DISCRETE AND ALGEBRAIC STRUCTURES, WS 2016/17

EXERCISE SHEET 2

Problems due 21.10.2016

(1) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be combinatorial classes, with OGFs $A(z) = \sum_{n \ge 0} a_n z^n$, $B(z) = \sum_{n \ge 0} b_n z^n$ and $C(z) = \sum_{n \ge 0} c_n z^n$. Prove the following (from the lecture): (a) If $\mathcal{C} = \mathcal{A} + \mathcal{B}$, then C(z) = A(z) + B(z);

- (b) If $C = A \times B$, then $C(z) = A(z) \cdot B(z)$;
- (c) If $a_0 = 0$ and $\mathcal{C} = \text{SEQ}(\mathcal{A})$, then $C(z) = \frac{1}{1 A(z)}$
- (d) If $a_0 = 0$ and $\mathcal{C} = \text{MSET}(\mathcal{A})$, then

$$C(z) = \prod_{n>1} (1-z^n)^{a_n} = \exp(A(z) + \frac{A(z^2)}{2} + \frac{A(z^3)}{3} + \dots).$$

Note (for c)): The formal power series $\exp(z)$ is defined as usual; also $\log(z)$. First show that $\exp(A(z))$ is well defined if $a_0 = 0$ and that $\log(A(z))$ is well defined if $a_0 = 1$. The property $\exp(\log(z)) = z$ and the rules for exp and log of sums and products can be used without proof (even if the sums and products in question are infinite).

(2) Let $A = \sum_{n \ge 0} a_n z^n$ be a formal power series.

1

- (a) Prove that A(z) has a reciprocal if and only if $a_0 \neq 0$ and that the reciprocal is unique.
- (b) Show that the infinite sum

$$+A(z)+A(z)^{2}+\ldots$$

is well defined (i.e. for every n, the series $\sum_{k} [z]^n A(z)^k$ converges absolutely) if and only if $|a_0| < 1$ and that it is the reciprocal of 1 - A(z).

Hint (part b)): For the "if" direction, prove first that for n > 0

$$[z^{n}](1+A(z)+A(z)^{2}+\dots) = \sum_{k=1}^{n} \left[\left(\sum_{\substack{j_{1},\dots,j_{k} \ge 1\\j_{1}+\dots+j_{k}=n}} \prod_{i=1}^{k} a_{j_{k}} \right) \cdot \left(\sum_{l=0}^{\infty} \binom{k+l}{k} a_{0}^{l} \right) \right]$$

and show that the infinite sums on the right hand converge absolutely for every fixed k.

- (3) Find the generating function for the natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$.
- (4) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be combinatorial classes, with EGFs $A(z) = \sum_{n \ge 0} a_n \frac{z^n}{n!}, B(z) = \sum_{n \ge 0} b_n \frac{z^n}{n!}$ and $C(z) = \sum_{n \ge 0} c_n \frac{z^n}{n!}$. Prove the following (from the lecture): (a) If $A(z) \cdot B(z) = \sum_{n \ge 0} (\sum_{k=0}^n {n \choose k} a_k b_{n-k}) \frac{z^n}{n!}$; (b) If $\mathcal{C} = \mathcal{A} * \mathcal{B}$, then $\mathcal{C}(z) = \mathcal{A}(z) \cdot \mathcal{B}(z)$; (c) If $a_2 = 0$ and $\mathcal{C} = \operatorname{SET}(\mathcal{A})$ then $C(z) = \exp(\mathcal{A}(z))$
 - (c) If $a_0 = 0$ and $\mathcal{C} = \text{SET}(\mathcal{A})$, then $C(z) = \exp(A(z))$ (d) If $a_0 = 0$ and $\mathcal{C} = \text{Cyc}(\mathcal{A})$, then $C(z) = \log(\frac{1}{1-A(z)})$.