Exercise Sheet 3

Problems due 4.11.2016
Every permutation σ of $\{1,2, \ldots, n\}$ can be written as a product of disjoint cycles, $\sigma=\left(a_{1,1} a_{1,2} \ldots a_{1, r_{1}}\right)\left(a_{2,1} \ldots a_{2, r_{2}}\right) \cdots\left(a_{s, 1} \ldots a_{s, r_{2}}\right)$ with $a_{i j} \in\{1,2, \ldots, n\}$ and $a_{i j}=a_{i^{\prime} j^{\prime}}$ if and only if $(i, j)=\left(i^{\prime}, j^{\prime}\right)$. The cycle notation $\left(a_{1,1} a_{1,2} \ldots a_{1, r_{1}}\right)$ means that $a_{1, m}$ is sent to $a_{1, m+1}$ for $1 \leq m<r_{1}$ and that $a_{1, r_{1}}$ is sent to a_{11}.

As an example: the permutation $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ can be written as (132). The permutation $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$ can be written as $(13)(24): 1 \leftrightarrow 3$ and $2 \leftrightarrow 4$.
(3.1) A derangement of length n is a permutation of $\{1,2, \ldots, n\}$ without fixed points, an r-derangement is a permutation all of whose cycles have length larger than r. Let \mathcal{D} be the class of all derangements and $\mathcal{D}^{(r)}$ the class of all r-derangements. Determine the exponential generating function $D(z)^{(r)}$ and calculate the number of derangements (i.e. $r=1$) of length n by extracting the coefficients $\left[z^{n}\right] D(z)$.
Recall that for an EGF $A(z)=\sum_{n} a_{n} \frac{z^{n}}{n!}$ we write $\left[z^{n}\right] A(z):=\frac{a_{n}}{n!}$.
(3.2) Let $T(z)=\sum_{n} t_{n} \frac{z^{n}}{n!}$ be the EGF of the class \mathcal{T} of rooted labelled trees, putting $t_{0}=0$.
A graph is a forest if it has no cycles. Let \mathcal{F} be the class of labelled forests where each component is rooted. For $k>0$ let \mathcal{F}_{k} be the class of \mathcal{F} consisting of the forests with exactly k components. Find expressions for the EGFs $F(z)$ and $F_{k}(z)$ in terms of $T(z)$ and determine the number of forests in \mathcal{F} and in \mathcal{F}_{k} on n vertices by applying Lagrange Inversion.
(3.3) Involutions and permutations without long cycles. A permutation σ is an involution if $\sigma^{2}=$ Id with Id the identity permutation. Clearly, an involution can have only cycles of sizes 1 and 2. A pairing is an involution without fixed points (i.e. all cycles have length 2). Use the combinatorial method to describe the combinatorial classes \mathcal{I} of all involutions and \mathcal{J} of pairings and determine their EGFs. Determine I_{n} and J_{n} (in case of J_{n} for n even).
(3.4) Consider the function

$$
f(z)=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z}
$$

Use singularity analysis to determine the coefficient $\left[z^{n}\right] f(z)$ up to a multiplicative error of $1+O\left(n^{-1}\right)$.

