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Lectures by Mihyun Kang

0



Chapter 1

Standard Methods of
Enumerative Combinatorics

1.1 Basics
(hand-written notes to be typed in LaTex)

1
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1.2 Recursions

1.2.1 Recursions
Example 1. Let a sequence (an)n∈N∪{0} of numbers be given by a recursion{

a0 = 0
an+1 = 2an +1, n≥ 0

The sequence begins with 0,1,3,7,15,31, . . .
We add 1 in both side of the latter equation to obtain

an+1 +1 = 2(an +1), n≥ 0.

Then we have an + 1 = 2n(a0 + 1) = 2n and therefore the sequence is explicitly given
by

an = 2n−1, n≥ 0.

Example 2. Let a sequence (an)n∈N∪{0} of numbers be given by a recursion
a0 = 0
a1 = 1
an+2 = an+1 +an, n≥ 0.

This sequence is called Fibonacci sequence and begins with 0,1,1,2,3,5,8,13, . . ..
How can we derive the explicit form of the sequence?

1.2.2 Linear recurrences
Definition 1. We say that a sequence (an)n∈N∪{0} satisfies a k-th order recurrence (or
recursion) if an can be written as

an = f (an−1,an−2, . . . ,an−k), , n≥ k

for a function f : Ck→ C.

First-order linear recurrences
Theorem 1. A first-order linear recurrence with constant coefficients of the form{

a0 = 0
an = cn ·an−1 +dn, n≥ 1,

with ci 6= 0 has an explicit solution,

an = dn +
n−1

∑
i=1

dici+1ci+2 · · ·cn.
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Proof. Divide both sides by cncn−1 · · ·c1:

an

cncn−1 · · ·c1
=

an−1

cn−1cn−2 · · ·c1
+

dn

cncn−1 · · ·c1
.

Change of variables: let
bn =

an

cncn−1 · · ·c1
.

We get the difference relation

bn = bn−1 +
dn

cncn−1 · · ·c1
,

that is,

bn−bn−1 =
dn

cncn−1 · · ·c1
.

Summing up, we get

bn =
n

∑
i=1

di

cici−1 · · ·c1
.

Thus, for an we have

an = cncn−1 · · ·c1 ·

(
n

∑
i=1

di

cici−1 · · ·c1

)

= dn +
n−1

∑
i=1

dici+1ci+2 · · ·cn.

Example 3. Returning to Example 1 we have{
a0 = 0
an+1 = 2an +1, n≥ 0,

so taking ci = 2,di = 1 in Theorem 1 we have

an = 1+
n−1

∑
i=1

2n−i = 1+2n

(
1−
(

1
2

)n−1
)

= 2n−1,

because ∑
n
i=1 ri = r(1−rn)

1−r for any r 6= 1.

Higher order linear recurrences with constant coefficients
Theorem 2. All solutions to the k-th order linear recurrence with constant coefficients

an = c1 ·an−1 + c2 ·an−2 + . . .+ ck ·an−k, n≥ k,

can be expressed as linear combinations of terms of the form

α
n,nα

n,n2
α

n, . . . ,nm−1
α

n

where α is a root of order m of the characteristic polynomial

q(z) = zk− c1 · zk−1− c2 · zk−2− . . .− ck.
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Remark 1. If q(z) = (z−α)m · p(z) for some polynomial p(z) where (z−α) - p(z), i.e.
α is a root of multiplicity m, then q(α) = q′(α) = . . .= q(m−1)(α) = 0.

Proof. Let α be a simple root of q(z) (i.e. the multiplicity is 1) and an = αn. We want
to check that an is a solution to the recurrence, i.e.

0 !
= α

n− c1α
n−1− c2α

n−2− . . .− ckα
n−k

= α
n−k ·

(
α

k− c1α
k−1− . . .− ck

)
= α

n−k ·q(α) = 0.

Let α now be a root of multiplicity of m of q(z). Then, for 0≤ i≤m−1, an = niαn

is a solution to the recurrence because

0 !
= an− c1 ·an−1− c2 ·an−2− . . .− ckan−k

= ni
α

n− c1(n−1)i
α

n−1− c2(n−2)i
α

n−2− . . .ck(n− k)i
α

n−k

= α
n−k ·

(
ni

α
k− c1(n−1)i

α
k−1− . . .− ck(n− k)i

)
= α

n−k ·
(
(n− k)iq(α)+α

(
(n− i)i− (n− k−1)i)q′(α)+

α
2 (b0(n− k)i +b1(n− k−1)i +b2(n− k−2)i)q′′(α)+ . . .

)
= α

n−k ·
(

∑
0≤ j≤i

·
(

∑
0≤`≤ j

b j,0(n− k− `)i
)

q( j)(α)

)
= 0,

because of the previous remark; the b j,` are constants.
Furthermore, a linear combination of αn,n ·αn, . . . ,nm−1αn is also a solution to the

recurrence.
If q(z) has distinct roots α1, . . . ,αs with multiplicities m1, . . . ,m j where m1 + . . .+

ms = k, then a linear combination of all these n j ·αn
i for 0≤ j ≤ m−1, 1≤ i≤ s, i.e.

an =
s

∑
i=1

(
bi,0 +bi,1n+ . . .+bi,m−1nmi−1) ·αn

i

is also a solution to the recurrence.
We claim the opposite is also true. Let s be the set of sequences {a = (an ∈R)n≥0}

and R be the set of solutions to the recurrence. Then R is closed under addition and
scalar multiplication, and R 6= /0. Therefore, R is a vector space.

We claim that R has dimension k. Consider a map f from R to Rk:

f : R→ Rk, a 7→


a0
a1
...

ak−1

 .

This is a linear map and also an isomorphism, because any solution to the recurrence
is uniquely determined by the k initial values. So, R has dimension k.
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Therefore, R is given (generated) by linear combinations of any k linearly indepen-
dent solutions to the recurrence. Now it suffices to show that the set of k solutions
{n jαn

i

∣∣ 1≤ j ≤mi−1,1≤ i≤ s} to the recurrence is linearly independent. But this is
true because these solutions have different orders of growth (in particular at ∞).

Example 4. Returning to Example 2 we consider the Fibonacci sequence{
an = an−1 +an−2, n≥ 2
a0 = 0,a1 = 1.

Its characteristic polynomial is

q(z) = z2− z−1 =

(
z− 1+

√
5

2

)
·

(
z− 1−

√
5

2

)
,

and the solution to the recurrence for an is{
an = c1

(
1+
√

5
2

)n
+ c2

(
1−
√

5
2

)n

a0 = 0,a1 = 1.

From the initial conditions, we get c1 =
1√
5
, c2 =− 1√

5
. The explicit solution to (??) is

an =
1√
5

(
1+
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

.

Example 5. Consider the second order linear recurrence

an = 5an−1−6an−2, n≥ 2

with the initial conditions a0 = 0,a1 = 1.
The characteristic polynomial is

q(z) = z2−5z+6 = (z−2)(z−3).

The solution will be of the form

an = c12n + c23n.

Due to the initial conditions, c1 =−1 and c2 = 1 and the solution is

an =−2n +3n.

This can be solved in Maple as follows:

rsolve({a(n) = 5 * a(n-1) - 6 * a(n-2), a(0) = 0, a(1) = 1}, a(n));

In Mathematica:

RSolve[{a[n] == 5 * a[n-1] - 6 * a[n-2], a[0] == 0, a[1] == 1}, a[n], n]

Exercise 1. Find initial conditions a0,a1,a2 for which the growth rate of the solution
to the recurrence

an = 2an−1 +an−2−2an−3, n≥ 3

is (a) constant, (b) exponential, and (c) fluctuating in sign.
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Higher order linear recurrences with non-constant coefficients
Example 6. Consider the recurrence{

an = nan−1 +n(n−1)an−2, n≥ 2
a0 = 0,a1 = 1.

Divide by n! to receive
an

n!
=

an−1

(n−1)!
+

an−2

(n−2)!
.

Change variables: let bn =
an
n! . Then we get the recurrence{

bn = bn−1 +bn−2, n≥ 2
b0 = 0,b1 = 1.

for the Fibonacci sequence. From Example 4 we have

bn =
1√
5

(
1+
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

.

This yields

an =
n!√

5

((
1+
√

5
2

)n

−

(
1−
√

5
2

)n)
.

Exercise 2. Solve the recurrence{
n(n−1)an = (n−1)an−1 +an−2, n≥ 2
a0 = 0, a1 = 1.

1.2.3 Non-linear recurrences
Example 7. Consider the second order non-linear recurrence{

an =
√

an−1 ·an−2, n≥ 2
a0 = 1, a1 = 2.

We use the logarithm function, since

loga xy = loga x+ loga y.

Let bn = logan. We get {
bn =

1
2 (bn−1 +bn−2) , n≥ 2

b0 = 0, b1 = 1.

This can be solved similar to the previous linear recurrences.
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1.3 Generating Functions

1.3.1 Formal Power Series
Now let us return to Example 1.

Example 8. Let a sequence (an)n∈N∪{0} of numbers be given by a recursion{
a0 = 0
an+1 = 2an +1, n≥ 0

(1.1)

and let z be a formal indeterminate variable.
Multiplying the both side of (1.1) by zn+1 and summing over n∈N∪{0}, we obtain

∞

∑
n=0

an+1zn+1 =
∞

∑
n=0

(2an +1) zn+1.

If it were true that ∑
∞
n=0(2an+1) zn+1 = 2z ∑

∞
n=0 anzn+z∑

∞
n=0 zn, we would obtain

∞

∑
n=1

anzn = 2z
∞

∑
n=0

anzn + z
∞

∑
n=0

zn

Defining A(z) := ∑
∞
n=0 an zn we have

A(z) = 2zA(z)+ z
∞

∑
n=0

zn equiv. (1−2z)A(z) = z
∞

∑
n=0

zn

because a0 = 0. From this we we would further obtain

A(z) ?
=

z
1−2z

∞

∑
n=0

zn ?
=

z
1−2z

· 1
1− z

= 2z
1

1−2z
− z

1
1− z

?
= 2z

∞

∑
n=0

(2z)n − z
∞

∑
n=0

zn

?
=

∞

∑
n=1

(2z)n −
∞

∑
n=1

zn

?
=

∞

∑
n=1

(2n−1) zn

=
∞

∑
n=0

(2n−1) zn,
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if the following were true:

(1−2z)A(z) = z
∞

∑
n=0

zn ?⇐⇒ A(z) =
z

1−2z

∞

∑
n=0

zn (1.2)

∞

∑
n=0

(az)n ?
=

1
1−az

, a ∈K (1.3)

∞

∑
n=0

(2an +1) zn+1 ?
= 2z

∞

∑
n=0

anzn + z
∞

∑
n=0

zn. (1.4)

Summing up, we would have ∑
∞
n=0 an zn = ∑

∞
n=0(2

n−1) zn and therefore an = 2n−1
for every n ∈ N∪{0}, by comparing the coefficients, if (1.2)–(1.4) were true. When
are they true?

Definition 2 (Formal Power Series). Let K denote a commutative ring, usually we take
K= C. Given a sequence (an)n∈N∪{0} with an ∈K and a formal variable z, we call an
infinite sum of the form

A(z) :=
∞

∑
n=0

an zn = ∑
n≥0

an zn

a formal power series. We call an the coefficient of zn in f (z) and use the notation

[zn] A(z) := an.

The ring of formal power series is denoted by K[[z]] and endowed with the operations
of addition and product:(

∞

∑
n=0

an zn

)
+

(
∞

∑
n=0

bn zn

)
:=

∞

∑
n=0

(an +bn) zn (1.5)(
∞

∑
n=0

an zn

)
·

(
∞

∑
n=0

bn zn

)
:=

∞

∑
n=0

(
n

∑
k=0

akbn−k

)
zn (1.6)

We often skip · for the product of two formal power series. As a special case of (1.6)
we have, for any a ∈K,

a

(
∞

∑
n=0

bn zn

)
=

∞

∑
n=0

a bn zn. (1.7)

Given a formal power series A(z) = ∑n≥0 an zn we also define the following alge-
braic operations:

• Differentiation: A′(z) := ∑n≥1 nan zn−1 = ∑n≥0(n+1)an+1 zn.

• Integration:
∫ z

0 A(t)dt := ∑n≥0
an

n+1 zn+1 = ∑n≥1
an−1

n zn.

A formal power series B(z) := ∑
∞
n=0 bn zn is called a reciprocal of a formal power

series A(z) := ∑
∞
n=0 an zn (and vice versa) if A(z)B(z) = B(z)A(z) = 1.
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Propostion 1. A formal power series A(z) := ∑
∞
n=0 an zn has a reciprocal if and only

if a0 6= 0. In that case, the reciprocal is unique and so we denote the reciprocal of A(z)
by 1

A(z) .

Proof. Exercise!

In Example 8 we wished to have

(1−2z)A(z) = 1 ?⇐⇒ A(z) =
1

1−2z
∞

∑
n=0

zn ?
=

1
1− z

,

∞

∑
n=0

(2an +1) zn+1 ?
= 2z

∞

∑
n=0

anzn + z
∞

∑
n=0

zn.

From definition, equality (1− 2z)A(z) = 1 and Proposition 1, A(z) is the (unique)
reciprocal of 1−2z and vice versa, so

(1−2z)A(z) = 1 ⇐⇒ A(z) =
1

1−2z
.

For the second equality ∑
∞
n=0 zn = 1

1−z , we shall show that the reciprocal of the
formal power series A(z) := ∑

∞
n=0 zn is B(z) := 1− z and vice versa. Letting A(z) :=

∑
∞
n=0 an zn with an = 1 for n ≥ 0 and B(z) := ∑

∞
n=0 bn zn with b0 = 1,b1 = −1 and

bn = 0 for n≥ 2, we have

A(z)B(z)
(1.6)
=

∞

∑
n=0

(
n

∑
k=0

akbn−k

)
zn = a0b0 +

∞

∑
n=1

(an−1b1 +anb0) zn = 1.

By proposition 1, A(z) is the unique reciprocal of B(z) and so A(z) = 1
B(z) =

1
1−z , that

is, we have
∞

∑
n=0

zn =
1

1− z

in the ring K[[z]].
Analogously one can show that for any a ∈ K, the reciprocal of the formal power

series A(z) := ∑
∞
n=0(az)n is B(z) := 1− az and vice versa. In other words, for any

a ∈K,
∞

∑
n=0

(az)n =
1

1−az
(1.8)

in the ring K[[z]].
For the third equality ∑

∞
n=0(2an+1) zn+1 = 2z ∑

∞
n=0 anzn+ z∑

∞
n=0 zn, we use (1.5)

and (1.6) to have
∞

∑
n=0

(2an +1) zn+1 (1.5)
=

∞

∑
n=0

2an zn+1 +
∞

∑
n=0

zn+1 (1.6)
= 2z

∞

∑
n=0

anzn + z
∞

∑
n=0

zn.



CHAPTER 1. STANDARD METHODS OF ENUMERATIVE COMBINATORICS10

That is, ∑
∞
n=0(2an +1) zn+1 = 2z ∑

∞
n=0 anzn + z ∑

∞
n=0 zn in the ring K[[z]].

Given a formal power series A(z) = ∑n≥0 an zn and a constant β ∈ K we have the
following properties:

• A(β z)=∑n≥0 anβ n zn, so [zn] A(β z)= anβ n = β nan = β n [zn] A(z) (scaling)

• (A(z)−a0)/z = ∑n≥1 an zn−1 = ∑n≥0 an+1 zn (left shift)

• z A(z) = ∑n≥0 an zn+1 = ∑n≥1 an−1 zn (right shift)

• A(z)/(1− z) = A(z) ·∑n≥0 zn = ∑n≥0
(
∑0≤k≤n ak

)
zn (partial sum)

Example 9. Let us study the recursion for the Fibonacci sequence
a0 = 0
a1 = 1
an+2 = an+1 +an, n≥ 0,

using the generating function A(z) := ∑
∞
n=0 an zn. Multiplying the both side of the

recursion by zn+2 and summing over n ∈ N∪{0}, we obtain

∞

∑
n=0

an+2 zn+2 =
∞

∑
n=0

(an+1 +an) zn+2

⇐⇒
∞

∑
n=2

anzn = z
∞

∑
n=1

an zn + z2
∞

∑
n=0

an zn

⇐⇒ A(z)− z = z A(z) + z2 A(z)

⇐⇒ (1− z− z2) A(z) = z

⇐⇒ A(z) =
z

1− z− z2 =
1

β1−β2

(
1

1−β1z
− 1

1−β2z

)
(1.8)
=

1√
5

(
∞

∑
n=0

(β1z)n−
∞

∑
n=0

(β2z)n

)
(1.7)
=

(
∞

∑
n=0

1√
5

β
n
1 zn−

∞

∑
n=0

1√
5

β
n
2 zn

)
(1.5)
=

∞

∑
n=0

1√
5
(β n

1 −β
n
2 ) zn,

where β1 =
1+
√

5
2 and β2 =

1−
√

5
2 . Therefore we have

an =
1√
5

((
1+
√

5
2

)n

−

(
1−
√

5
2

)n)
, n≥ 0.
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1.3.2 Ordinary and Exponential Generating Functions
Throughout the lecture we take K= C.

Definition 3 (Generating Functions). The ordinary generating function of a sequence
(an)n∈N∪{0} is the formal power series

A(z) :=
∞

∑
n=0

an zn.

The exponential generating function of a sequence (an)n∈N∪{0} is the formal power
series

A(z) :=
∞

∑
n=0

an
zn

n!
.

Definition 4 (Combinatorial Class, Counting Sequence and Generating Function).

• A combinatorial class A is a finite or denumerable set on which a size function
is defined such that the size |α| of an element α is a non-negative integer and the
number of elements of any given size is finite.

• Given a combinatorial class A we denote by An the set of elements in A of size
n for any n ∈ N∪{0}.

• The counting sequence of a combinatorial class A is the sequence (an)n∈N∪{0}
where an is the number of elements in An, which is often denoted by |An|.

• The ordinary generating function of a combinatorial class A is the ordinary gen-
erating function of the sequence of numbers an = |An|. Therefore we have

A(z) :=
∞

∑
n=0

an zn = ∑
α∈A

z|α|.

Notation: [zn]A(z) := an.

• The exponential generating function of a combinatorial class A is the exponen-
tial generating function of the sequence of numbers an = |An|. Therefore we
have

A(z) :=
∞

∑
n=0

an
zn

n!
= ∑

α∈A

z|α|

|α|!
.

Notation: [zn]A(z) := an
n! .

We say the variable z marks the size in the generating function A(z).

Two combinatorial classes are said to be combinatorially equivalent if their counting
sequences are identical.
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Propostion 2. For the product of two exponential generating functions we have(
∞

∑
n=0

an
zn

n!

)
·

(
∞

∑
n=0

bn
zn

n!

)
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
akbn−k

)
zn

n!
.

Proof. Exercise!

Example 10 (Triangulations of Convex Polygon). Let T denote the class of all tri-
angulation of convex polygons with one distinguished edge, in which the size of a tri-
angulation in T is defined as the number of triangles it is composed of. Then T is
a combinatorial class. For n ≥ 1 we let Tn denote the class of all triangulation of
convex polygons of size n and let tn := |Tn|. Set t0 := 1. That is, Tn is the set of all
triangulations of convex (n+ 2)-gons (i.e. with n triangles) with one distinguished
edge.

The sequence (tn)n∈N∪{0} begins with 1,1,2,5,14,42, . . .
By deleting the triangle incident to the distinguished edge we obtain the recursion

tn =
n−1

∑
k=0

tk tn−1−k, n≥ 1.

Let T (z) := ∑
∞
n=0 tn zn be the ordinary generating function of T . Multiplying the

both side of tn = ∑
n−1
k=0 tk tn−1−k by zn and summing over n≥ 1 we have

∞

∑
n=1

tn zn =
∞

∑
n=1

(
n−1

∑
k=0

tk tn−1−k) zn

⇐⇒ T (z)− t0 = z
∞

∑
n=1

(
n−1

∑
k=0

tk tn−1−k) zn−1

⇐⇒ T (z)−1 = z
∞

∑
n=0

(
n

∑
k=0

tk tn−k) zn

T (z)−1 (1.7)
= z T (z)2.

Therefore T (z) satisfies the quadratic equation

z T (z)2−T (z)+1 = 0,

among whose two solutions we choose

T (z) =
1−
√

1−4z
2z

,

because the coefficients of T (z) are non-negative.
From this, we get for n≥ 1:

tn = [zn]T (z) =−1
2
[zn+1]

√
1−4z

rescaling
= − 1

2
(−4)n+1 [zn+1](1+ z)1/2.
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Using the generalised binomial theorem

[zn+1](1+ z)1/2 =

( 1
2

n+1

)
=

1
2

( 1
2 −1

)
· · ·
( 1

2 −n
)

(n+1)!
=

(−1)n ·1 ·3 ·5 · · ·(2n−1)
2n+1(n+1)!

,

we obtain

tn =−
1
2
(−4)n+1 (−1)n ·1 ·3 ·5 · · ·(2n−1)

2n+1(n+1)!
=

1 ·3 ·5 · · ·(2n−1) ·2n

(n+1)!

=
1 ·3 ·5 · · ·(2n−1) ·2 ·4 ·6 · · ·(2n)

(n+1)! n!
=

1
n+1

(
2n
n

)
.

Using Stirling’s formula

n! =
(

1+O
(

1
n

))√
2πn ·

(n
e

)n
,

we can derive the asymptotic number of binary trees

tn =
1

n+1

(
2n
n

)
=

1
n+1

(2n)!
n! n!

∼ 1√
π

4nn−3/2.
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1.4 Symbolic method

1.4.1 Unlabelled combinatorial objects
For a given combinatorial class A , denote by An the set of elements of size n in A ,
and let an = |An|. We say the OGF

A(z) = ∑
n≥0

anzn = ∑
α∈A

z|α|

enumerates A .

Basic constructions and OGF’s

(1) E is the neutral class that consists of a single element of size 0.
The OGF of E is 1.

(2) Z is the atomic class that consists of a single element of size 1.
The OGF of Z is z.

(3) Combinatorial sum (disjoint union) A +B of two combinatorial classes A and
B with A ∩B = /0 is the set of objects consisting of two disjoint copies of A
and B, in which the size of an element α ∈A +B is defined as |α|A if α ∈A
and |α|B if α ∈B (i.e. the size of an element in α ∈A +B is inherited from its
size in its class of origin). In order to formalise A +B we introduce red marker
to A and blue marker to B. The combinatorial sum A +B is a well-defined
combinatorial class. Its OGF satisfies

∑
α∈A +B

z|α| = ∑
α∈A

z|α|+ ∑
α∈B

z|α|.

(4) Cartesian product A ×B of two combinatorial classes A and B is defined as

A ×B = {(α,β )
∣∣ α ∈A ,β ∈B},

in which the size of a pair (α,β ) is defined as |α|+ |β |. The Cartesian product
A ×B is a well-defined combinatorial class. Its OGF satisfies

∑
(α,β )∈A×B

z|(α,β )| = ∑
(α,β )∈A×B

z|α|+|β | = ∑
α∈A

z|α|+ ∑
β∈B

z|β | = A(z) ·B(z).

For any n≥ 1, we define A n = A n−1×A = A ×·· ·×A recursively.

(5) Sequence SEQ(A ) of a combinatorial class A with A0 = /0 that consists of
sequences of elements from A is the infinite sum

E +A +A 2 ++A 3 + . . . .
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Note that the condition A0 = /0 (equiv. a0 = 0) guarantees the finiteness condition
for sizes, and therefore the multiset construction MSET(A ) is a well-defined
combinatorial class. Its OGF satisfies

1+A(z)+A(z)2 +A(z)3 + . . .=
1

1−A(z)
,

where the latter equality is because [z0]A(z) = 0.

(6) Multiset MSET(A ) of a combinatorial class A with A0 = /0 is the collection of
all finite multisets (i.e. repetition allowed) of elements from A , more precisely,
we define

MSET(A ) := SEQ(A )
/

R,

where R is the equivalence class of sequences defined by

(α1, . . . ,αn)∼R (β1, . . . ,βn)

iff there is a permutation σ of [1 . . .n] such that for all 1≤ i≤ n, βi = ασ(i).

For a finite set A , we let α1,α2, . . . be a canonical listing of the elements of A .
Then any multiset can be sorted in such a way that it can be viewed as formed
by a sequence of repeated elements of α1, followed by a sequence of repeated
elements of α2, and so on. It follows that

MSET(A ) = ∏
α∈A

SEQ(α).

Therefore, the OGF of C = MSET(A ) satisfies

C(z) = ∏
α∈A

1
1− z|α|

= ∏
n≥1

(
1

1− zn

)an

,

where the latter equality holds because a0 = 0.

Consider the formal power series

exp(z) := ∑
n≥0

zn

n!
, ln(z) := ∑

n≥1

(−1)n−1

n
(z−1)n.

Applying the exp-ln transformation we have

C(z) = exp
(

ln
(

∏
n≥1

(1− zn)−an
))

= exp
(

∑
n≥1

an ln
( 1

1− zn

))
= exp

(
∑
n≥1

an ∑
k≥1

(zn)k

k

)
= exp

(
∑
k≥1

1
k ∑

n≥1
an(zk)n

)
= exp

(
∑
k≥1

1
k

A(zk)
)

= exp
(

A(z)+
A(z2)

2
+

A(z3)

3
+ . . .

)
.

The case of infinite class A follows by a limit argument.
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(7) Power set PSET(A ) of of a combinatorial class A with A0 = /0 is the collection
of all finite subsets of A (without repetition).

For a finite set A , we have

PSET(A ) = ∏
α∈A

(E +{α}),

because the distributing the products in all possible ways forms all possible com-
binations of elements of A (i.e. the sets of elements from A without repetition).
So, the OGF of C = PSET(A ) satisfies

C(z) = ∏
α∈A

(1+ z|α|) = ∏
n≥1

(1+ zn)an = exp
(

∑
n≥1

an ln(1+ zn)
)

= exp
(

∑
n≥1

an ∑
k≥1

(−1)k−1 znk

k

)
= exp

(
∑
k≥1

(−1)k−1

k
A(zk)

)
= exp

(
A(z)− A(z2)

2
+

A(z3)

3
± . . .

)
.

Applications
Example 11. A binary tree is a combinatorial structure that is recursively defined such
that

• It is either a single external node ◦, or

• it consists of an internal node (the root •) and two binary trees attached to the
root (left tree4` and right tree4r),

◦ or
•

4` 4r

.

Let B denote the class of all binary trees, in which the size of a binary tree is
defined as the number of internal nodes. Then B is a combinatorial class. For n ≥ 0
we let Bn denote the class of all binary trees of size n and let bn := |Bn|. (Note that if
a binary tree has n internal nodes, then it has n+1 external nodes. Thus bn counts the
number of binary trees with n+1 external nodes.)

The sequence (bn)n∈N∪{0} begins with 1,1,2,5,14,42, . . . Let B(z) := ∑
∞
n=0 bn zn be

the ordinary generating function of the combinatorial class B. We have b0 = 1, since

the only tree is ◦ and for n≥ 1,
•

4` 4r

.

Thus its OGF satisfies

B(z) = 1+ zB(z)2.
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The solution for the quadratic equation

zB(z)2−B(z)+1 = 0

is

B(z) =
1±
√

1−4z
2z

.

Since bn ≥ 0, B(z) increases along the real axis and therefore it increases. Thus the
right solution of B(z) is

B(z) =
1−
√

1−4z
2z

.

As in Example 10 we get for n≥ 1:

bn = [zn]B(z) =−1
2
[zn+1]

√
1−4z =

1
n+1

(
2n
n

)
.

Theorem 3 (Number of binary trees). The number bn of binary trees with n internal
nodes (equiv. n+1 external nodes) is given by the so-called Catalan number

bn =
1

n+1

(
2n
n

)
.

Remark 2. Using Stirling’s formula

n! =
(

1+O
(

1
n

))√
2πn ·

(n
e

)n
,

we can derive the asymptotic number of binary trees

bn =
1

n+1

(
2n
n

)
∼ 1√

π
4nn−3/2.

Example 12. Let us return to triangulations of convex polygons we saw in Example 10.
Let Tn be the set of all triangulations of convex (n+2)-gons (n triangles) with one

edge distinguished. Using the basic constructions described above we have

T =
⊎
n≥0

Tn = ∑
n≥0

Tn, T0 = E , T1 = Z .

T0 contains only one edge, T1 one triangle. By removing one edge of the convex
(n+2)-gon, we end up with two separate convex triangulations (sharing one node), so

T = E +T ×Z ×T

T (z) = 1+ zT 2(z),
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among whose two solutions we choose

T (z) =
1−
√

1−4z
2z

,

because the coefficients of T (z) are non-negative.
As in the proof of Theorem 3,

tn = [zn]T (z) =−1
2
[zn+1]

√
1−4z = . . .=

1
n+1

(
2n
n

)
.

This suggests a bijection between binary trees and triangulations, where each node
corresponds to one triangle (or alternatively, the root node of a binary tree B corre-
sponds to the distinguished edge of a triangulation T , and each internal node of B to
a diagonal edge of T , and each external node to the external edges of T except the
distinguished edge of T .

Example 13. Let S be the set of binary strings with no two consecutive 0 bits; for
example, /0,0,1,01,10,11,010,011, . . ..

S = E +{0}+{1}×S +{01}×S .

From the theorem, we get

S(z) = 1+ z+ zS(z)+ z2S(z)

and thus
S(z) =

1+ z
1− z− z2 .

Exercise 3. Let S(z) be as above.

• Find the closed solution form of sn = |Sn|.

• Find a recurrence of sn that leads to S(z).
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1.4.2 Labelled combinatorial objects
A labelled combinatorial class A is a combinatorial class, where each atom carries an
integer label in such a way that all the labels occurring in an object of size n are distinct
and the collection of its labells is the complete integer interval [n].

Given a labelled combinatorial class A , we consider the EGF

A(z) = ∑
n≥0

an
zn

n!
= ∑

α∈A

z|α|

|α|!
.

Basic constructions and EGFs

(1) Neutral class: E . The EGF of E is 1.

(2) Atomic class: Z . The EGF of Z is z.

(3) Disjoint union: A +B. The EGF of A +B is A(z)+B(z).

(4) Labelled product A ∗B of two combinatorial classes A and B is defined as

A ∗B := ∑
α∈A ,β∈B

α ∗β .

Given α ∈A ,β ∈B, let α ∗β denote the set of all pairs (α ′,β ′) where the atoms
of (α ′,β ′) get distinct labels from [n] where n = |α|+ |β |, such that the labelling
preserves the relative order of labels of α,β . There are

(|α|+|β |
|α|

)
possibilities for

such labelling (choose which labels go to the first substructure, then the previous
relative order determines which label belongs to which element). In other words,
if C = A ∗B, C(z) = A(z) ·B(z).

(5) Labelled sequence SEQ(A ) of a combinatorial class A with A0 = /0 is defined
as

SEQ(A ) = E +A +A ∗A + . . .= ∑
k≥0

SEQk(A ),

where SEQk(A ) = A ∗ · · · ∗A is the labelled product of k copies of A . The
EGF of SEQ(A ) satisfies

1+A(z)+A(z)2 +A(z)3 + . . .=
1

1−A(z)
.

(6) Set SET(A ) of a combinatorial class A with A0 = /0 is defined as

SET(A ) := SEQ(A )
/

R,

where R is an equivalence relation such that (α1, . . . ,αn)∼R (β1, . . . ,βn) if there
exists a permutation σ of [n] such that for each 1 ≤ i ≤ n, βi = ασ(i). The EGF
of SET(A ) satisfies

1+A(z)+
A(z)2

2!
+

A(z)3

3!
+ . . .= exp(A(z)).
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(7) Cylces CYC(A ) of a combinatorial class A with A0 = /0 is defined as

CYC(A ) := SEQ(A )
/

S ,

where S is the equivalence relation such that (α1, . . . ,αn) ∼R (β1, . . . ,βn) if
there exists a cyclic permutation σ of [n] such that for each 1≤ i≤ n, βi = ασ(i).
The EGF of SET(A ) satisfies

1+A(z)+
A(z)2

2
+

A(z)3

3
+ . . .= log

1
1−A(z)

.

Example 14 (Plane trees, ordered trees). Plane trees are the trees embedded in the
plane, so that subtrees attached to each vertex are ordered, say from left to right. There
is a root vertex, implicitly defined; to a root vertex, subtrees are attached in a specified
order.

•

4 4 4 ·· ·
ordered

So,
P = Z ∗SEQ(P).

The generating function is then

P(z) = z · 1
1−P(z)

.

This is a quadratic equation. As previously, since P(z) increases along the real axis,
the negative solution is the correct one,

P(z) =
1−
√

1−4z
2

= z ·B(z),

where B(z) is the OGF of binary trees.
Let pn be the number of plane trees on n vertices, and bn the number of binary

trees on n+ 1 external nodes, so pn+1 = bn. P(z) = zB(z) suggests that there is a
combinatorial bijection between plane trees on n+1 vertices and binary trees on n+1
external nodes.

Exercise 4. Find such a bijection between plane trees and binary trees.

Example 15 (2-regular graphs). Let R be the set of all 2-regular labelled graphs,
i.e. each vertex has exactly 2 neighbours. Note that connected 2-regular graphs are
undirected cycles of length ≥ 3.

R = SET(connected 2-regular graphs) = SET(UCYC≥3(Z )),
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where UCYC is the undirected cyclic construction. Then, the generating function is

R(z) = exp(UCYC≥3(z)) =
e−z/2−z2/4
√

1− z
,

since the generating function for UCYC≥3(Z ) is 1
2

(
log( 1

1−z )− z− z2

2

)
.

How can we derive [zn]R(z)?
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1.5 Analytic Methods

1.5.1 Analytic functions
Definition 5. Let Ω⊂ C be a region (i.e. open and connected). A function f : Ω→Ω

is called complex differentiable at z0 ∈Ω, if

lim
z→z0

f (z)− f (z0)

z− z0

exists. It is called holomorphic in Ω if f is holomorphic for every point in Ω.

Definition 6. Let Ω⊂C be a region. A function f : Ω→Ω is called analytic at z0 ∈Ω

if ∃ε > 0 such that ∀z ∈ Bε(z0), f (z) is representable by a convergent power series
expansion around z0

f (z) = ∑
n≥0

cn(z− z0)
n, for some cn ∈ C.

It is called analytic in Ω if f is analytic for every point in Ω.

Theorem 4. Let Ω⊂ C be a region. A function f : C→ C is holomorphic in Ω iff it is
analytic in Ω.

Definition 7. Let Ω ⊂ C be a region and f : Ω→ Ω be holomorphic at z0 ∈ Ω. Set
f (0)(z0) := f (z0). Then the power series

f (z) = f (z0)+ f ′(z0)z+
f ′′(z0)

2!
z2 + . . .= ∑

n≥0

f (n)(z0)

n!
zn

is called the Taylor series expansion of f (z) around z0.

Exercise 5. Find the maximum regions, in which the functions z 7→ ez, z 7→ 1
1−z , z 7→

(1+z)m (for fixed m∈N) are analytic. Show that their Taylor series expansions around
the origin are given by

ez = ∑
n≥0

zn

n!
,

1
1− z

= ∑
n≥0

zn, (1+ z)m = ∑
n≥0

(
m
n

)
zn.

Exercise 6. Find the Taylor series expansions of

1√
1−4z

, sinz, cosz, z · ez, lnz,
1

1− z
ln

1
1− z

,
1√

1− z
ln

1
1− z

around the origin and find the maximum regions where these power series converge.

Exercise 7. Prove

∑
n≥m

(
n
m

)
zn =

zm

(1− z)m+1 .
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Exercise 8. Prove

∑
n≥0

Hnzn =
1

1− z
ln

1
1− z

.

Exercise 9. Find OGF for each of the following sequences:

{2n+1}n≥0, {n2n+1}n≥0, {nHn}n≥1, {n3}n≥2.

1.5.2 Cauchy’s coefficient formula
Theorem 5 (Cauchy’s coefficient formula, 1st version). Let Ω ⊂ C be a region, f be
analytic in Ω and γ be a simple loop in Ω. Then∫

γ

f = 0.

Theorem 6 (Cauchy’s coefficient formula, 2nd version). Let Ω⊂C be a region and f
be analytic in Ω. Let z0 ∈ Ω and γ be a simple loop encircling z0 such that the image
of γ is contained in Ω. Then

f (z0) =
1

2πi

∫
γ

f (z)
z− z0

dz.

In general, for n≥ 1
f (n)(z0)

n!
=

1
2πi

∫
γ

f (z)
(z− z0)n+1 dz.

1.5.3 Lagrange Inversion Theorem
Theorem 7 (Langrange Inversion, 1st version). Let φ(u)=∑k≥0 φkuk be a power series
in C[[u]] with φ0 6= 0. Then the equation

A = zφ(A)

admits a unique solution in C[[z]] and the coefficients of

A(z) = ∑
n≥0

anzn

are given by

an =
1
n
[un−1]φ(u)n.

Furthermore, for any function H,

[zn]H(A(z)) =
1
n
[un−1]

(
H ′(u)φ(u)n) .

In particular, for k ≥ 1,

[zn]A(z)k =
k
n
[un−k]φ(u)n.
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Theorem 8 (Langrange Inversion, 2nd version). Let the generating function

A(z) = ∑
n≥0

anzn

satisfy the functional equation
z = ψ(A(z)),

where ψ(0) = 0 but ψ ′(0) 6= 0 (i.e. ψ is the compositional inverse of A).
If

ψ(A) =
A

φ(A)
,

i.e. A = ψ(A) ·φ(A) = zφ(A), then

an =
1
n
[zn−1]φ(z)n =

1
n
[zn−1]

(
z

ψ(z)

)n

.

Application of Lagrange Inversion to Binary Trees
Let B̃ denote the class of all binary trees, in which the size of a binary tree is defined
as the total number of all vertices (internal nodes and leaves alike). For n ≥ 1 we let
B̃n denote the class of all binary trees of size n and let b̃n := |B̃n| and set b̃0 = 0.

Let B̃(z) be the ordinary generating function of the combinatorial class B̃. Then

B̃(z) = z + z B̃(z)2 (1.9)

Let B̃ = B̃(z) and φ(u) := 1+u2. Then (1.9) can be rewritten as

B̃ = z φ(B̃) (1.10)

Note that φ(u) := 1+u2 = ∑
∞
k=0 φk uk is a formal power series in the ring C[[u]] with

φ0 = 1 6= 0. Therefore by Lagrange Inversion Theorem, the equation (1.12) admits a
unique solution in the ring C[[u]] whose coefficients are given by B̃(z) =:= ∑

∞
n=0 b̃n zn,

where

b̃n =
1
n
[un−1] φ(u)n

=
1
n
[un−1] (1+u2)n

=
1
n
[un−1]

(
n

∑
k=0

(
n
k

)
u2k

)

=

{
0 if n is even
1
n

( n
n−1

2

)
if n is odd.

In other words, we have, for any n ∈ N,

b̃2n+1 =
1

2n+1

(
2n+1

n

)
=

1
n+1

(
2n
n

)
.
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Remark 3. Recall that bn was defined in Theorem 3 as the number of binary trees of
size n, in which the size of a binary tree is defined as the number of internal nodes. If a
binary tree has n internal nodes, then it has n+1 external nodes and therefore 2n+1
vertices in total. Thus we have b̃2n+1 = bn.

Application of Lagrange Inversion to Labelled Trees
Definition 8. A tree is a connected graph without cycles.

• A labelled tree (also called Cayley tree) is a tree whose vertices are distinctly
labelled by numbers in N. The vertices of a Cayley tree on n vertices are labelled
by distinct numbers from [n].

• A rooted labelled tree on n vertices is a labelled tree on n vertices, in which one
vertex is distinguished by a mark from the other vertices.

Let C denote the class of all labelled trees, in which the size of a tree is defined
as the number of vertices, and let Cn denote the class of all Cayley tree on n vertices.
Then C is a combinatorial class. For n ≥ 1 we let cn := |Cn| and set c0 = 0. Let
C(z) := ∑

∞
n=0 cn

zn

n! be the exponential generating function of the combinatorial class
C . The sequence (cn)n≥0 begins with 0,1,1,3,16,125 . . .

Theorem 9 (Cayley’s formula (Cayley 1889)).

cn = nn−2, n≥ 2.

Proof. Let T denote the class of all rooted labelled trees (i.e. the set of all Cayley trees
in C , in which one vertex is distinguished by a mark from the other vertices) and let
Tn denote the class of all rooted labelled tree on n vertices. For n≥ 1 we let tn := |Tn|
and set t0 = 0. Because there are n ways to choose a root vertex of a labelled tree on n
vertices, the number of Cayley trees on n vertices is equal to tn = n cn.

Let T (z) := ∑
∞
n=0 tn zn

n! be the exponential generating function of the combinatorial
class T .
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•

4 4 4 ·· ·
not ordered

T = Z ∗SET(T ).

Its EGF

T (z) = z exp(T (z)). (1.11)

So T (z) is implicitly defined.
Let T = T (z) and φ(u) := exp(u) = ∑k≥0

uk

k! . Then (1.11) can be rewritten as

T = z φ(T ) (1.12)

Note that φ(u) := exp(u) = ∑
∞
k=0 φk uk is a formal power series in the ring C[[u]] with

φ0 = 1 6= 0. Therefore by Lagrange Inversion Theorem, the equation (1.12) admits a
unique solution in the ring C[[u]] whose coefficients are given by T (z) = ∑

∞
n=0 tn zn,

where

tn =
1
n
[un−1] φ(u)n =

1
n
[un−1] (exp(u))n =

1
n
[un−1] exp(un)

=
1
n
[un−1]

(
∞

∑
k=0

(un)k

k!

)
=

1
n

nn−1

(n−1)!
=

nn−1

n!
.

In other words, for any n ∈ N,

tn = nn−1.

Therefore, we have

cn =
tn
n
= nn−2.

Remark 4. There are several interesting proofs for this in The Book by M. Aigner and
G. Ziegler. We shall see one proof in Part III, Section 2.3.4.

1.5.4 Singularities
Definition 9. Let f be an analytic function in a region Ω and z0 be a point on the
boundary of Ω.

We say f is analytically continuable at z0 if there is an analytic function g defined
in a region Ω′ containing z0 such that g(z) = f (z) in Ω∩Ω′.

Example 16. f (z) = 1
1−z is analytic for |z|< 1, and is analytically continuable except

for z0 = 1.



CHAPTER 1. STANDARD METHODS OF ENUMERATIVE COMBINATORICS27

Definition 10. A function f is said to be singular at z0 ∈Ω or z0 is called a singularity
of f if f is not analytically continuable at z0.

Theorem 10 (Boundary singularities). Let f be analytic at the origin and let R be the
finite radius of convergence of a power series expansion of f at the origin. Then f has
necessarily a singularity on the boundary of the disc of convergence.

Theorem 11 (Pringsheim’s Theorem). Let f be analytic at the origin and f (z) =
∑n≥0 fnzn be its convergence power series expansion at the origin with the radius of
convergence R. If fn ≥ 0,∀n≥ 0, then the point z = R is a singularity of f ; in this case
we call z = R the dominant singularity of f .

Remark 5. The radius R of convergence of ∑ fnzn is

R =
1

limsupn→∞ | fn|
1
n
,

so we have
fn = R−n

θ(n),

where
limsup

n→∞

|θ(n)|
1
n = 1.

1.5.5 Meromorphic functions
Definition 11. A function f (z) is meromorphic at z0 if ∀z in a neighbourhood Bε(z0)
of z0 with z 6= z0, it can be represented as

f (z) =
h(z)
g(z)

,

where h(z) and g(z) are analytic at z0. In this case f (z) admits an expansion of the form

f (z) = ∑
n≥−M

fn(z− z0)
n

for z ∈ Bε(z0). If f−M 6= 0, M ≥ 1, we say f (z) has a pole of order M at z0. In this case,
we have

f (z) = f−M(z− z0)
−M +O((z− z0)

−M+1)

= f−M(−z0)
−M
(

1− z
z0

)−M

+O

((
1− z

z0

)−M+1
)
.

Remark 6. Scaling rule: If f (z) is singular at z0, then g(z) = f (z0z) is singular at
1. If z0 > 0 is the dominant singularity of f (z), then f (z) admits a convergent series
expansion

f (z) = ∑
n≥0

fnzn, |z|< z0.

Therefore, g(z) admits a convergent series expansion

g(z) = ∑
n≥0

gnzn, |z|< 1, gn = fnzn
0.
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1.5.6 Newton’s generalised binomial theorem
For any α ∈ C,

[zn](1− z)−α =

(
−α

n

)
?
=

(
n+α−1

α−1

)
?
= Θ(nα−1).

Theorem 12. Let α ∈ C\Z≤0.

[zn](1− z)−α =
nα−1

Γ(α)

(
1+O

(
1
n

))
,

where the Γ-function is defined as

Γ(α) =
∫

∞

0
e−ttα−1 dt.

Properties of the Gamma function

Γ

(
1
2

)
=
∫

∞

0
e−tt−

1
2 dt =

√
π.

{
Γ(t +1) = t Γ(t)
Γ(1) = 1.

For n ∈ N,
Γ(n+1) = nΓ(n) = . . .= n!.

1.5.7 Transfer theorem
Definition 12. Given two numbers R,φ with R > 1 and 0 < φ < π

2 , then the set

∆ = ∆(R,φ) = {z
∣∣ |z|< R,z 6= 1, |arg(z−1)|> φ}

is called ∆-domain at 1.
A function f is called ∆-analytic at 1 if it is analytic at some ∆-domain at 1.

•
0

•
1
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Theorem 13 (Transfer theorem). Let α ∈ C\Z≤0 and f (z) is ∆-analytic at 1.
If f (z) = O((1− z)−α), then

[zn] f (z) = O(nα−1).

If f (z) = o((1− z)−α), then

[zn] f (z) = o
(
nα−1) .

Therefore, if f (z) = (1− z)−α +o((1− z)−α), then

[zn] f (z) =
nα−1

Γ(α)

(
1+O

(
1
n

))
+o(nα−1).

Example 17 (2-regular graphs). Consider the EGF of 2-regular graphs,

G = SET(UCYC≥3Z ).

Then

G(z) = exp
(

1
2

(
log
(

1
1− z

)
− z− z2

2

))
=

1√
1− z

e−
z
2−

z2
4 .

1√
1−z

is analytic in C\ [1,∞). G(z) is in particular ∆-analytic at 1.

To derive the singular expansion of G near 1, we use Taylor expansion of e−
z
2−

z2
4

at 1.

h(z) = e−
z
2−

z2
4 = h(1)+h′(1)(z−1)+

h′′(1)
2

(z−1)2 + . . .

= e−
3
4 + e−

3
4 (1− z)+ e−

3
4 (z−1)2 + . . .

The singular expansion of G(z) near 1 is

G(z) =
e−

3
4

√
1− z

+ e−
3
4 (1− z)

1
2 + e−

3
4 (1− z)

3
2 + . . .

= e−
3
4 (1− z)−

1
2 +o

(
(1− z)−

1
2

)
. (z→ 1)

Using the transfer theorem, we get

[zn]G(z) = e−
3
4

n−
1
2

Γ
( 1

2

) (1+O
(

1
n

))
+o
(

n−
1
2

)
=

e−
3
4

√
nπ

(1+o(1)) .

The first term corresponds to h(1), the second is from the theorem.
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1.5.8 Multiple singularities
Theorem 14. Let f (z) be analytic in |z| < ρ . Suppose that f has a finite number of
singularities on the circle |z|= ρ , at points ρ j = ρ ·eiθ j for j = 1, . . . ,m. Assume there
exists a ∆-domain ∆0 such that f (z) is analytic in the region

D =
m⋂

j=1

ρ j∆0,

where ρ j∆0 is the dilation (rotation) of the ∆0-domains for each ρ j.

•0 •
ρ1

•ρ2

•
ρm

· · ·

D

Let
S = {(1− z)−α

∣∣ α ∈ C\Z≥0}.

Assume there exists m functions g1(z), . . . ,gm(z) and each is a linear combination of
the functions in S, and there exists a function h(z) = (1− z)−α0 such that

f (z) = g j

(
z

ρ j

)
+O

(
h
(

z
ρ j

))
as z→ ρ j in D.

Then

[zn] f (z) =
m

∑
j=1

(
[zn]g j

(
z

ρ j

)
+O

(
[zn]h

(
z

ρ j

)))
=

m

∑
j=1

ρ
−n
j [zn]g j(z)+O

(
ρ
−n
j nα0−1

)
.

Remark 7.

[zn]g j(z) = [zn]
`

∑
k=1

(1− z)−α j,k =
`

∑
k=1

nα j,k−1

Γ(α j,k)
.

Remark 8 (Recipe for singularity analysis).

• Find the grammar that determines the class and the corresponding generating
function

• Locate the singularities
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• Check the ∆-analyticity of the generating function

• Singular expansion at each singularity separately

• Extract and sum the asymptotics using the Transfer Theorem and basic scaling.

Example 18. Let P be the class of permutations with cycles of odd length. Then

P = SET(A (Z )),

A (Z ) = CYCodd(Z ).

For the generating functions, this means

A(z) = ∑
k=odd

zk

k
=

1
2

log
1+ z
1− z

,

P(z) = eA(z) = exp
(

1
2

log
1+ z
1− z

)
=

√
1+ z
1− z

.

The dominating singularities of this function are {±1}.
P(z) is ∆-analytic in the region D = ∆0 ∩ (−1)∆0 since

√
1− z is analytic in C \

[1,∞) and
√

1+ z is analytic in C\ (−∞,−1].
Singular expansions:

P+(z) =
g(1)√
1− z

+
g′(1)(z−1)√

1− z
+ . . . (z→+1 in D)

=

√
2√

1− z
−2−

3
2
√

1− z+O
(
(1− z)

3
2

)
P−(z) =

1√
2

√
1+ z+O

(
(1+ z)

3
2

)
. (z→−1 in D)

Extract asymptotics:

[zn]P(z) =
2

1
2

Γ
( 1

2

)n−
1
2 − 2−

3
2

Γ
(
− 1

2

)n−
3
2 +O

(
n−

5
2

)
+

2−
1
2

Γ
( 1

2

)n−
3
2 +O

(
n−

5
2

)
where Γ( 1

2 ) =
√

π , Γ(− 1
2 ) =−2

√
π .
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2.1 Matchings, Eulerian Tour and Hamiltorian Cycles

2.1.1 Basic Terminologies

2.1.2 Matchings

2.1.3 Eulerian Tours

2.1.4 Hamiltorian Cycles
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2.2 Graph Decompositions

2.2.1 Connected Graphs

2.2.2 2-Connected Graphs

2.2.3 3-Connected Graphs
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2.3 Planar Graphs and Trees

2.3.1 Embedding of Graphs in the Plane

2.3.2 Euler’s Formula and its Applications

2.3.3 Properties of Trees

2.3.4 Prüfer Code
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2.4 Stochastic Aspects – Random Graphs

2.4.1 Binomial Random Graphs

2.4.2 Useful Inequalities

2.4.3 Ramsey Number and First Moment Method

2.4.4 Independence Number and Deletion Method

2.4.5 Subgraphs and Second Moment Method
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