DISCRETE AND ALGEBRAIC STRUCTURES, WS 2016/17

Exercise Sheet 9

Problems due 16.12.2016
(9.1) (1) Let $E_{i}=\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ be a basis of $V_{i}, i=1, \ldots, m$. Define $\varphi:\left(V_{1} \otimes \cdots \otimes V_{k}\right) \times\left(V_{k+1} \otimes \cdots \otimes V_{m}\right) \rightarrow V_{1} \otimes \cdots \otimes V_{m}$ by $\varphi\left(e_{1 i_{1}} \otimes \cdots \otimes e_{k i_{k}}, e_{k+1 i_{k+1}} \otimes \cdots \otimes e_{m i_{m}}\right)=e_{1 i_{1}} \otimes \cdots \otimes e_{m i_{m}}$ (with bilinear extension). Show that φ is the tensor map satisfying

$$
\varphi\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \cdots \otimes v_{m}
$$

(2) (Show that $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}=0$ - tensor products of modules over rings!)
(9.2) Let U, V, W be vector spaces over \mathbb{C}. Show that there is an isomorphism
$(U \oplus V) \otimes W \cong(U \otimes W) \oplus(V \otimes W)$ sending $(u \oplus v) \otimes w$ to $(u \otimes w) \oplus(v \otimes w)$
(9.3) (1) Let V be a complex vector space. Show that there is an isomorphism

$$
V \otimes \mathbb{C} \cong V
$$

(2) Let V be a complex vector space. Let W be a complex vector space of dimension n. Show that

$$
V \otimes W \cong \underbrace{V \oplus \cdots \oplus V}_{n \text { copies }}
$$

(9.4) (1) Let $K[x]$ be the polynomials in x over the field $K, K[x, y]$ be the polynomials over K in x and y. Show that

$$
K[x] \otimes K[y] \cong K[x, y] \quad \text { via } f(x) \otimes g(y) \mapsto f(x) g(y)
$$

(2) Show that $V \otimes W \cong W \otimes V$ naturally (i.e. independent of the choice of basis).

