Exercise Sheet 8

Problems due 9.12.2016
(8.1) (1) Set $\Gamma_{n: m}:=\{\alpha: \alpha=(\alpha(1), \ldots, \alpha(m)), 1 \leq \alpha(i) \leq n, i=1, \ldots, m\}$ (this is equal to $\Gamma(n, \ldots, n)$ with m factors in the lecture notes). Prove that $\prod_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\sum_{\gamma \in \Gamma_{m, n}} \prod_{i=1}^{m} a_{i \gamma(i)}$
(2) Let $v_{1}, \ldots, v_{k} \in V$ and $A \in \mathbb{C}_{k \times k}$. Suppose $A A^{T}=I_{k}$ (identity matrix) and $u_{j}=\sum_{i=1}^{k} a_{i j} v_{i}, j=1, \ldots, k$.
Prove that $\sum_{i=1}^{k} u_{i} \otimes u_{i}=\sum_{i=1}^{k} v_{i} \otimes v_{i}$.
(8.2) Suppose that the multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ has the universal factorization property. Let $T=T(\psi)$ in the diagram of the definition of the universal factorization property (Definition 3.7).
Show that the linear map T (in the universal factorization property) is unique if and only if $\langle\operatorname{Im} \varphi\rangle=P$.
(8.3) Let $z \in U \otimes V$ so that z can be represented as $z=\sum_{i=1}^{k} u_{i} \otimes v_{i}$. Prove that if k is the smallest number among all such representations, then both $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets.
(8.4) (1) Let $E_{i}=\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ be an ONB of $V_{i}, i=1, \ldots, m$. Let $E:=$ $\left\{e_{\gamma}^{\otimes}:=e_{1 \gamma(1)} \otimes \cdots \otimes e_{m \gamma(m)}: \gamma \in \Gamma\right\}$ be the corresponding basis of $V_{1} \otimes \cdots \otimes V_{m}$. For $u:=\sum_{\gamma \in \Gamma} a_{\gamma} e_{\gamma}^{\otimes}$ and $v:=\sum_{\gamma \in \Gamma} b_{\gamma} e_{\gamma}^{\otimes}$ define

$$
(u, v):=\sum_{\gamma \in \Gamma} a_{\gamma} \overline{b_{\gamma}}
$$

Check that E is an ONB w.r.t. this inner product.
(2) Define $\otimes: \mathbb{C}^{k} \times \mathbb{C}^{n} \rightarrow \mathbb{C}_{k \times n}$ by $x \otimes y:=x y^{T}$. Let \mathbb{C}^{k} and \mathbb{C}^{n} be equipped with the standard inner products.
Prove that for any $A, B \in \mathbb{C}_{k \times n}=\mathbb{C}^{k} \otimes \mathbb{C}^{n}$, the induced inner product is given by

$$
(A, B)=\operatorname{tr}\left(B^{*} A\right)
$$

(Notation: $\operatorname{tr}\left(B^{*} A\right)$ is the trace of the square matrix $B^{*} A$)

