DISCRETE AND ALGEBRAIC STRUCTURES, WS 2016/17

Exercise Sheet 1

Problems due 14.10.2016
(1) Proof the multinomial theorem: For any $n \in \mathbb{N}$,

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{m}^{k_{m}}
$$

where the sum is over all $k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{N} \cup\{0\}$ satisfying $k_{1}+k_{2}+\cdots+$ $k_{m}=n$.
(2) (a) Compute the generalized binomial coefficient $\binom{\frac{1}{2}}{k}$ for $k \in \mathbb{N}$.
(b) Let k, n be nonnegative integers. Show that the number of $0-1$ sequences consisting of precisely k ones and n zeros is

$$
\binom{n+k}{k}
$$

How many of these sequences have no two adjacent ones?
(3) Suppose that $f, g, h: \mathbb{N} \rightarrow \mathbb{R}$ satisfy

$$
f(n)=1+O(h(n)), \quad g(n)=1+O(h(n)), \quad \text { and } \quad h(n)=o(1)
$$

Show that

$$
f(n) \cdot g(n)=1+O(h(n)) \quad \text { and } \quad \frac{1}{f(n)}=1+O(h(n))
$$

Deduce that

$$
\binom{2 n}{n}=\frac{4^{n}}{\sqrt{\pi n}} \cdot\left(1+O\left(\frac{1}{n}\right)\right)
$$

(4) For which initial conditions a_{0}, a_{1}, a_{2} does the solution of the recurrence

$$
a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}, \quad n \geq 3
$$

satisfy
a) $\lim _{n \rightarrow \infty} a_{n}=\infty$,
b) $\lim _{n \rightarrow \infty} a_{n}=-\infty$,
c) $\lim _{n \rightarrow \infty} a_{n}=c \in \mathbb{R}$,
d) none of the above?

