Exercise Sheet 4

Problems due 11.11.2016
(4.1) (a) Prove Halls theorem that a bipartite graph with $V=A \dot{\cup} B$ has a matching covering if and only if

$$
|N(S)| \geq|S| \quad \text { for every } S \subseteq A
$$

(b) Give an example that shows that Hall's theorem fails for graphs with infinitely many vertices.
(4.2) (a) Show that every connected graph G on n vertices contains a path of length $\min \{2 \delta(G), n-1\}$.
(b) Let G be a connected graph with at least 3 vertices and let e be an edge of G. Prove that G^{3} has a Hamiltonian cycle that uses e.
Hint: Induction on the number of vertices.
(4.3) Prove the following direction of a theorem by Tutte from the lecture.

Let G be a graph and suppose that there exists a sequence
$G_{0}=K_{4}, G_{1}, \ldots, G_{n}=G$ with the following property: For every $i \in$ $\{0,1, \ldots, n-1\}$ there is an edge e in G_{i+1} between vertices v, w both of degree ≥ 3 such that G_{i} is obtained from G_{i+1} by contracting e. Then G is 3 -connected.
(4.4) Let k, n be positive integers and let X be a set of size $k n$. Prove that for any two partitions

$$
X=\uplus U_{i} \quad \text { and } \quad X=\uplus V_{i} \quad \text { with }\left|U_{i}\right|=\left|V_{i}\right|=k \text { for all } i
$$

there exists a common set of representatives $Y \subseteq X$ (i.e. $\left|U_{i} \cap Y\right|=$ $\left|V_{i} \cap Y\right|=1$ for all i. Show that this is not true if we start with three partitions.

