Exercise Sheet 10

Problems due 13.01.2017
10.1 Identify $\bigwedge^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3} by identifying $e_{1} \wedge e_{2}$ with $e_{3}, e_{2} \wedge e_{3}$ with e_{1} and $e_{3} \wedge e_{1}$ with e_{2}. Show that under this identification, the exterior product $v \wedge w \in \bigwedge^{2}\left(\mathbb{R}^{3}\right)=\mathbb{R}^{3}$ is the same as the cross product $u \times w \in \mathbb{R}^{3}$.
10.2 (a) Let V have basis $\left\{e_{1}, e_{2}\right\}$ and let $T: V \rightarrow V$ be given by $T\left(e_{1}\right)=$ $a e_{1}+c e_{2}$ and $T\left(e_{2}\right)=b e_{1}+d e_{2}$. Compute $\Lambda^{2} T: \bigwedge^{2}(V) \rightarrow \bigwedge^{2}(V)$ in terms of this basis. What is $\operatorname{det}(T)$?
(b) Let V be a finite dimensional vector space. Let $x \in \bigwedge^{r}(V), y \in \bigwedge^{s}(V)$ and $z \in \wedge^{t}(V)$. Show that $(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and that $x \wedge y=$ $(-1)^{r s} y \wedge x$ for $x \wedge y$ as defined in Lemma 3.35.
10.3 Let A be a commutative ring with $1_{A} \neq 0_{A}$ and K a field. Show that A is an algebra over K if and only if A contains (an isomorphic copy of) K as a subring.
(See Remark 4.28 (1) for the notion of an algebra over a field).
10.4 (a) Let M be the additive group of rational numbers. Show that any two elements of M are linearly dependent (over \mathbb{Z}). Show then, that M cannot have a basis over \mathbb{Z}.
(b) Let $a, b \in \mathbb{Z}$, let $d=\operatorname{gcd}(a, b)$. Argue that $\mathbb{Z} / a \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / b \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}$.

