Exercise Sheet 6

Problems due 25.11.2016
(6.1) Let G be a graph on n vertices. Prove that it contains an independent set of size $\frac{n}{2 d(G)}$.
Hint: choose a random subset S of the vertices of G by putting vertices into S independently with some suitable probability. Determine the expected number of vertices in S and of edges in $G[S]$. If $G[S]$ has much more vertices than edges, how do we obtain an independent set from S ?
(6.2) Let X be a random variable and let $t>0$. Suppose that X only takes non-negative values. Prove Markovs inequality

$$
\mathbb{P}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Show that the inequality is false for general X by constructing a random variable with non-negative expectation for which the inequality fails for all values of t.
(6.3) Let X be a random variable and let $t>0$. Prove Chebyshev's inequality

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq t] \leq \frac{\operatorname{Var}[\mathrm{X}]}{t^{2}}
$$

where $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}[X]^{2}-\mathbb{E}\left[X^{2}\right]$.
(6.4) Denote by $G(n, n, p)$ the random bipartite graph defined as follows. The vertex set is $[2 n]=A \dot{\cup} B$ for $A=[n]$ and $B=\{n+1, \ldots, 2 n\}$. Independently for each $a \in A$ and $b \in B$, the edge $\{a, b\}$ is in $G(n, n, p)$ with probability p. Prove that
$[\mathbb{P}(n, n, p)$ contains a cycle of length 4$] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } p=o\left(\frac{1}{n}\right) \\ 1 & \text { if } p=\omega\left(\frac{1}{n}\right)\end{cases}$

