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The quaternionic groups

Let GC be a connected, simply connected simple Lie group over C

and let U be a maximal compact subgroup of GC. Let g denote the
Lie algebra of GC.

Fix a maximal torus, T , of U and let h denote its complexified Lie
algebra. Let Φ be the root system of g with respect to h and let Φ+

be a choice of positive roots. If α ∈ Φ let α̌ ∈ h denote the
corresponding coroot. Let τ denote the complex conjugation on GC

with respect to the real form U. We set σ = Ad(exp(πi α̌o ))τ where
αo is the highest root with respect to the choice of Φ+.

Then σ is a complex conjugation on GC. The fixed point set of σ is
up to conjugacy the quaternionic real form of GC which we will
denote by G . The Cartan involution that corresponds to the maximal
compact subgroup K = G ∩ U is θ = Ad(exp(πi α̌o )).
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The real form is called quaternionic since the subgroup of G
corresponding to αo is isomorphic to SU(2) (the unit quaternions)
and the action of this SU(2)on the negative one eigenspace of θ in g
is an even multiple of the two dimensional representation.

This implies that K contains a normal subgroup, Ko , isomorphic with
SU(2)and another normal subgroup K1 of codimension 3 such that
K = Ko ·K1. Let To be a maximal torus in Ko .We set
L = ToK1 = CG (To ).

Then G/L has a homogenious Kahler structure and we have a
fibration

K/L = P1(C)→ G/L→ G/K .

If q is the parabolic subalgebra of g that is given by the sum of the
non-negative eigenspaces of ad(α̌o ) and if Q is the normalizer of q in
GC then the complex structure comes from G/L = GC/Q.
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In our 1996 paper Dick Gross and I consider the holomorphic line
bundles, Lλ, over G/L corresponding to unitary characters, λ, of L
trivial on K1. These characters have differential k αo

2 . Using methods
of Schmid’s thesis we show that if k ≥ 2 then the only non-zero sheaf
cohomology is in degree 1.

Under this condition we show that the (g,K ) module of K -finite
cohomology H1(G/L,Lλ)K has a unique irreducible submodule. For
each of the exceptional groups of real rank 4 this yields 3 cases where
the subrepresentation is proper (for D4 we will give two).

We will, at first, restrict our attention to the exceptional quaternionic
real forms and S3 n SO(4, 4)o .
Q = LCU with U the unipotent radical of Q. We set
V = Lie(U)/[Lie(U), Lie(U)]. V is a symplectic vector space since
U is a Heisenberg group. The three representations above follow the
orbit structure of the action of LC on P(V ).
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In each of these cases there are 4 orbits.

1 An open orbit O1with complement the hypersurface, X1, defined by
the degree 4 generator of the semiinvariants of the action of LC on V .

2 In X1 there is one open orbit, O2, whose complement we denote X2.
3 In X2 there is one open orbit, O3. In the case of D4 this orbit has
three components permuted by the S3.

4 The complement of O3in X2 is the closed orbit O4 = X3.
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The point here is that the K -spectrum of each of these
representations is of the form⊕

n≥0
Sk−2+n(C2)⊗ An(Y ).

Here Y is an LC invariant closed subvariety of P(V ), An(Y ) is the
space of degree n elements of the homogeneous coordinate ring. Here
is the table of values of k and and Y .

D4 F4 E6 E7 E8 Y
4 7 10 16 28 X1

4 6 10 18 X2
2 3 4 6 10 X3

The point here is that if f = 0, 1, 2, 4, 8 for D4,F4,E6,E7 and E8
respectively then the numbers appearing are 3f + 4, 2f + 2, f + 2.
We will now look at the next level but only for the exceptional groups
the meaning of the numbers f will be more apparent.
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However before we do this a word should be said about these unitary
representations.

The representation corresponding to k = 2 the case of D4 is due to
Kostant it yields the minimal representation of SO(4, 4)o . Note that
the formula for the K spectrum above shows that this is the unique
case where the represenation is spherical.

For all of the other groups the last row yields their minimal
representation. The results in all cases are analogous to my results for
holomorphic representations.
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The next level of groups

Let F = R,C or H. If X is an n× n matrix over F then X ∗ will
denote the conjugate (relative to F ) transpose.

Let gF be the real vector space consisting of the 2n× 2n matrices of
with block form [

A X
Y −A∗

]
with A,X ,Y ∈ Mn(F ) and X ∗ = X ,Y ∗ = Y . An easy check shows
that gF is a Lie subalgebra of M2n(F ).

We take for G the corresponding subgroup of GL(2n,F ) or a finite
covering group. (If one wants a simple Lie group one needs to take
the commutator subgroup if F = C.)

The groups given in this way are locally Sp(n,R) for F = R, U(n, n)
for F = C and SO∗(4n) for F = H.

The group K is respectively locally U(n),U(n)× U(n) and U(2n).
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There is one more example of a “field”over R the Octonians, O.

Here we attempt to make the 2n× 2n matrices over O in the above
block form. This fails to produce a Lie algebra.

A reinterpretation of the block form above sets up the new example.
First we note that we can look upon AF = {X ∈ Mn(F )|X ∗ = X} as
a Jordan algebra under X ◦ Y = 1

2 (XY + YX ). The automorphism
groups of these Jordan algebras are O(n),U(n) and Sp(n) under the
obvious action. The upshot is that we can look upon the Cartan
decomposition of Mn(F ) as giving a direct sum decomposition
Der(AF )⊕ {LX |X ∈ AF }. LXY = X ◦ Y . The total Lie algebra is
A∗F ⊕ (Der(AF )⊕ {LX |X ∈ AF })⊕AF .
AO = {X ∈ M3(O)|X ∗ = X} under X ◦ Y = 1

2 (XY + YX ) forms a
Jordan algebra. Der(AO) is isomorphic with the compact real form of
F4. The Lie algebra Der(AO)⊕ {LX |X ∈ AO} is isomorphic to the
direct sum of a one dimensional center and a rank 2 real form of E6.
The total Lie algebra (putting together all the parts) is the rank 3 real
form of E7.
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We now consider a Heisenberg parabolic subgroup of G for our 4
quaternionic examples (it is unique up to conjugacy in G ). This is a
real parabolic subgroup whose complexification is conjugate to Q. We
will denote it by P.

Let P = MAN be a Langlands decomposition of P. Then in each of
the four cases Lie(M) is the indicated Lie algebra. In each case the
group is a real form of LC.

We set VR = Lie(N/[N,N ]). Then the generic unitary characters of
N (identified with VR) for which the quaternionic discrete series has a
generalized Whittaker model form one open orbit under MA. We note
that there are 4 open orbits.

We now move to the groups M.
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For F4,E6,E7,E8, respectively, we assign the field of dimension 1, 2, 4
or 8, F . Then for the first 3, /MA is the subgroup of GL(6,F )
corresponding to the Lie algebra constructed above for n = 3. For the
octonions the group is the real form of E7 constructed above. In
other words these are groups of automorphisms of the Hermitian
symmetric tube domains of rank 3.

Associated to M is a conjugacy class of real parabolic subgroups with
abelian nilradical. Their Lie algebras can be described, in the notation
above, as (Der(AF )⊕ {La|a ∈ AF })⊕AF .
This is the Shilov boundary parabolic for each of these tube domains.
The full Lie algebra is

A∗F ⊕ (Der(AF )⊕ {La|a ∈ AF })⊕AF .
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We note that if N is the unipotent radical of the corresponding
opposite parabolic subgroup of M then the unitary characters of N
are given by elements of AF . The element 1 has as stabilizer in M
the compact symmetric subgroup corresponding to Der(AF ).

This condition allows one to characterize all Bessel models for
admissible representations of these groups. This problem was solved
this year.

Set H equal to the normalizer in G of Der(AF )⊕ {La|a ∈ AF }. This
is the next to the last level of groups we will study.
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These groups are GL(3,F ) for F = R,C,H and O.

Let B be a minimal parabolic subgroup of H. Then H/B is,
respectively, the manifold of flags in P2(F ) for F = R,C,H and O.

A maximal compact subgroup of H,KH , is respectively
O(3),U(3), Sp(3) and F4.

The flag varieties are thus given by KH/B ∩KH .
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The groups KH ∩B are U(1,F )3 for F = R,C,H and Spin(8) for O.

Notice that each of these groups has triality (an S3) of outer
automorphisms.

Using this triality, in my 1972, Annals paper I showed that each of
these flag varieties admitted a, homogeneous, positively pinched,
Riemannian structure.

The only known examples of simply connected, compact, manifolds
admitting a positively pinched Riemannian structure of dimension
greater than 24 are the spheres and projective spaces over F = C,H.
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