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Chapter 4

Multilinear algebra

[Lecture 1, 22.11.2016]
In this chapter, we discuss multilinear maps, tensor maps, tensor products and alter-
nating maps. Chapter 4 is important for differential geometry. Multilinear maps can be
viewed as a generalization of linear maps between vector spaces.

Some notations are explained at the very end of the document (just before the bibliog-
raphy).

Unless mentioned otherwise, all vector spaces are finite dimensional vector spaces
over some field K. Most of the time we will tacitly assume K = C.

An important idea of this chapter is to convert a multilinear map on a product space
into a linear map on the tensor product of its factor spaces and to study the relationship
between these two maps.

4.1 Multilinear maps and tensor maps

Definition 4.1. Let V1, V2, . . . , Vm and W be vector spaces over a field K. A map
ϕ : V1 × · · · × Vm → W is m-multilinear or multilinear if it is linear in every argument,
i.e. if

ϕ(v1, . . . , vi + λv′i, . . . , vm) = ϕ(v1, . . . , vi, . . . , vm) + λϕ(v1, . . . , v
′
i, . . . , vm)

holds for all i = 1, . . . ,m, and for all λ ∈ K.

A linear map f ∈ Hom(V,W ) can be viewed as a 1-multilinear map.

Remark. Linear map and multilinear maps are not the same!
Consider the linear map f ∈ Hom(V1 × V2,W ) and a multilinear map ϕ : V1 × V2 → W .
f is linear and so,

f(v1 + v′1, v2 + v′2) = f(v1, v2) + f(v′1, v
′
2) = f(v1, 0) + f(0, v2) + f(v′1, 0) + f(0, v′2)

7



8 CHAPTER 4. MULTILINEAR ALGEBRA

ϕ is multilinear, and so,

ϕ(v1+v′1, v2+v′2) = ϕ(v1, v2+v′2)+ϕ(v
′
1, v2+v′2) = ϕ(v1, v2)+ϕ(v1, v

′
2)+ϕ(v

′
1, v2)+ϕ(v

′
1, v
′
2)

Note that ϕ(v1, 0) = 0 = ϕ(0, v2) but that f(v1, 0) and f(0, v2) are not necessarily 0.

Example 4.2. The following maps are multilinear (please convince yourself of this!)

(a) f : C×C → C defined by f(x, y) = xy.

(b) ϕ : V ∗ × V → C defined by ϕ(f, v) = f(v).

(c) ϕ : Cm×Cn → C defined by ϕ(x, y) = xTAy for some matrix A ∈ Cm×n.

(d) ⊗ : Cm×Cn → Cm×n defined by ⊗(x, y) = xyT . This is a tensor map (see below).

(e) det : Cn× · · · × Cn → C defined by det(x1, . . . , xn) = detA where A is the n × n-
matrix [x1, . . . , xn] formed by the column vectors xi.

(f) f : V1 × · · · × Vm → C defined by f(v1, . . . , vm) =
∏m

i=1 fi(vi) for given fi ∈ V ∗i ,
i = 1, . . . ,m.

(g) g : V ∗1 × · · · × V ∗m → W defined by g(f1, . . . , fm) =
∏m

i=1 fi(vi) for vi ∈ Vi given,
i = 1, . . . ,m.

(h) Let ϕ : V1× · · ·×Vm → C and ψ : V1× · · ·×Vm → W be multilinear. Then αϕ+βψ
is also multilinear (for all α,β ∈ K). So the set M(V1, . . . , Vm,W ) of multilinear
maps from V1 × · · ·× Vm to W is a vector space.

Let ψ : V1×· · ·×Vm → W be a multilinear map. If we describe how ψ acts on a basis of
V1× · · ·×Vm, ψ is determined. Let ni = dimVi for i = 1, . . . ,m, let Ei := {ei1, . . . , ei,ni}
be a basis of Vi. Then each vi ∈ Vi can be written as vi =

∑ni
j=1 aijeij (i = 1, . . . ,m).

To describe the basis of a product of m vector spaces of dimensions n1, . . . , nm, we
use the following notation.

Γ := Γ(n1, . . . , nm) := {γ : γ = (γ(1), . . . , γ(m)) | 1 ≤ γ(i) ≤ ni, i = 1, . . . ,m}.

with |Γ| =
∏m

i=1 ni. For an example, take C3×C2×C2, with

Γ = Γ(3, 2, 2) =

⎧

⎨

⎩

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2),
(3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 2)

⎫

⎬

⎭

We can order Γ according to the lexicographic order, as in the example. Moreover, we
have (please check):

m
∏

i=1

ni∑

j=1

aij =
∑

γ∈Γ

m
∏

i=1

aiγ(i) (4.1)
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as will be used later.
From the set-up, we have

ψ(v1, . . . , vm) = ψ(
n1∑

j1=1

a1,j1e1,j1 , . . . ,
nm∑

jm

am,jmem,jm)

=
n1∑

j1

· · ·
nm∑

jm

a1,j1 · · · am,jmψ(e1,j1 , . . . , em,jm)

=
∑

γ∈Γ

a1,γ(1) · · · am,γ(m)ψ(e1,γ(1), . . . , em,γ(m))

=
∑

γ∈Γ

aγψ(eγ) (4.2)

where for γ ∈ Γ, we write

aγ :=
m
∏

i=1

ai,γ(i) ∈ C (4.3)

eγ := (e1,γ(1), . . . , em,γ(m)) ∈ V1 × · · ·× Vm (4.4)

so eγ is the basis vector of V1 × · · · × Vm with label γ.
Then the ψ(eγ) in (4.2) completely determine ψ.

Theorem 4.3 (Multilinear extension). Let Ei = {ei,1, . . . , ei,ni} be a basis of Vi, i =
1 . . . ,m. Let eγ be as in (4.4). Let wγ in W , for all γ ∈ Γ = Γ(n1, . . . , nm) be arbitrary.
Then there exists a unique multilinear map ϕ : V1× · · ·×Vm → W such that ϕ(eγ) = wγ
for all γ.

Proof. Since we want ϕ(eγ) = wγ for all γ ∈ Γ, we need to define (by (4.2)

ϕ(v1, . . . , vm) =
∑

γ∈Γ

aγwγ

for aγ as in (4.3) and vi =
∑ni

j=1 aijeij . Let v
′
i =

∑ni
j=1 a

′
ijeij for i ∈ {1, . . . ,m} arbitrary.

From the definition of ϕ, for c ∈ K,

ϕ(v1, . . . , vi + cv′i, . . . , vm)

=
∑

γ∈Γ

a1,γ(1) · · · (ai,γ(i) + ca′i,γ(i)) · · · am,γ(m)wγ

=
∑

γ∈Γ

a1,γ(1) · · · ai,γ(i) · · · am,γ(m)wγ + c
∑

γ∈Γ

a1,γ(1) · · · a
′
i,γ(i) · · · am,γ(m)wγ

= ϕ(v1, . . . , vi, . . . , vm) + cϕ(v1, . . . , v
′
i, . . . , vm)

i.e. ϕ is multilinear.
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Now we show that ϕ(eα) = wα for all α ∈ Γ.
For α ∈ Γ, write

ei,α(i) =

nj
∑

j=1

δα(i),jeij .

From the definition of ϕ and eα = (e1,α(1), . . . , em,α(m)), we have

ϕ(eα) = ϕ(e1,α(1), . . . , em,α(m)) =
∑

γ∈Γ

δα(1),1 . . . δα(m),mwγ =
∑

γ∈Γ

δα,γwγ = wα

(with δα,γ the obvious generalization of the Kronecker delta). So we have established
the existence.

Uniqueness: Suppose there is another multilinear map ψ : V1 × · · · × Vm → W
such that ψ(eγ) = wγ for all γ ∈ Γ. Then from (4.2) we have (for all (v1, . . . , vm) ∈
V1 × · · · × Vm):

ψ(v1, . . . , vm) =
∑

γ∈Γ

aγψ(eγ) =
∑

γ∈Γ

aγwγ = ϕ(v1, . . . , vm)

So ψ = ϕ.

Let us point out some differences between linear and multilinear maps. When T :
V → W is linear, T is completely determined by the n := dimV images T (e1), . . . , T (en)
where E = {e1, . . . , en} is a basis of V . But to determine a multilinear map ϕ, we need
|Γ| =

∏m
i=1 dimVi images. In general, this is much more than dim(V1 × · · · × Vm) =

∑m
i=1 dimVi.

Recall Example 4.2(d) with m = n = 2, i.e. ⊗ : C2×C2 → C2×2 defined by ⊗(x, y) =
xyT . Since rk(xyT ) ≤ min{rkx, rk yT } ≤ 1, we have det(⊗(x, y)) = 0. But if we take
x1 = (1, 0)T and x2 = (0, 1)T , then

det(⊗(x1, x1) +⊗(x2, x2)) = det I2 = 1

(for I2 the identity matrix in C2,2).
Hence ⊗(x1, x1) +⊗(x2, x2) is not in the image of ⊗ and im⊗ is not a subspace.
In general, the image imϕ = {ϕ(v1, . . . , vm) | vi ∈ Vi, i1, . . . ,m} is not necessarily
a subspace of W . But we can consider the span ⟨imϕ⟩ of the image of ϕ. Clearly,
dim⟨imϕ⟩ ≤

∏m
i=1 dimVi.

Definition 4.4. The rank of ϕ is defined to be

rkϕ = dim⟨imϕ⟩

The multilinear map ϕ is called a tensor map if rkϕ =
∏m

i=1 dimVi. In other words, a
tensor map is a multilinear map with maximal image span.
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Example 4.2(a) is a tensor map. Example 4.2(d) is a tensor map.

Theorem 4.5. The multilinear map ϕ : V1 × · · ·× Vm → P is a tensor map if and only
if the set {ϕ(eγ) | γ ∈ Γ} is linearly independent (for eγ as in (4.4)).

Proof. From (4.2), ⟨ϕ(eγ) | γ ∈ Γ⟩ = ⟨imϕ⟩ and |Γ| =
∏m

i=1 dimVi.

Theorem 4.6. Tensor maps exist, i.e. for V1, . . . , Vm there exist W and ϕ : V1 × · · · ×
Vm → W such that ϕ is a tensor map.

Proof. By Theorem 4.3, pick W a vector space with dimW =
∏m

i=1 dimVi and let
{wγ : γ ∈ Γ} be a basis so that the wγ (γ ∈ Γ) determine the multilinear map ϕ which
is obviously a tensor map.

Clearly, tensor maps on V1 × · · · × Vm are not unique. What makes them useful is
the fact that every multilinear map can be factored as a tensor map composed with a
linear map: The study of multilinear maps is reduced to the study of some linear map
(not unique) via a tensor map.

Definition 4.7. A multilinear map ϕ : V1 × · · ·× Vm → P is said to have the universal
factorization property if for any multilinear map ψ : V1 × · · · × Vm → W , there is
T ∈ Hom(P,W ) such that ψ = T ◦ ϕ. 1

V1 × · · ·× Vm
ϕ !!

ψ
""▼

▼▼
▼▼

▼▼
▼▼

▼▼
P

∃ T##⑦⑦
⑦⑦
⑦⑦
⑦⑦

W

[Lecture 2, 28.11.2016]

Theorem 4.8. The multilinear map ϕ : V1 × · · ·× Vm → P is a tensor map if and only
if ϕ has universal factorization property.

Proof. Suppose that ϕ is a tensor map. Then {ϕ(eγ) | γ ∈ Γ} is a basis of ⟨imϕ⟩. There
is a unique2 T ∈ Hom(⟨imϕ⟩,W ) such that Tϕ(eγ) = ψ(eγ) for all γ ∈ Γ. Since Tϕ
and ψ are multilinear maps V1 × · · · × Vm → W (Exercise 2 below or Problem 7.1 (a)),
Theorem 4.3 implies Tϕ = ψ.

Conversely, suppose that ϕ has the universal factorization property. In particular
consider a tensor map ψ on V1 × · · ·× Vm, i.e. , dim⟨imψ⟩ =

∏

dimVi. (Such a map ψ
exists by Theorem 4.6).

Then Tϕ = ψ for some linear map T . Thus, T (⟨imϕ⟩) = ⟨imψ⟩. Hence

∏

i

dimVi
ψ tensor map

= dim⟨imψ⟩
Tϕ=ψ
≤ dim⟨imϕ⟩ ≤

∏

i

dimVi

So rkϕ =
∏

dimVi and ϕ is a tensor map.
1note that T may depend on ψ.
2This is a fact from linear algebra: if V and W are K-vector spaces with a basis {v1, . . . , vn} of V

and if w1, . . . , wn are vectors in W . Then there exists a unique homomorphism T : V → W such that
T (vi) = wi for all i.
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Definition 4.9. A multilinear map ϕ : V1 × · · · × Vr → K is called a multilinear form
or an r-form. If V1 = · · · = Vr =: V (and W = K), then ϕ is called an r-form on V or
a multilinear form on V .

Exercises for Section 4.1

1. Let V1, . . . , Vm, W1, . . . ,Wm and W be C-vector spaces.
Let ϕ : W1 × · · ·×Wm → W be multilinear and Ti : Vi → Wi linear for all i.
Define ψ : V1 × · · ·× Vm → W by ψ(v1, . . . , vm) = ϕ(T1v1, . . . , Tmvm).
Show that ψ is multilinear.

2. Let V1, . . . , Vm, W and W ′ be C-vector spaces.
Prove that if ϕ : V1 × · · ·×Vm → W is multilinear and T : W → W ′ is linear, then
T ◦ ϕ is multilinear.

3. Show that for n > 1, the determinant function det : Cn × · · · × Cn → C is not a
tensor map.

4. Suppose that the multilinear map ϕ : V1 × · · · × Vm → P has the universal fac-
torization property. Show that the linear map T (from the defn of the universal
factorization property) is unique if and only if ⟨imϕ⟩ = P .

4.2 Tensor products and unique factorization

Let P be a vector space. If there is a tensor map ⊗ : V1 × · · · × Vm → P such that
⟨im⊗⟩ = P , then P is said to be a tensor product of V1, . . . , Vm or a tensor space. It is
written as ⊗m

i=1Vi or as V1 ⊗ · · · ⊗ Vm. If V1 = · · · = Vm =: V , we also write V ⊗m. We
will see below that all tensor product spaces of V1, . . . , Vm are isomorphic and hence we
will just say that ⊗m

i=1Vi is the tensor product of V1, . . . , Vm. We have

dim(⊗m
i=1Vi) = dim⟨im⊗⟩ =

m
∏

i=1

dimVi

The elements of ⊗m
i=1Vi are tensors. The tensors of the form

⊗(v1, . . . , vm) =: v1 ⊗ · · ·⊗ vm

are the decomposable tensors (or pure tensors), i.e., tensors in im⊗ are decomposable.
The decomposable tensors span ⊗m

i=1Vi, so we can find a basis of decomposable tensors
for ⊗m

i=1Vi. The tensors which are not decomposable, i.e., the tensors in ⟨im⊗⟩ \ im⊗
are called indecomposable tensors. From Theorem 4.6, we get the following.

Corollary 4.10. Let P be a vector space with dimP =
∏m

i=1 dimVi. Then there exists
⊗ : V1 × · · ·× Vm → P , so that P is the tensor space.
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Theorem 4.11. Tensor spaces of V1, . . . , Vm are isomorphic:
If P = ⊗m

i=1Vi and Q = !m
i=1Vi are tensor products of V1, . . . , Vm, then there exists an

invertible T ∈ Hom(P,Q) such that T ◦ ⊗ = !.

Proof. Since P and Q are tensor spaces of V1, . . . , Vm, dimP = dimQ. The sets

{⊗eγ | γ ∈ Γ}, {!eγ | γ ∈ Γ}

are bases of P and Q. We get T by sending basis elements to basis elements.
By Theorem 4.8 (universal factorization property) there exists T ∈ Hom(P,Q) such that
T ⊗ (eγ) = !eγ , for all γ ∈ Γ. Thus T is invertible and T⊗ = !.

Theorem 4.12 (Unique factorization property). Let ψ : V1 × · · · × Vm → W be mul-
tilinear. Then there exists a unique linear map T : ⊗m

i=1Vi → W such that ψ = T ◦ ⊗,
i.e.,

ψ(v1, . . . , vm) = T ⊗ (v1, . . . , vm) = T (v1 ⊗ · · ·⊗ vm).

Proof. Use Exercise 4.1.4 or Problem 8.2 (a)

In other words, the tensor map on ⊗m
i=1Vi has the unique factorization property.

Corollary 4.13. Let ϕ : V1× · · ·×Vm → P be multilinear. Then ϕ is a tensor map and
⟨imϕ⟩ = P if and only if ϕ has the unique factorization property.

Exercises for Section 4.2

1. Show that if some vi = 0, then v1 ⊗ · · ·⊗ vm = 0.

2. Let z ∈ U ⊗ V so that z can be represented as z =
∑k

i=1 ui ⊗ vi. Prove that if
k is the smallest number among all such representations, then {u1, . . . , uk} and
{v1, . . . , vk} are linearly independent sets.

3. Suppose that e1, e2 ∈ V are linearly independent. Prove that e1 ⊗ e2 + e2 ⊗ e1 ∈
V ⊗ V is indecomposable.

4. Let P = ⊗m
i=1Vi with tensor map ϕ and let T ∈ Hom(P,Q) be invertible. Prove

that ψ = T ◦ ϕ is also a tensor map and that Q is the tensor space with tensor
map ψ.

4.3 Basic properties of tensors and induced inner products

As before, let V1, . . . , Vm be vector spaces over K = C.

Theorem 4.14. Consider the tensor product ⊗m
i=1Vi and tensors u1⊗ · · ·⊗um, . . . , w1⊗

· · · ⊗wm ∈ ⊗iVi.
If u1 ⊗ · · ·⊗ um + · · ·+w1 ⊗ · · ·⊗wm = 0 then ϕ(u1, . . . , um) + · · ·+ϕ(w1, . . . , wm) = 0
for any multilinear map ϕ : V1 × · · · × Vm → W .
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Proof. By Theorem 4.12 we can write ϕ = T ◦ ⊗ for some T ∈ Hom(⊗m
i=1Vi,W ). So

ϕ(u1, . . . , um) = T ⊗ (u1, . . . , um) = T (u1 ⊗ · · ·⊗ um)

and similarly for all decomposable tensors in the sum. Hence

ϕ(u1, . . . , um) + · · ·+ ϕ(w1, . . . , wm)

= T (u1 ⊗ · · · ⊗ um) + · · ·+ T (w1 ⊗ · · ·⊗ wm)

= T (u1 ⊗ · · · ⊗ um + · · · +w1 ⊗ · · ·⊗ wm
︸ ︷︷ ︸

=0

)

= 0

Theorem 4.15. Let vi ∈ Vi, i = 1, . . . ,m. Then v1 ⊗ · · · ⊗ vm = 0 if and only if there
exists i with vi = 0.

Proof. ⇐= is clear.
=⇒: Suppose v1 ⊗ · · ·⊗ vm = 0 but vi ̸= 0 for all i. Then for each i there exists fi ∈ V ∗i
such that fi(vi) = 1. Define

ϕ :=
m
∏

i=1

fi : V1 × · · ·× Vm → C

This is a multilinear map (cf. Example 4.2 (f)). Then

ϕ(v1, . . . , vm) =
m
∏

i=1

fi(vi) = 1

But by Theorem 4.14, ϕ(v1, . . . , vm) = 0, a contradiction.

Theorem 4.16. Let u1 ⊗ · · ·⊗ um and v1 ⊗ · · · ⊗ vm be in V1 ⊗ · · ·⊗ Vm.
u1 ⊗ · · ·⊗ um = v1 ⊗ · · ·⊗ vm ̸= 0 ⇐⇒ vi = ciui for all i = 1, . . . ,m and

∏m
i=1 ci = 1.

Proof. ⇐= is clear.
=⇒: Suppose u1 ⊗ · · · ⊗ um = v1 ⊗ · · ·⊗ vm ̸= 0. From Theorem 4.15, all ui and vi are
non-zero. From Theorem 4.14 (applied to u1 ⊗ · · · ⊗ um − v1 ⊗ · · ·⊗ vm) we know that

ϕ(u1, . . . , um) = ϕ(v1, . . . , vm).

holds for any multilinear map ϕ from V1 × · · · × Vm to some C-vector space W .
Suppose that uk and vk are not linearly dependent for some k (i.e. assume that there is
an index k such that uk is not a (non-zero) multiple of vk). Then there is fk ∈ V ∗k such
that fk(vk) = 1 and fk(uk) = 0. For i ̸= k choose fi ∈ V ∗i such that fi(vi) = 1. Set
ϕ :=

∏m
i=1 fi. (This is multilinear, cf. Example 4.2 (f)). Then

ϕ(v1, . . . , vm) =
m
∏

i=1

fi(vi) = 1
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and since fk(uk) = 0

ϕ(u1, . . . , um) =
m
∏

i=1

fi(ui) = 0,

contradicting ϕ(u1, . . . , um) = ϕ(v1, . . . , vm). Hence for all k there exists ck ̸= 0 such
that vk = ckuk. From

0 ̸= u1 ⊗ · · ·⊗ um = v1 ⊗ · · · ⊗ vm = (
m
∏

i=1

ci)u1 ⊗ · · ·⊗ um

we have
∏m

i=1 ci = 1.

Since the decomposable elements span the tensor space ⊗m
i=1Vi, each z ∈ ⊗m

i=1Vi is
a linear combination of decomposable tensors. Let k be the smallest number of decom-
posable tensors in all such linear combinations for z. We call k the rank or the smallest
length of z. The rank of z ̸= 0 is one if and only if z is decomposable.

Theorem 4.17. Assume that z ∈ U⊗V can be represented as z =
∑r

i=1 ui⊗vi for some
r ≥ 1. Then the smallest length of z is k if and only if {u1, . . . , uk} and {v1, . . . , vk} are
linearly independent sets, respectively.

Proof. The implication =⇒ is Exercise 2 of Section 4.2 or Problem 8.1 (b).
⇐=: Assume that {u1, . . . , uk} and {v1, . . . , vk} are linearly independent sets. Let z =
∑r

j=1 xj ⊗ yj, we show that k ≤ r. Let l ∈ {1, . . . , k} be arbitrary. Since the vi are
linearly independent, there is g ∈ V ∗ such that g(vl) = 1 and g(vj) = 0 for j ̸= l. Let
f ∈ U∗ be arbitrary. Then the map ϕ := fg : U × V → C is bilinear (cf. Example 4.2
(f)). By assumption,

k
∑

i=1

ui ⊗ vi =
r
∑

j=1

xj ⊗ yj

Using Theorem 4.14 for ϕ = fg, we have (first equality by the choice of g)

f(ul) =
k
∑

i=1

f(ui)g(vi) =
r
∑

j=1

f(xj)g(yj) = f(
r
∑

j=1

g(yi)xj)

Since f is arbitrary, this holds for all f ∈ U∗. And so we get ul =
∑r

j=1 g(yi)xj, so ul is
in ⟨x1, . . . , xr⟩ for all l = 1, . . . , k. (choosing other linear maps g when l varies). Since
{u1, . . . , uk} is linearly independent, we have k ≤ r.

[Lecture 3, 29.11.2016]
We now consider an induced inner product (a reminder on inner products is at the

end of the chapter, cf. Subsection 4.7.1) of ⊗m
i=1Vi. Suppose that (·, ·)i is an inner

product on Vi and Ei = {ei1, . . . , eini} is an orthonormal basis of Vi for all i = 1, . . . ,m.
We know that

E := {e⊗γ := e1γ(1) ⊗ · · ·⊗ emγ(m) : γ ∈ Γ}
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is a basis of ⊗m
i=1Vi, where Γ = Γ(n1, . . . , nm). We would like to have an inner product

(·, ·) on the tensor product ⊗m
i=1Vi such that E is an orthonormal basis, i.e.

(e⊗α , e
⊗
β ) = (e1α(1) ⊗ · · ·⊗ emα(m), e1β(1) ⊗ · · · ⊗ emβ(m)) = δα,β

(δα,β is the generalization of the Kronecker delta to m-tuples).
Such an inner product is unique (Section 4.7.1).

We define

(u, v) :=
∑

γ∈Γ

aγbγ (4.5)

where u =
∑

γ∈Γ aγe
⊗
γ , v =

∑

γ∈Γ bγe
⊗
γ ∈ ⊗m

i=1Vi. With this defintion, E becomes an
ONB (cf. Problem 8.4 (a)). The definition appears to depend on the choice of the basis,
but it does not (cf. Problem 7.3).

Theorem 4.18. Let V1, . . . , Vm be inner product spaces with orthonormal bases Ei =
{ei1, . . . , ei,ni}, i = 1, . . . ,m. The inner product obtained from (4.5) satisfies

(u1 ⊗ · · ·⊗ um, v1 ⊗ · · · ⊗ vm) =
m
∏

i=1

(ui, vi)i (4.6)

(where ui, vi ∈ Vi for all i and (·, ·)i is the inner product on Vi).

Proof. We write ui and vi in terms of the basis Ei,

ui =
ni∑

j=1

aijeij , vi =
ni∑

j=1

bijeij, i = 1, . . . ,m.

Since ⊗ is multilinear, from (4.2) we get

u⊗ := u1 ⊗ · · ·⊗ um =⊗ (u1, . . . , um) =
∑

γ∈Γ

(

aγ
︷ ︸︸ ︷
m
∏

i=1

aiγ(i)
)

e⊗γ

v⊗ := v1 ⊗ · · ·⊗ vm =⊗ (v1, . . . , vm) =
∑

γ∈Γ

( m
∏

i=1

biγ(i)

︸ ︷︷ ︸

bγ

)

e⊗γ
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By the definition (4.5) of the inner product and since
∏m

i=1

∑ni
j=1 cij

(4.1)
=

∑

γ∈Γ

∏m
i=1 ciγ(i),

(u⊗, v⊗) =
∑

γ∈Γ

m
∏

i=1

aiγ(i)biγ(i)

(4.1)
=

m
∏

i=1

ni∑

j=1

aijbij

=
m
∏

i=1

(
ni∑

j=1

aijeij ,
ni∑

j=1

bijeij)i

=
m
∏

i=1

(ui, vi)i.

(where (·, ·)i denotes the inner product on Vi).

There are many bilinear maps from (⊗k
i=1Vi)× (⊗m

i=k+1Vi) to ⊗m
i=1Vi since

dim⊗m
i=1Vi =

m
∏

i=1

ni =
k
∏

i=1

ni

m
∏

i=k+1

ni = dim(⊗k
i=1Vi) dim(⊗m

i=k+1Vi). (4.7)

What we like is one that maps the pair (v1 ⊗ · · ·⊗ vk, vk+1 ⊗ · · ·⊗ vm) to v1 ⊗ · · ·⊗ vm.

Theorem 4.19. There is a unique multilinear map ! : (⊗k
i=1Vi)×(⊗m

i=k+1Vi) → ⊗m
i=1Vi

such that

!(v1 ⊗ · · ·⊗ vk, vk+1 ⊗ · · ·⊗ vm) =v1 ⊗ · · ·⊗ vm (4.8)

and

(V1 ⊗ · · ·⊗ Vk)! (Vk+1 ⊗ · · ·⊗ Vm) =V1 ⊗ · · ·⊗ Vm (4.9)

Proof. By (4.7), the dimensions are ok, so the tensor map ! satisfying (4.8) exists
(Theorem 4.10) and is unique (Theorem 4.12). From ⟨im!⟩ = ⟨v1⊗ · · ·⊗vm | vi ∈ Vi⟩ =
⊗m

i=1Vi, (4.9) follows. (See Exercise no. 4 in 4.3 for details.)

We also write ⊗ for ! in Theorem 4.18. So we can write (4.9) as

(V1 ⊗ · · · ⊗ Vk)⊗ (Vk+1 ⊗ · · ·⊗ Vm) = V1 ⊗ · · ·⊗ Vm

and (4.8) can be written as

(v1 ⊗ · · ·⊗ vk)⊗ (vk+1 ⊗ · · · ⊗ vm) = v1 ⊗ · · · ⊗ vm.
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Exercises for Section 4.3

1. Suppose that v1, . . . , vk ∈ V are linearly independent and let u1, . . . , uk ∈ U . Prove
that

∑k
i=1 ui ⊗ vi = 0 if and only if u1 = · · · = uk = 0.

2. Let v1, . . . , vk ∈ V and A ∈ Ck×k. Suppose AAT = Ik and uj =
∑k

i=1 aijvi,

j = 1, . . . , k. Prove that
∑k

i=1 ui ⊗ ui =
∑k

i=1 vi ⊗ vi.

3. Define ⊗ : Ck ×Cn → Ck×n by x⊗ y := xyT . Let Ck and Cn be equipped with the
standard inner products. Prove that for any A,B ∈ Ck×n = Ck ⊗Cn, the induced
inner product is given by (A,B) = tr(B∗A). (notation: tr(B∗A) is the trace of the
square matrix B∗A)

4. Let Ei = {ei1, . . . , eini} be a basis of Vi, i = 1, . . . ,m. Define

ϕ : (V1 ⊗ · · ·⊗ Vk)× (Vk+1 ⊗ · · ·⊗ Vm) → V1 ⊗ · · ·⊗ Vm

by ϕ(e1i1 ⊗ · · · ⊗ ekik , ek+1ik+1
⊗ · · · ⊗ emim) = e1i1 ⊗ · · · ⊗ emim (with bilinear

extension). Show that ϕ is the tensor map satisfying

ϕ(v1 ⊗ · · · ⊗ vk, vk+1 ⊗ · · ·⊗ vm) = v1 ⊗ . . . ⊗ vm

5. Let z =
∑k

i=1 ui⊗vi⊗wi ∈ U⊗V ⊗W . Prove that if {u1, . . . , uk} and {v1, . . . , vk}
are linearly independent and wi ̸= 0 for all i, then k is the smallest length of z.

4.4 Induced maps

In this section, we study Hom(⊗m
i=1Vi,⊗m

i=1Wi). Let Ti ∈ Hom(Vi,Wi) for all i. Then
we define a multilinear map from V1 × · · ·× Vm to ⊗m

i=1Wi by

ϕ(v1, . . . , vm) := T1v1 ⊗ · · · ⊗ Tmvm

By Theorem 4.12 (with ⊗m
i=1Wi in the role ofW ) there is a unique T ∈ Hom(⊗m

i=1Vi,⊗m
i=1Wi)

such that (ϕ = T ◦ ⊗, i.e.)

T (v1 ⊗ · · · ⊗ vm) = T1v1 ⊗ · · ·⊗ Tmvm

We denote this T by T1 ⊗ · · ·⊗ Tm and call it the induced map of T1, . . . , Tm, i.e.

(⊗m
i=1Ti)(v1 ⊗ · · · ⊗ vm) = T1v1 ⊗ · · ·⊗ Tmvm.

(Drawing the corresponding diagram with vector spaces might be helpful).

One can show that T1 ⊗ · · · ⊗ Tm is a tensor (an element) of the tensor product
⊗m

i=1Hom(Vi,Wi).
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The main focus of this section is to study the map T1⊗· · ·⊗Tm ∈ Hom(⊗m
i=1Vi,⊗m

i=1Wi)
as a linear map. We will see how it behaves with respect to composition, how to deter-
mine its rank and its adjoint.

Theorem 4.20. Let Si ∈ Hom(Wi, Ui), Ti ∈ Hom(Vi,Wi), i = 1, . . . ,m. Then

(⊗m
i=1Si) ◦ (⊗

m
i=1Ti) = ⊗m

i=1(Si ◦ Ti).

(It might be helpful to draw the diagrams with the vector spaces to illustrate the
statement).

Proof. It is enough to show the claim on decomposable elements, since ⊗m
i=1Vi is spanned

by them. This is what we do.

(⊗m
i=1Si)(⊗

m
i=1Ti)(v1 ⊗ · · ·⊗ vm) =(⊗m

i=1Si)(T1v1 ⊗ · · ·⊗ Tmvm)

=S1T1v1 ⊗ · · ·⊗ SmTmvm

=⊗m
i=1 (SiTi)(v1 ⊗ · · ·⊗ vm).

Theorem 4.21. Let Ti ∈ Hom(Vi,Wi), i = 1, . . . ,m. Then

rk (T1 ⊗ · · ·⊗ Tm) =
m
∏

i=1

rkTi

Proof. Let rkTi = ki for all i. So there is a basis {ei1, . . . , eiki , eiki+1, . . . , eini} for Vi

such that Tiei1, . . . , Tieiki are linearly independent in Wi and Tieiki+1 = · · · = Tieini = 0,
i = 1, . . . ,m. The set {e⊗γ : γ ∈ Γ(n1, . . . , nm)} is a basis for ⊗m

i=1Vi.
Moreover,

(⊗m
i=1Ti)e

⊗
γ = T1e1γ(1) ⊗ · · ·⊗ Tmemγ(m)

so that if γ /∈ Γ(k1, . . . , km), then (⊗m
i=1Ti)e⊗γ = 0 (as for some i, γ(i) > ki). Since

Tei1, . . . , T ei,ki are linearly independent in Wi for all i, the vectors

(⊗m
i=1Ti)e

⊗
γ , γ ∈ Γ(k1, . . . , km)

are linearly independent in ⊗m
i=1Wi (why?), hence

rk⊗m
i=1Ti = |Γ(k1, . . . , km)| =

m
∏

i=1

ki =
m
∏

i=1

rkTi.

The next result describes the adjoint of T1 ⊗ · · · ⊗ Tm viewed as a linear map. For
notation/reminder: see Subsection 4.7.2 at the end of this chapter.
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Theorem 4.22. Let Ti ∈ Hom(Vi,Wi), where Vi and Wi are inner product spaces for
i = 1, . . . ,m. Then

(⊗m
i=1Ti)

∗ = ⊗m
i=1T

∗
i .

Proof. We use the notation (·, ·) for the inner products on all the spaces Vi, Wi.

((⊗m
i=1Ti)v

⊗, w⊗) = (T1v1 ⊗ · · · ⊗ Tmvm, w1 ⊗ · · ·⊗ wm) (inner product on ⊗iWi)

=
m
∏

i=1

(Tivi, wi) (defin.: inner prod on ⊗iWi in terms of inner prod on Wi’s)

=
m
∏

i=1

(vi, T
∗
i wi) (adjoints of T∗

i
, now on Vi’s)

= (v1 ⊗ · · ·⊗ vm, T ∗1w1 ⊗ · · ·⊗ T ∗mwm) (defin. of inner prod on ⊗iVi)

= (v⊗,⊗m
i=1T

∗
i w
⊗)

Since ⊗m
i=1Vi is spanned by decomposable tensors, we have the desired result.

[Lecture 4, 5.12. 2016]

Exercises for Section 4.4

1. Prove that

(a) Prove that T1 ⊗ · · · ⊗ Tm = 0 if and only if some Ti = 0,

(b) T1 ⊗ · · ·⊗ Tm is invertible if and only if all Ti are invertible.

2. Let Si, Ti ∈ Hom(Vi,Wi) for i = 1, . . . ,m. Prove that ⊗m
i=1Ti = ⊗m

i=1Si ̸= 0 if and
only if Ti = ciSi ̸= 0 for i = 1, . . . ,m and

∏m
i=1 ci = 1.

3. Let Ti ∈ EndVi for i = 1, . . . ,m. By 1 (b), ⊗m
i=1Ti is invertible if and only if Ti is

invertible for every i. Prove that in this case, (⊗m
i=1Ti)−1 = ⊗m

i=1T
−1
i .

4. Let Ti ∈ Hom(Vi,Wi) for i = 1, . . . ,m. Define

ϕ : Hom(V1,W1)× · · ·×Hom(Vm,Wm) → Hom(⊗m
i=1Vi,⊗

m
i=1Wi)

by ϕ(T1, . . . , Tm) = T1 ⊗ · · ·⊗ Tm. Prove that ϕ is multilinear.

Exercise 4 can be used to show that T1 ⊗ · · · ⊗ Tm is an element of a tensor product,
namely of Hom(⊗m

i=1Vi,⊗m
i=1Wi). And then exercises 1-3 follow directly.
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4.5 Some models of tensor products

We now consider the special case V1 = · · · = Vm where all the spaces Vi are equal and
where the target space is the field C.

Recall that M(V, . . . , V ;C) denotes the C-vector space of all m-multilinear maps
f : V m := V × · · ·× V

︸ ︷︷ ︸

m factors

→ C.

The goal of this section is to see that the tensor product

m copies
︷ ︸︸ ︷

V ⊗ · · · ⊗ V can be viewed

as M(

m copies
︷ ︸︸ ︷

V ∗, . . . , V ∗;C) or as M(V, . . . , V ;C) and that the tensor product V ∗ ⊗ · · · ⊗ V ∗

can be understood as M(V, . . . , V
︸ ︷︷ ︸

m copies

;C).

Let E = {e1, . . . , en} be a basis of V and let E∗ = {f1, . . . , fn} be the dual basis of
V ∗, i.e.,

fi(ej) = δij , i, j = 1, . . . , n.

In this situation we abbreviate the set Γ(
m times
︷ ︸︸ ︷
n, . . . , n) as

Γ(n : m) = {γ = (γ(1), . . . , γ(m)) | 1 ≤ γ(i) ≤ n, i = 1, . . . ,m}.

We write V ⊗m or also ⊗m(V ) for the m-fold tensor product V ⊗ · · ·⊗ V .

Theorem 4.23. 1. The set {
∏m

i=1 fα(i) : α ∈ Γ(n : m)} is a basis of M(V, . . . , V ;C).

2. M(V, . . . , V ;C) = (V ∗)⊗m, in other words: there is a tensor map
⊗ : V ∗ × · · ·× V ∗ → M(V, . . . , V ;C) and dimM(V, . . . , V ;C) = nm.

3. M(V ∗, . . . , V ∗;C) = V ⊗m, in other words: there is a tensor map
⊗ : V × · · · × V → M(V ∗, . . . , V ∗;C) and dimM(V ∗, . . . , V ∗;C) = nm.

Proof. (1) We first show that the set S := {
∏m

i=1 fα(i) : α ∈ Γ(n : m)} spansM(V, . . . , V ;C).
For this, first observe that for each eβ = (eβ(1), . . . , eβ(m)) ∈ V ×· · ·×V and β ∈ Γ(n : m),

(
m
∏

i=1

fα(i))eβ =
m
∏

i=1

fα(i)(eβ(i)) = δα,β (4.10)

Let f ∈ M(V, . . . , V ;C). Then we claim we can write f as follows

f =
∑

α∈Γ(n:m)

f(eα)
m
∏

i=1

fα(i)
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where eα = (eα(1), . . . , eα(m)). This works since by (4.10),

⎛

⎝
∑

α∈Γ(n:m)

f(eα)
m
∏

i=1

fα(i)

⎞

⎠ (eβ) =
∑

α∈Γ(n:m)

f(eα)δα,β = f(eβ), β ∈ Γ(n : m)

So f can be written as a linear combination of elements of S.

It remains to show that S is a linearly independent set. Assume

∑

α∈Γ(n:m)

cα

m
∏

i=1

fα(i) = 0.

Then

0 =

⎛

⎝
∑

α∈Γ(n:m)

cα

m
∏

i=1

fα(i)

⎞

⎠ (eβ) =
( ∑

α∈Γ(n:m)

cα

m
∏

i=1

fα(i)(eβ)

︸ ︷︷ ︸

δα,β

)

= cβ for every β ∈ Γ(n : m)

(2) It is easy to see that the map ⊗ : (V ∗)m → M(V, . . . , V ;C) defined by

⊗(g1, . . . , gm) =
m
∏

i=1

gi

is multilinear. From part (1), {
∏m

i=1 fα(i) : α ∈ Γ(n : m)} is a basis of M(V, . . . , V ;C).
So

dimM(V, . . . , V ;C) = |Γ(n : m)| = nm = (dimV )m = (dimV ∗)m.

Therefore, ⊗ is a tensor map and ⟨im⊗⟩ = M(V, . . . , V ;C), i.e. M(V, . . . , V ;C) = ⊗mV ∗.

(3) Analoguous to the proof of (2): We can define ⊗ : V m → M(V ∗, . . . , V ∗;C) by
⊗(v1, . . . , vm) =

∏m
i=1 vi where the latter is defined as follows:

(
m
∏

i=1

vi

)

(g1, . . . , gm) :=
m
∏

i=1

gi(vi)

By Theorem 4.23 (2) and (3), we can say that M(V, . . . , V ;C) is a model for (V ∗)⊗m

and that M(V ∗, . . . , V ∗,C) is a model for V ⊗m.
Another model for V ⊗m is M(V, . . . , V ;C)∗, the dual space of M(V, . . . , V ;C), as we will
see now.

Theorem 4.24. M(V, . . . , V ;C)∗ is a model for ⊗mV , i.e., there is a tensor map ⊗ :
V × · · · × V → M(V, . . . , V ;C)∗ and dimM(V, . . . , V ;C)∗ = nm.
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Proof. For v1, . . . , vm ∈ V define
∏m

i=1 vi ∈ M(V, . . . , V ;C)∗ by

(
m
∏

i=1

vi)f = f(v1, . . . , vm), f ∈ M(V, . . . , V ;C).

From Theorem 4.23 (1), the set {
∏m

i=1 fα(i) : α ∈ Γm,n} is a basis ofM(V, . . . , V ;C). Now
from (4.10), {

∏m
i=1 eα(i) : α ∈ Γ(n : m)} is the dual basis of {

∏m
i=1 fα(i) : α ∈ Γ(n : m)}

and thus is a basis of M(V, . . . , V ;C)∗. Then define ⊗ : V × · · ·× V → M(V, . . . , V ;C)∗

by ⊗(v1, . . . , vm) =
∏m

i=1 vi.

Elements of the vector space M(V, . . . , V ;C) are called contra-variant tensors; ele-
ments of M(V ∗, . . . , V ∗,C) are called covariant tensors.3

The tensor space

V p
q :=

p
︷ ︸︸ ︷

V ⊗ · · ·⊗ V ⊗

q
︷ ︸︸ ︷

V ∗ ⊗ · · ·⊗ V ∗

is called a tensor space of type (p, q) (with covariant type of degree p and with contra-
variant type of degree q). Analoguous to the previous treatment, under some tensor
map, M(V ∗, . . . , V ∗, V, . . . , V ;C) (p copies of V and q copies of V ∗, compare this with
Theorem 4.23) is a model of V p

q as we will indicate now:

Let E = {e1, . . . , en} be a basis of V and let E∗ = {f1, . . . , fn} be the dual basis of
V ∗. Then

{
p
∏

i=1

eα(i)

q
∏

j=1

fβ(j) | α ∈ Γ(n : p),β ∈ Γ(n : q)}

is a basis for

M(V ∗, . . . , V ∗, V, . . . , V ;C) (p copies of V and q copies of V ∗)

Define ⊗ : V × · · ·× V × V ∗ × · · ·× V ∗ → M(V ∗, . . . , V ∗, V, . . . , V ;C) by

⊗(eα(1), . . . , eα(p), fβ(1), . . . , fβ(q)) =
p
∏

i=1

eα(i)

q
∏

j=1

fβ(j)

Then

{eα(1) ⊗ · · ·⊗ eα(p) ⊗ fβ(1) ⊗ · · ·⊗ fβ(q) : α ∈ Γp,n,β ∈ Γq,n}

={e⊗α ⊗ f⊗β : α ∈ Γp,n,β ∈ Γq,n}

is a basis of V p
q .

3contravariant vectors: under a base change using the invertible matrix A, the entries of a contravari-
ant vector change with the inverse A−1 of the matrix of the base change. Under this base change,
covariant vectors change with A.
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Exercises for Section 4.5

1. Define a simple tensor map ! : (V ∗)m → (⊗mV )∗ such that !mV ∗ = (⊗mV )∗.

2. Let M(V1, . . . , Vm;W ) be the set of all multilinear maps from V1 × · · ·× Vm to W .
Prove that dimM(V1, . . . , Vm;W ) = dimW ·

∏m
i=1 dimVi.

4.6 Exterior spaces

In this section, we consider some concrete examples of multilinear maps. The starting
point is the space of multilinear maps (forms) M(V, . . . , V ;K) from m copies of the K-
vector space V to the field K.

We start by considering a specific notion of multiplication, namely one that relates to
area and volume. The basic idea is as follows: Given two vectors v and w, we can form
the parallelogram that they span, and write v ∧ w for something as the “area” of the
parallelogram. This is not quite the usual notion of area, however, because we want to
think of it as not just a single number (in general) but also as having a “two-dimensional
direction” (the same way a single vector v both has a size and a direction). That is, if
we had a parallelogram pointing in a “different direction”, i.e. in a different plane, we
would think of it as different.

What would the properties of v ∧ w be. Scaling the entry v or the entry w scales
the parallelogram, so it should scale its area. So we expect, for scalars c, to have
(cv)∧w = c(v∧w) = v∧ (cw). So the operation ∧ should be bilinear. Another property
of ∧ would be, that for any vector v, v ∧ v should be 0 - if the vectors point in the same
direction, the “parallelogram” they span is just a line segment and has no area. These
are the only two properties we really need.

As before, vector spaces are finite dimensional and defined are over some field K -
mostly over C or over the real numbers R.

Definition 4.25. Let V be a vector space. Then the exterior square (product)
∧2(V )

of V is the quotient of V ⊗ V by the subspace U spanned by the elements v ⊗ v for all
v ∈ V . We write v ∧w for the image of v⊗w under the quotient map V ⊗ V →

∧2(V ).

What does
∧2(V ) look like? First observation (consequence of v ∧ v = 0):

0 = (v +w) ∧ (v + w) = v ∧ v + v ∧w + w ∧ v + w ∧w = v ∧ w + w ∧ v.

So for any v and w, v ∧ w = −w ∧ v. The operation ∧ is thus anti-commutative or
alternating.

In terms of a basis of V , say {ei}i, we have that the set {ei⊗ej}ij is a basis of V ⊗V .
In
∧2(V ), we have ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei. So

∧2(V ) can be spanned by the
elements ei ∧ ej for i < j. We can show that they are linearly independent:

Theorem 4.26. Suppose {ei}i=1,...,n is a basis for V . Then {ei ∧ ej}1≤i<j≤n is a basis
for

∧2(V ). In particular, dim
∧2(V ) =

(
n
2

)

.
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Proof. The idea behind the proof is that
∧2(V ) is the “free” (or “universal”) vector

space in which you can multiply two elements of V in an anti-commutative way, so to
show that the ei ∧ ej (for i < j) are linearly independent, you have to construct some
vector space with such a multiplication in which they are linearly independent.

We define a vector space E as follows: an element of E is a formal linear combination
of symbols eij for i < j. So the set {eij}i<j is a basis of E.
We define a map T : V ⊗ V → E by T (ei ⊗ ej) = eij if i < j, T (ei ⊗ ej) = −eji if i > j,
and T (ei⊗ ei) = 0 and extend it linearly to all of V ⊗V . So T is a linear map. We want
to show that T gives a map S :

∧2(V ) → E; it suffices to show that T (v⊗ v) = 0 for all
v ∈ V . Let v =

∑

ciei; then

v ⊗ v =
∑

ij

cicjei ⊗ ej =
∑

i

c2i ei ⊗ ei +
∑

i<j

cicj(ei ⊗ ej + ej ⊗ ei).

We thus see that T (v ⊗ v) = 0. Hence T gives a map S :
∧2(V ) → E (also a linear

map) which sends ei ∧ ej to eij . Since the eij (for i < j) are linearly independent in E
by construction, this implies that the ei ∧ ej (for i < j) are linearly independent, and
hence a basis.

[Lecture 5, 6.12. 2016]
One thing to note about

∧2(V ) (as we know about
⊗2(V )) is that not every element

is of the form v∧w. For example, if {ei} is a basis of V , dimV ≥ 4, then e1∧e2+e3∧e4
cannot be simplified to a single v ∧ w.

Definition 4.27. Let r ≥ 0 be an integer, and V be a vector space. Then the rth exterior
power of V ,

∧r(V ) is the quotient of V ⊗ · · · ⊗ V (with r factors) by the subspace U
spanned by all tensors v1 ⊗ · · ·⊗ vr for which two of the vi are equal.
Elements of

∧r(V ) are alternating r-tensors or alternating tensors of degree r. Elements
of the form u1 ∧ · · · ∧ ur with ui ∈ V are called simple or decomposable alternating r-
tensors.
The exterior algebra

∧

(V ) is the direct sum
⊕

r≥0

∧r(V ). It is also called the Grassmann
algebra or the alternating algebra.

Remark 4.28. (1) The exterior algebra is an algebra over the field K. This means,
∧

(V ) is a K-vector space with a bilinear product, it is a set with multiplication, addition
and scalar multiplication by elements of the field. (Note that it is finite dimensional,
since we assumed that V is finite dimensional, cf. Theorem 4.31).

(2) All through Chapter 4, we could have worked with modules over a commutative
ring instead (and this is also done when introducing tensor products, exterior product,
etc.), so replacing V and K with a module E over a commutative ring R and considered
r-multilinear maps from Er to the field K. The tensor product E⊗m and the exterior
product

∧r(E) are also modules for R.

By definition, there is an r-multilinear map
∧r : V r →

∧r(V ) (called canonical
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(multilinear map)) obtained from the composition of ⊗ with the quotient:

V r −→ V ⊗r −→ V ⊗r/U =
r
∧

(V ). (4.11)

The map is alternating (should be clear). We also have:

Theorem 4.29 (Unique factorization property of the rth exterior power of a vector
space). Let V and W be vector spaces. If f : V r → W is r-multilinear and alternating,
there exists a unique linear map f ′ :

∧r(V ) → W such that f = f ′ ◦ ∧r, i.e. making the
diagram

V r ∧r !!

f
$$##

##
##

##
##

##
##

#

∧r(V )

f ′

%%
W

commutative.

The proof of this works analoguously as the proofs for the statements about tensor
products (Theorems 4.8 and 4.12), so we could omit it.

Proof. By the the universal property of tensor maps of Theorem 4.8 and by Theo-
rem 4.12, there is a unique linear map f̃ : V ⊗r → W such that f̃(v1 ⊗ · · · ⊗ vr) =
f(v1, . . . , fr). Since f is alternating, f̃ vanishes on the subspace U from Definition 4.27.
Hence it induces f ′ : V ⊗r/U → W is as desired.

V r ⊗ !!

f
$$❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ V ⊗r

f̃
%%

projection !!
∧r(V )

f ′

&&♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

W

This induced map vanishes on the subspace U (spanned by all the tensors with repeated
entry), hence f = f ′ ◦ ∧r.

Corollary 4.30. The space of r-linear alternating maps Altr(V ;W ) = {f : V r → W :
f is alternating} is isomorphic to Hom(∧r(V ),W ). In particular, if W = K, this yields
an isomorphism (∧r(V ))∗ ∼= Altr(V ;K).

Similarly as for r = 2, one can show the following:

Theorem 4.31. Let {ei}i=1,...,n be a basis for V and r ≥ 0. Then
{ei1 ∧ ei2 ∧ · · · ∧ eir}i1<···<ir is a basis for

∧r(V ). In particular, dim
∧r(V ) =

(
n
r

)

.

Proof. The claims can be shown analoguosly as the statements of Theorem 4.26.

Example 4.32. Let V be a vector space with basis {v1, v2, v3, v4}. Then
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basis
∧0(V ) {1}
∧1(V ) {v1, v2, v3, v4}
∧2(V ) {v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4}
∧3(V ) {v1 ∧ v2 ∧ v3, v1 ∧ v2 ∧ v4, v1 ∧ v3 ∧ v4, v2 ∧ v3 ∧ v4}
∧4(V ) {v1 ∧ v2 ∧ v3 ∧ v4}

We now consider special values of r more generally (using Theorem 4.31):

•
∧0(V ) = K, since the “empty” tensor product is K.

•
∧1(V ) = V .

•
∧n(V ) is 1-dimensional, spanned by e1 ∧ · · · ∧ en for any basis {ei}i of V .

• dim
∧r(V ) = 0 if r > n.

Remark 4.33. Note that given any linear map T : V → W between two vector spaces,
we get a linear map

∧r T :
∧r(V ) →

∧r(W ) by setting
∧r T (v1 ∧ · · · ∧ vr) = T (v1) ∧

· · · ∧ T (vr) (and extending linearly to
∧r(V )). To see that this is well-defined, we note

that this map is multilinear and vanishes if there exist i ̸= j with vi = vj. This
can be extended to a map

∧

(T ) :
∧

(V ) →
∧

(W ), by setting
∧

(T )(x1 ∧ · · · ∧ xt) =
T (x1)∧· · ·∧T (xt) for any x1, . . . , xt in V (any t ≥ 0). (The map

∧

(T ) is a homomorphism
of graded K-algebras.)

Now in particular, we can consider the case W = V and r = n = dimV . In this case
we have a map T from V to itself. What is T doing to (n-dimensional) volume in V ?
The space

∧n(V ) is 1-dimensional, so
∧n(T ) is a linear map from a 1-dimensional space

to itself. Any such map is multiplication by some scalar, and this is independent of the
choice of basis of V . This scalar is what T multiplies volumes by, from a geometric point
of view.

Definition 4.34. Let T : V → V be a linear map and n = dimV . Then the determinant
det(T ) is the scalar λ such that

∧n T is multiplication by det(T ) = λ.

Recall that the exterior algebra of V is
∧

(V ) = ⊕m≥0
∧m(V ). It is graded by the

degree of alternating tensors.
Since V is finite dimensional, say of dimension d, we actually have

∧

(V ) =
d
⊕

m=0

m
∧

(V )

and since each
∧m(V ) has dimension

(
d
m

)

, we deduce that

dim(
∧

(V )) =
d
∑

m=0

(
d

m

)

= 2d = 2dim(V ).

[Lecture 7, 16.12. 2016]
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Remark 4.35. There is a linear map µ′ :
∧r(V ) ⊗

∧s(V ) →
∧r+s(V ) induced by the

(bilinear) multiplication map µ :
∧r(V )×

∧s(V ) →
∧r+s(V ) (cf. Definition 4.7), defined

on pairs of decomposable alternating tensors as follows

µ(v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ws) = v1 ∧ · · · ∧ vs ∧ w1 ∧ · · · ∧ ws

and extended to all of
∧r(V )×

∧s(V ). We write µ(x, y) (with x ∈
∧r(V ), y ∈

∧s(V ))
as x ∧ y. :

The multiplication
r
∧

(V )×
s
∧

(V ) →
r+s
∧

(V )

is skew-symmetric in the following sense:

Theorem 4.36. For all α ∈
∧r(V ) and for all β ∈

∧s(V ), we have

β ∧ α = (−1)rsα ∧ β (in
∧r+s(V ))

Proof. Since v ∧ u = −u ∧ v for all u, v ∈ V , the claim follows by induction.

Remark 4.37. Note that α ∧ α = 0 for every simple tensor α = u1 ∧ · · · ∧ un. What
about α ∧ α = 0 for an arbitrary element α ∈

∧

(V )?. If dim(V ) ≤ 3, one checks that
α ∧ α = 0 for all α ∈

∧

(V ) (please convince yourself). In dimension 4, this is not true
anymore, e.g. if {u1, u2, u3, u4} is a basis for V , and if α = u1 ∧ u2 + u3 ∧ u4, we have

α ∧ α =(u1 ∧ u2 + u3 ∧ u4) ∧ (u1 ∧ u2 + u3 ∧ u4)

= · · · = u1 ∧ u2 ∧ u3 ∧ u4 + u3 ∧ u4 ∧ u1 ∧ u2

=2u1 ∧ u2 ∧ u3 ∧ u4

[Lecture 6, 12.12. 2016]
Pairings

Definition 4.38. Let V and W be vector spaces. A pairing is a bilinear map
⟨ , ⟩ : V ×W → K. The pairing is non-degenerate if

⟨v0, w⟩ = 0 ∀w ∈ W =⇒ v0 = 0

⟨v,w0⟩ = 0 ∀v ∈ V =⇒ w0 = 0

An example for a non-degenerate pairing is the so-called evaluation map:

V ∗ × V → K, (f, v) 2→ f(v)

Theorem 4.39. If b : V ×W → K, (v,w) 2→ b(v,w), is a non-degenerate pairing, then
V ∼= W ∗ and W ∼= V ∗
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Proof. Define the map f : V → W ∗ as follows

(f(v))(w) = b(v,w)

This map is linear and

ker f = {v ∈ V : f(v) = 0} = {v ∈ V : b(v,w) = 0 ∀ w ∈ W} = {0}.

(Note that f(v) = 0 means that f(v) is the zero map.) The last equality follows from
the non-degeneracy of the pairing. So dimV ≤ dimW ∗ = dimW . Similarly, define
a linear map g : W → V ∗ by g(w)(v) = b(v,w). Its kernel is also 0. So dimW ≤
dimV ∗, therefore dimV ∗ = dimV = dimW ∗ = dimW and we get that f and g are
isomorphisms.

Corollary 4.40. Let 1 ≤ k ≤ n. The map ⟨·, ·⟩:
∧k(V ∗)×

∧k(V ) → K given by

⟨v∗1 ∧ · · · ∧ v∗k, v1 ∧ · · · ∧ vk⟩ = det (v∗i (vj))

gives a non-degenerate pairing, hence

k
∧

(V ∗) ∼=
k
∧

(V )

(The pairing is defined in simple alternating tensors - and then extended to all of
∧k(V ∗)×

∧k(V ))

Proof. Let b : (V ∗)k × V k → K be (the 2k-linear map) defined (on simple elements) by

b(v∗1 , . . . , v
∗
k, v1, . . . , vk) = det(v∗i (vj)ij)

For fixed (v∗1 , . . . , v
∗
k) in (V ∗)k, b is alternating in the vj ’s. So there is a map b : (V ∗)k ×

∧k(V ) → K with
(v∗1 , . . . , v

∗
k, v1 ∧ · · · ∧ vk) 2→ det(li(vj))

(Theorem 4.29). Similarly, for fixed v1 ∧ · · · ∧ vk in
∧k(V ), b is alternating in the v∗i ’s

(and k-linear), so there exists a pairing b′ :
∧k(V ∗)×

∧k(V ) → K.
To check non-degeneracy, evaluate the pairing on the respective bases. The claim then
follows from Theorem 4.39.

Remark 4.41. Explicitely, every element v∗1 ∧ · · · ∧ v∗k ∈
∧k(V ∗) defines a k-linear

alternating map by setting

v∗1 ∧ · · · ∧ v∗k (v1, . . . , vk) := det(li(vj)ij)

for all (v1, . . . , vk) ∈ V k. In particular,

v∗1 ∧ v∗2 (v1, v2) = v∗1(v1)v
∗
2(v2)− v∗1(v2)v

∗
2(v1).
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Exercises for Section 4.6

1. Identify
∧2(R3) with R3 by identifying e1∧e2 with e3, e2∧e3 with e1 and e3∧e1 with

e2. Show that under this identification, the exterior product v ∧w ∈
∧2(R3) = R3

is the same as the cross product u× w ∈ R3.

2.
Let V have basis {e1, e2} and let T : V → V be given by T (e1) = ae1 + ce2 and
T (e2) = be1 + de2. Compute

∧2 T :
∧2(V ) →

∧2(V ) in terms of this basis. What
is det(T )?

3.
Let Sym2(V ) be the quotient of V ⊗ V by the subspace spanned by elements of
the form v ⊗ w − w ⊗ v. We write vw for the image of v ⊗ w under the quotient
map V ⊗ V → Sym2(V ). If {ei} is a basis for V , show that {eiej}i≤j is a basis for
Sym2(V ).
Hint: imitate the proof of theorem 4.26

4.
Let x ∈

∧r(V ), y ∈
∧s(V ) and z ∈

∧t(V ). Show that (x∧ y)∧ z = x∧ (y∧ z) and
that x ∧ y = (−1)rsy ∧ x where x ∧ y is defined as in Lemma 4.35.

5.
For any vector space V , the vectors u1, . . . , un ∈ V are linearly independent iff
u1 ∧ · · · ∧ un ̸= 0.

4.7 Reminder from linear algebra

4.7.1 Reminder on inner products

Let V be a vector space over C. An inner product on V is a function (·, ·): V × V → C
such that
1. (u, v) = (v, u) for all u, v ∈ V .
2. (α1v1 + α2v2, u) = α1(v1, u) + α2(v2, u) for all vi, u ∈ V , αi ∈ C.
3. (v, v) ≥ 0 for all v ∈ V and (v, v) = 0 if and only if v = 0.

V is then called an inner product space. The norm induced by the inner product is
defined as

∥v∥ =
√

(v, v), v ∈ V

Vectors v with ∥v∥ = 1 are unit vectors. Two vectors u, v ∈ V are orthogonal if (u, v) = 0,
denoted by u ⊥ v. A basis E = {e1, . . . , en} is an orthogonal basis, if the vectors are
pairwise orthogonal. It is orthonormal, if (ei, ej) = δij .
Fact:

Let F := {f1, . . . , fn} be a basis of the C-vector space V . Then there exists a unique
inner product (·, ·) on V such that F is an orthonormal basis. (cf. Problem 7.3 (a))
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Proof of this fact: Let (·, ·) be an inner product with ONB E = {e1, . . . , en}. Define
S ∈ EndV by Sfi = ei. The endomorphism S is invertible. (Why? please give an
argument - e.g. by definition, S has rank n = dimV ). Set T := S∗S > 0. (positive semi-
definiteness, i.e. S∗S ≥ 0, holds for any homomorphism between inner produc spaces.
Positive definiteness, i.e. S∗S > 0, holds for invertible homomorphisms. View S as a
square matrix. Then the adjoint S∗ of S is the complex conjugate transpose of S.) So
⟨u, v⟩ := (Tu, v) is an inner product. (Fact: For T ∈ End V , ⟨u, v⟩ := (Tu, v) defines an
inner product if and only if T is pos. definite w.r.t. (·, ·)). The elements f1, . . . , fn form
an ONB w.r.t. ⟨·, ·⟩. Uniqueness: straightforward.

Exercise:

Let E = {e1, . . . , en} be a basis of V . For any u =
∑n

i=1 aiei and v =
∑n

i=1 biei, show
that (u, v) :=

∑n
i=1 aibi is the unique inner product on V so that E is an orthonormal

basis (cf. Problem 7.3 (b)).

4.7.2 Reminder on adjoints

Let V , W be inner product spaces with inner products (·, ·)V and (·, ·)W respectively. For
each T ∈ Hom(V,W ), the adjoint of T is S ∈ Hom(W,V ) such that (Tv,w)W = (v, Sw)V
for all v ∈ V , w ∈ W and is denoted by T ∗. Clearly, (T ∗)∗ = T .
Fact:

Let W,V be inner product spaces. Each T ∈ Hom(V,W ) has a unique adjoint.

: we can find an ONB w.r.t. (·, ·)V . Let E = {e1, . . . , en} be an ONB of V . Then for
w ∈ W , one defines S ∈ Hom(W,V ) by

Sw :=
n
∑

i=1

(w, Tei)W ei.

etc. And show uniqueness.

And then another fact:
If E and F = {f1, . . . , fm} are ONB’s of the inner product spaces V and W and
T ∈ Hom(V,W ) with matrix A representing T w.r.t. the bases E and F , then T ∗

is represented by A∗ (the complex conjugate transpose of the matrix A), a matrix w.r.t.
the bases F and E.



Notation for Chapters 4 and 5

• Let V and W be vector spaces over the field K. We write Hom(V,W ) for the space
of K-linear maps between V and W (or Homomorphisms between V and W ). We
write End(V ) for Hom(V, V ), the space of endomorphisms of V .

• Cm,n the space of m × n-matrices over C. If R is a ring (with unit), Rm,n is the
space of m× n-matrices over R.

• x ∈ V , V vector space: xT the transpose of x (similar for matrices).

• [x1, . . . , xn] for the matrix formed by the column vectors xi ∈ Cm.

• V m = ×m(V ) = V × · · · × V for the product of m factors of the vector space V .

• M(V1, . . . , Vm,W ) the set of multilinear maps from V1 × · · · × Vm to W .

• The space of r-linear alternating maps, Altr(V ;W ) := {f : V r → W : f is alternating}.

• Let V1, . . . , Vm be K-vector spaces of dimensions n1, . . . , nm. Then we define
Γ(n1, . . . , nm) := {γ : γ = (γ(1), . . . , γ(m)) | 1 ≤ γ(i) ≤ ni, i = 1, . . . ,m}, some-
times abbreviated as Γ. This notation helps enumerating basis vectors of the tensor
product of m vector spaces of dimensions n1, . . . , nm.
If V1 = · · · = Vm =: V we have n1 = · · · = nm = n for n := dimV ; in this case we
just write Γ(n : m):
Γ(n : m) = {γ : γ = (γ(1), . . . , γ(m)), 1 ≤ γ(i) ≤ n, i = 1, . . . ,m}.

• Consider V1 ⊗ · · · ⊗ Vm for C-vector spaces Vi of dimension ni, and where Ei =
{ei1, . . . , eini} is a basis of Vi for i = 1, . . . ,m. Let γ ∈ Γ = Γ(n1, . . . , nm). We
write
e⊗γ for the basis vector e1γ(1) ⊗ · · · ⊗ emγ(m).

For (u1, . . . , um) ∈ V1 × · · ·× Vm we write
u⊗ := u1 ⊗ · · ·⊗ um (which is, by definition, ⊗(u1, . . . , um)).

• V ⊗m = ⊗m(V ) = V ⊗ · · ·⊗ V (m copies of V in the tensor product) and
(V ∗)⊗m = ⊗m(V ∗) = V ∗ ⊗ · · · ⊗ V ∗ (m copies of V ∗).

• Let I be a set. We write P∗(I) for the set of all non-empty finite subsets of I.

59
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• Let R be a ring (with unit), let M be a (left) R-module. We write L(M) for the
lattice of submodules of M .

• N = {0, 1, 2, 3, . . . } = Z≥0.
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