Exercise Sheet 7

Problems due 2.12.2016 (you might need the 3rd lecture for 7.3 and 7.4)
(7.1) (1) Let V_{1}, \ldots, V_{m}, W and W^{\prime} be \mathbb{C}-vector spaces.

Prove that if $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is multilinear and $T: W \rightarrow W^{\prime}$ is linear, then $T \circ \varphi$ is multilinear.
(2) Let $V_{1}, \ldots, V_{m}, W_{1}, \ldots, W_{m}$ and W be \mathbb{C}-vector spaces.

Let $\varphi: W_{1} \times \cdots \times W_{m} \rightarrow W$ be multilinear and $T_{i}: V_{i} \rightarrow W_{i}$ linear for all i.
Define $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ by $\psi\left(v_{1}, \ldots, v_{m}\right)=\varphi\left(T_{1} v_{1}, \ldots, T_{m} v_{m}\right)$. Show that ψ is multilinear.
(7.2) (1) Assume that the determinant function det: $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ is defined via the Leibniz formula, for $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and S_{n} the permutations of n elements and sgn the signum of a permutation

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}
$$

Show that det is multilinear but that for $n>1$, it is not a tensor map, i.e. that $\operatorname{dim}\langle\operatorname{im}(\operatorname{det})\rangle<\prod_{i=1}^{n} \operatorname{dim}\left(\mathbb{C}^{n}\right)$.
(2) Define $\varphi: \mathbb{C}^{m} \times \mathbb{C}^{n} \rightarrow \mathbb{C}_{m \times n}$ by $\varphi(x, y)=x y^{T}$. Show that φ is multilinear and that it is a tensor map.
(7.3) Let V be a vector space over \mathbb{C}. An inner product on V is a function (\cdot, \cdot) : $V \times V \rightarrow \mathbb{C}$ such that

1. $(u, v)=\overline{(v, u)}$ for all $u, v \in V$.
2. $\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}, u\right)=\alpha_{1}\left(v_{1}, u\right)+\alpha_{2}\left(v_{2}, u\right)$ for all $v_{i}, u \in V, \alpha_{i} \in \mathbb{C}$.
3. $(v, v) \geq 0$ for all $v \in V$ and $(v, v)=0$ if and only if $v=0$.
(1) Let $F:=\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of the \mathbb{C}-vector space V. Then there exists a unique inner product (\cdot, \cdot) on V such that F is orthonormal.
(2) Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V. For any $u=\sum_{i=1}^{n} a_{i} e_{i}$ and $v=$ $\sum_{i=1}^{n} b_{i} e_{i}$, show that $(u, v):=\sum_{i=1}^{n} a_{i} \overline{b_{i}}$ is the unique inner product on V so that E is an orthonormal basis.
(7.4) Let V be a \mathbb{C}-vector space and $V^{*}=\operatorname{Hom}(V, \mathbb{C})$.
(1) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V with inner product (\cdot, \cdot). Show that $\left\{f_{1}, \ldots, f_{n}\right\}$ is a dual basis to it (this means that $f_{i}\left(e_{j}\right)=\delta_{i j}$ for all $i, j)$ if and only if $f_{j}(v)=\left(v, e_{j}\right)$ for all $v \in V$ and $j=1, \ldots, n$.
(2) Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of V^{*}. Show that if $v \in V$ is a vector with $f_{j}(v)=0$ for all j, then $v=0$.
