(V, W)$ with matrix A representing T w.r.t. the bases E and F, then T^{*} is represented by A^{*} (the complex conjugate transpose of the matrix A), a matrix w.r.t. the bases F and E.

Notation for Chapters 4 and 5

- Let V and W be vector spaces over the field K. We write $\operatorname{Hom}(V, W)$ for the space of K-linear maps between V and W (or Homomorphisms between V and W). We write $\operatorname{End}(V)$ for $\operatorname{Hom}(V, V)$, the space of endomorphisms of V.
- $\mathbb{C}_{m, n}$ the space of $m \times n$-matrices over \mathbb{C}. If R is a ring (with unit), $R_{m, n}$ is the space of $m \times n$-matrices over R.
- $x \in V, V$ vector space: x^{T} the transpose of x (similar for matrices).
- $\left[x_{1}, \ldots, x_{n}\right]$ for the matrix formed by the column vectors $x_{i} \in \mathbb{C}^{m}$.
- $V^{m}=\times^{m}(V)=V \times \cdots \times V$ for the product of m factors of the vector space V.
- $M\left(V_{1}, \ldots, V_{m}, W\right)$ the set of multilinear maps from $V_{1} \times \cdots \times V_{m}$ to W.
- The space of r-linear alternating maps, $\operatorname{Alt}^{r}(V ; W):=\left\{f: V^{r} \rightarrow W: f\right.$ is alternating $\}$.
- Let V_{1}, \ldots, V_{m} be K-vector spaces of dimensions n_{1}, \ldots, n_{m}. Then we define $\Gamma\left(n_{1}, \ldots, n_{m}\right):=\left\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)) \mid 1 \leq \gamma(i) \leq n_{i}, i=1, \ldots, m\right\}$, sometimes abbreviated as Γ. This notation helps enumerating basis vectors of the tensor product of m vector spaces of dimensions n_{1}, \ldots, n_{m}.
If $V_{1}=\cdots=V_{m}=: V$ we have $n_{1}=\cdots=n_{m}=n$ for $n:=\operatorname{dim} V$; in this case we just write $\Gamma(n: m)$:
$\Gamma(n: m)=\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)), 1 \leq \gamma(i) \leq n, i=1, \ldots, m\}$.
- Consider $V_{1} \otimes \cdots \otimes V_{m}$ for \mathbb{C}-vector spaces V_{i} of dimension n_{i}, and where $E_{i}=$ $\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ is a basis of V_{i} for $i=1, \ldots, m$. Let $\gamma \in \Gamma=\Gamma\left(n_{1}, \ldots, n_{m}\right)$. We write
e_{γ}^{\otimes} for the basis vector $e_{1 \gamma(1)} \otimes \cdots \otimes e_{m \gamma(m)}$.
For $\left(u_{1}, \ldots, u_{m}\right) \in V_{1} \times \cdots \times V_{m}$ we write
$u^{\otimes}:=u_{1} \otimes \cdots \otimes u_{m}\left(\right.$ which is, by definition, $\left.\otimes\left(u_{1}, \ldots, u_{m}\right)\right)$.
- $V^{\otimes m}=\otimes^{m}(V)=V \otimes \cdots \otimes V$ (m copies of V in the tensor product) and $\left(V^{*}\right)^{\otimes m}=\otimes^{m}\left(V^{*}\right)=V^{*} \otimes \cdots \otimes V^{*}\left(m\right.$ copies of $\left.V^{*}\right)$.
- Let I be a set. We write $\mathcal{P}^{*}(I)$ for the set of all non-empty finite subsets of I.
- Let R be a ring (with unit), let M be a (left) R-module. We write $\mathcal{L}(M)$ for the lattice of submodules of M.
- $\mathbb{N}=\{0,1,2,3, \ldots\}=\mathbb{Z}_{\geq 0}$.

Bibliography

[1] R. Ash, Abstract Algebra: The Basic Graduate Year
[2] K. Baur, Einführung in die Algebra, Lecture notes, Summer semester 2014, available at http://www.uni-graz.at/~baurk/lehre/Vorlesung-ss2014.html
[3] T. S. Blyth, Module Theory: An approach to linear algebra
[4] S. Lang, Algebra, Graduate Texts in Mathematics, Springer.
[5] T.-Y. Tam, Multilinear Algebra, Lecture notes, Auburn University, 2011

[^0]: ${ }^{1}$ note that T may depend on ψ.
 ${ }^{2}$ This is a fact from linear algebra: if V and W are K-vector spaces with a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V and if w_{1}, \ldots, w_{n} are vectors in W. Then there exists a unique homomorphism $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}$ for all i.

[^1]: ${ }^{3}$ contravariant vectors: under a base change using the invertible matrix A, the entries of a contravariant vector change with the inverse A^{-1} of the matrix of the base change. Under this base change, covariant vectors change with A.

