Exercise Sheet 2

Problems due 21.10.2016
(1) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be combinatorial classes, with OGFs $A(z)=\sum_{n \geq 0} a_{n} z^{n}, B(z)=$ $\sum_{n \geq 0} b_{n} z^{n}$ and $C(z)=\sum_{n \geq 0} c_{n} z^{n}$. Prove the following (from the lecture):
(a) If $\mathcal{C}=\mathcal{A}+\mathcal{B}$, then $C(z)=A(z)+B(z)$;
(b) If $\mathcal{C}=\mathcal{A} \times \mathcal{B}$, then $C(z)=A(z) \cdot B(z)$;
(c) If $a_{0}=0$ and $\mathcal{C}=\operatorname{SEQ}(\mathcal{A})$, then $C(z)=\frac{1}{1-A(z)}$
(d) If $a_{0}=0$ and $\mathcal{C}=\operatorname{Mset}(\mathcal{A})$, then

$$
C(z)=\prod_{n \geq 1}\left(1-z^{n}\right)^{a_{n}}=\exp \left(A(z)+\frac{A\left(z^{2}\right)}{2}+\frac{A\left(z^{3}\right)}{3}+\ldots\right)
$$

Note (for c$))$: The formal power series $\exp (z)$ is defined as usual; also $\log (z)$. First show that $\exp (A(z))$ is well defined if $a_{0}=0$ and that $\log (A(z))$ is well defined if $a_{0}=1$. The property $\exp (\log (z))=z$ and the rules for \exp and \log of sums and products can be used without proof (even if the sums and products in question are infinite).
(2) Let $A=\sum_{n e \geq 0} a_{n} z^{n}$ be a formal power series.
(a) Prove that $A(z)$ has a reciprocal if and only if $a_{0} \neq 0$ and that the reciprocal is unique.
(b) Show that the infinite sum

$$
1+A(z)+A(z)^{2}+\ldots
$$

is well defined (i.e. for every n, the series $\sum_{k}[z]^{n} A(z)^{k}$ converges absolutely) if and only if $\left|a_{0}\right|<1$ and that it is the reciprocal of $1-A(z)$.
Hint (part b)): For the "if" direction, prove first that for $n>0$

$$
\left[z^{n}\right]\left(1+A(z)+A(z)^{2}+\ldots\right)=\sum_{k=1}^{n}\left[\left(\begin{array}{c}
\sum_{j_{1}, \ldots, j_{k} \geq 1} \\
j_{1}+\cdots+j_{k}=n
\end{array} \prod_{i=1}^{k} a_{j_{k}}\right) \cdot\left(\sum_{l=0}^{\infty}\binom{k+l}{k} a_{0}^{l}\right)\right]
$$

and show that the infinite sums on the right hand converge absolutely for every fixed k.
(3) Find the generating function for the natural numbers $\mathbb{N}=\{1,2,3, \ldots\}$.
(4) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be combinatorial classes, with EGFs $A(z)=\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}, B(z)=$ $\sum_{n \geq 0} b_{n} \frac{z^{n}}{n!}$ and $C(z)=\sum_{n \geq 0} c_{n} \frac{z^{n}}{n!}$. Prove the following (from the lecture):
(a) If $A(z) \cdot B(z)=\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}\right) \frac{z^{n}}{n!}$;
(b) If $\mathcal{C}=\mathcal{A} * \mathcal{B}$, then $\mathcal{C}(z)=\mathcal{A}(z) \cdot \mathcal{B}(z)$;
(c) If $a_{0}=0$ and $\mathcal{C}=\operatorname{Set}(\mathcal{A})$, then $C(z)=\exp (A(z))$
(d) If $a_{0}=0$ and $\mathcal{C}=\operatorname{CYC}(\mathcal{A})$, then $C(z)=\log \left(\frac{1}{1-A(z)}\right)$.

