DISCRETE AND ALGEBRAIC STRUCTURES, WS 2016/17

EXERCISE SHEET 3

Problems due 4.11.2016

Every permutation σ of $\{1, 2, ..., n\}$ can be written as a product of disjoint cycles, $\sigma = (a_{1,1}a_{1,2} \dots a_{1,r_1})(a_{2,1} \dots a_{2,r_2}) \cdots (a_{s,1} \dots a_{s,r_2})$ with $a_{ij} \in \{1, 2, \dots, n\}$ and $a_{ij} = a_{i'j'}$ if and only if (i, j) = (i', j'). The cycle notation $(a_{1,1}a_{1,2} \dots a_{1,r_1})$

means that $a_{1,m}$ is sent to $a_{1,m+1}$ for $1 \le m < r_1$ and that a_{1,r_1} is sent to a_{11} . As an example: the permutation $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ can be written as (132). The

permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ can be written as (13)(24): 1 \leftrightarrow 3 and 2 \leftrightarrow 4.

(3.1) A derangement of length n is a permutation of $\{1, 2, \ldots, n\}$ without fixed points, an *r*-derangement is a permutation all of whose cycles have length larger than r. Let \mathcal{D} be the class of all derangements and $\mathcal{D}^{(r)}$ the class of all r-derangements. Determine the exponential generating function $D(z)^{(r)}$ and calculate the number of derangements (i.e. r = 1) of length n by extracting the coefficients $[z^n]D(z)$.

Recall that for an EGF $A(z) = \sum_{n} a_n \frac{z^n}{n!}$ we write $[z^n]A(z) := \frac{a_n}{n!}$. (3.2) Let $T(z) = \sum_{n} t_n \frac{z^n}{n!}$ be the EGF of the class \mathcal{T} of rooted labelled trees, putting $t_0 = 0$.

A graph is a *forest* if it has no cycles. Let \mathcal{F} be the class of labelled forests where each component is rooted. For k > 0 let \mathcal{F}_k be the class of \mathcal{F} consisting of the forests with exactly k components. Find expressions for the EGFs F(z) and $F_k(z)$ in terms of T(z) and determine the number of forests in \mathcal{F} and in \mathcal{F}_k on *n* vertices by applying Lagrange Inversion.

- (3.3) Involutions and permutations without long cycles. A permutation σ is an involution if $\sigma^2 = \text{Id}$ with Id the identity permutation. Clearly, an involution can have only cycles of sizes 1 and 2. A *pairing* is an involution without fixed points (i.e. all cycles have length 2). Use the combinatorial method to describe the combinatorial classes \mathcal{I} of all involutions and \mathcal{J} of pairings and determine their EGFs. Determine I_n and J_n (in case of J_n for n even).
- (3.4) Consider the function

$$f(z) = \frac{1 - z - \sqrt{1 - 2z - 3z^2}}{2z}$$

Use singularity analysis to determine the coefficient $[z^n] f(z)$ up to a multiplicative error of $1 + O(n^{-1})$.