A Tale of Four Simple Groups over the Reals

Nolan Wallach

UCSD

September 2009

The quaternionic groups

• Let $G_{\mathbb{C}}$ be a connected, simply connected simple Lie group over \mathbb{C} and let U be a maximal compact subgroup of $G_{\mathbb{C}}$. Let \mathfrak{g} denote the Lie algebra of $G_{\mathbb{C}}$.

The quaternionic groups

- Let $G_{\mathbb{C}}$ be a connected, simply connected simple Lie group over \mathbb{C} and let U be a maximal compact subgroup of $G_{\mathbb{C}}$. Let $\mathfrak g$ denote the Lie algebra of $G_{\mathbb{C}}$.
- Fix a maximal torus, T, of U and let $\mathfrak h$ denote its complexified Lie algebra. Let Φ be the root system of $\mathfrak g$ with respect to $\mathfrak h$ and let Φ^+ be a choice of positive roots. If $\alpha \in \Phi$ let $\check \alpha \in \mathfrak h$ denote the corresponding coroot. Let τ denote the complex conjugation on $G_{\mathbb C}$ with respect to the real form U. We set $\sigma = Ad(\exp(\pi i \check \alpha_o))\tau$ where α_o is the highest root with respect to the choice of Φ^+ .

The quaternionic groups

- Let $G_{\mathbb{C}}$ be a connected, simply connected simple Lie group over \mathbb{C} and let U be a maximal compact subgroup of $G_{\mathbb{C}}$. Let \mathfrak{g} denote the Lie algebra of $G_{\mathbb{C}}$.
- Fix a maximal torus, T, of U and let $\mathfrak h$ denote its complexified Lie algebra. Let Φ be the root system of $\mathfrak g$ with respect to $\mathfrak h$ and let Φ^+ be a choice of positive roots. If $\alpha \in \Phi$ let $\check \alpha \in \mathfrak h$ denote the corresponding coroot. Let τ denote the complex conjugation on $G_{\mathbb C}$ with respect to the real form U. We set $\sigma = Ad(\exp(\pi i \check \alpha_o))\tau$ where α_o is the highest root with respect to the choice of Φ^+ .
- Then σ is a complex conjugation on $G_{\mathbb{C}}$. The fixed point set of σ is up to conjugacy the quaternionic real form of $G_{\mathbb{C}}$ which we will denote by G. The Cartan involution that corresponds to the maximal compact subgroup $K = G \cap U$ is $\theta = Ad(\exp(\pi i \check{\alpha}_o))$.

• The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to SU(2) (the unit quaternions) and the action of this SU(2)on the negative one eigenspace of θ in $\mathfrak g$ is an even multiple of the two dimensional representation.

- The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to SU(2) (the unit quaternions) and the action of this SU(2) on the negative one eigenspace of θ in $\mathfrak g$ is an even multiple of the two dimensional representation.
- This implies that K contains a normal subgroup, K_o , isomorphic with SU(2) and another normal subgroup K_1 of codimension 3 such that $K = K_o \cdot K_1$. Let T_o be a maximal torus in K_o . We set $L = T_o K_1 = C_G(T_o)$.

- The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to SU(2) (the unit quaternions) and the action of this SU(2) on the negative one eigenspace of θ in $\mathfrak g$ is an even multiple of the two dimensional representation.
- This implies that K contains a normal subgroup, K_o , isomorphic with SU(2) and another normal subgroup K_1 of codimension 3 such that $K = K_o \cdot K_1$. Let T_o be a maximal torus in K_o . We set $L = T_o K_1 = C_G(T_o)$.
- Then G/L has a homogenious Kahler structure and we have a fibration

$$K/L = \mathbb{P}^1(\mathbb{C}) \to G/L \to G/K.$$

- The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to SU(2) (the unit quaternions) and the action of this SU(2) on the negative one eigenspace of θ in $\mathfrak g$ is an even multiple of the two dimensional representation.
- This implies that K contains a normal subgroup, K_o , isomorphic with SU(2) and another normal subgroup K_1 of codimension 3 such that $K = K_o \cdot K_1$. Let T_o be a maximal torus in K_o . We set $L = T_o K_1 = C_G(T_o)$.
- Then G/L has a homogenious Kahler structure and we have a fibration

$$K/L = \mathbb{P}^1(\mathbb{C}) \to G/L \to G/K.$$

• If q is the parabolic subalgebra of $\mathfrak g$ that is given by the sum of the non-negative eigenspaces of $ad(\check{\alpha}_o)$ and if Q is the normalizer of q in $G_{\mathbb C}$ then the complex structure comes from $G/L=G_{\mathbb C}/Q$.

→□▶→□▶→重▶→重 りへ⊙

• In our 1996 paper Dick Gross and I consider the holomorphic line bundles, \mathcal{L}_{λ} , over G/L corresponding to unitary characters, λ , of L trivial on K_1 . These characters have differential $k\frac{\alpha_o}{2}$. Using methods of Schmid's thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.

- In our 1996 paper Dick Gross and I consider the holomorphic line bundles, \mathcal{L}_{λ} , over G/L corresponding to unitary characters, λ , of L trivial on K_1 . These characters have differential $k\frac{\alpha_o}{2}$. Using methods of Schmid's thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.
- Under this condition we show that the (\mathfrak{g},K) module of K-finite cohomology $H^1(G/L,\mathcal{L}_\lambda)_K$ has a unique irreducible submodule. For each of the exceptional groups of real rank 4 this yields 3 cases where the subrepresentation is proper (for D_4 we will give two).

- In our 1996 paper Dick Gross and I consider the holomorphic line bundles, \mathcal{L}_{λ} , over G/L corresponding to unitary characters, λ , of L trivial on K_1 . These characters have differential $k\frac{\alpha_o}{2}$. Using methods of Schmid's thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.
- Under this condition we show that the (\mathfrak{g}, K) module of K-finite cohomology $H^1(G/L, \mathcal{L}_{\lambda})_K$ has a unique irreducible submodule. For each of the exceptional groups of real rank 4 this yields 3 cases where the subrepresentation is proper (for D_4 we will give two).
- We will, at first, restrict our attention to the exceptional quaternionic real forms and $S_3 \ltimes SO(4,4)_o$.

- In our 1996 paper Dick Gross and I consider the holomorphic line bundles, \mathcal{L}_{λ} , over G/L corresponding to unitary characters, λ , of L trivial on K_1 . These characters have differential $k\frac{\alpha_o}{2}$. Using methods of Schmid's thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.
- Under this condition we show that the (\mathfrak{g}, K) module of K-finite cohomology $H^1(G/L, \mathcal{L}_{\lambda})_K$ has a unique irreducible submodule. For each of the exceptional groups of real rank 4 this yields 3 cases where the subrepresentation is proper (for D_4 we will give two).
- We will, at first, restrict our attention to the exceptional quaternionic real forms and $S_3 \ltimes SO(4,4)_o$.
- $Q = L_{\mathbb{C}}U$ with U the unipotent radical of Q. We set V = Lie(U)/[Lie(U), Lie(U)]. V is a symplectic vector space since U is a Heisenberg group. The three representations above follow the orbit structure of the action of $L_{\mathbb{C}}$ on $\mathbb{P}(V)$.

• In each of these cases there are 4 orbits.

- In each of these cases there are 4 orbits.
- **9** An open orbit \mathcal{O}_1 with complement the hypersurface, X_1 , defined by the degree 4 generator of the semiinvariants of the action of $L_{\mathbb{C}}$ on V.

- In each of these cases there are 4 orbits.
- **9** An open orbit \mathcal{O}_1 with complement the hypersurface, X_1 , defined by the degree 4 generator of the semiinvariants of the action of $L_{\mathbb{C}}$ on V.
- ② In X_1 there is one open orbit, \mathcal{O}_2 , whose complement we denote X_2 .

- In each of these cases there are 4 orbits.
- **1** An open orbit \mathcal{O}_1 with complement the hypersurface, X_1 , defined by the degree 4 generator of the semiinvariants of the action of $L_{\mathbb{C}}$ on V.
- ② In X_1 there is one open orbit, \mathcal{O}_2 , whose complement we denote X_2 .
- **3** In X_2 there is one open orbit, \mathcal{O}_3 . In the case of D_4 this orbit has three components permuted by the S_3 .

- In each of these cases there are 4 orbits.
- An open orbit \mathcal{O}_1 with complement the hypersurface, X_1 , defined by the degree 4 generator of the semiinvariants of the action of $L_{\mathbb{C}}$ on V.
- **②** In X_1 there is one open orbit, \mathcal{O}_2 , whose complement we denote X_2 .
- **1** In X_2 there is one open orbit, \mathcal{O}_3 . In the case of D_4 this orbit has three components permuted by the S_3 .
- **1** The complement of \mathcal{O}_3 in X_2 is the closed orbit $\mathcal{O}_4 = X_3$.

 The point here is that the K-spectrum of each of these representations is of the form

$$\bigoplus_{n\geq 0} S^{k-2+n}(\mathbb{C}^2)\otimes A^n(Y).$$

Here Y is an $L_{\mathbb{C}}$ invariant closed subvariety of $\mathbb{P}(V)$, $A^n(Y)$ is the space of degree n elements of the homogeneous coordinate ring. Here is the table of values of k and and Y.

N. Wallach (UCSD)

 The point here is that the K-spectrum of each of these representations is of the form

$$\bigoplus_{n\geq 0} S^{k-2+n}(\mathbb{C}^2)\otimes A^n(Y).$$

Here Y is an $L_{\mathbb{C}}$ invariant closed subvariety of $\mathbb{P}(V)$, $A^n(Y)$ is the space of degree n elements of the homogeneous coordinate ring. Here is the table of values of k and and Y.

• The point here is that the K-spectrum of each of these representations is of the form

$$\bigoplus_{n\geq 0} S^{k-2+n}(\mathbb{C}^2)\otimes A^n(Y).$$

Here Y is an $L_{\mathbb{C}}$ invariant closed subvariety of $\mathbb{P}(V)$, $A^n(Y)$ is the space of degree n elements of the homogeneous coordinate ring. Here is the table of values of k and and Y.

• The point here is that if f = 0, 1, 2, 4, 8 for D_4 , F_4 , E_6 , E_7 and E_8 respectively then the numbers appearing are 3f + 4, 2f + 2, f + 2. We will now look at the next level but only for the exceptional groups the meaning of the numbers f will be more apparent.

N. Wallach (UCSD) Four Families 09/09 6 / 14

• However before we do this a word should be said about these unitary representations.

- However before we do this a word should be said about these unitary representations.
- The representation corresponding to k=2 the case of D_4 is due to Kostant it yields the minimal representation of $SO(4,4)_o$. Note that the formula for the K spectrum above shows that this is the unique case where the representation is spherical.

- However before we do this a word should be said about these unitary representations.
- The representation corresponding to k=2 the case of D_4 is due to Kostant it yields the minimal representation of $SO(4,4)_o$. Note that the formula for the K spectrum above shows that this is the unique case where the representation is spherical.
- For all of the other groups the last row yields their minimal representation. The results in all cases are analogous to my results for holomorphic representations.

• Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.
- Let \mathfrak{g}_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form

$$\left[\begin{array}{cc} A & X \\ Y & -A^* \end{array}\right]$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that \mathfrak{g}_F is a Lie subalgebra of $M_{2n}(F)$.

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.
- Let \mathfrak{g}_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form

$$\left[\begin{array}{cc} A & X \\ Y & -A^* \end{array}\right]$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that \mathfrak{g}_F is a Lie subalgebra of $M_{2n}(F)$.

• We take for G the corresponding subgroup of GL(2n, F) or a finite covering group. (If one wants a simple Lie group one needs to take the commutator subgroup if $F = \mathbb{C}$.)

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.
- Let \mathfrak{g}_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form

$$\left[\begin{array}{cc} A & X \\ Y & -A^* \end{array}\right]$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that \mathfrak{g}_F is a Lie subalgebra of $M_{2n}(F)$.

- We take for G the corresponding subgroup of GL(2n, F) or a finite covering group. (If one wants a simple Lie group one needs to take the commutator subgroup if $F = \mathbb{C}$.)
- The groups given in this way are locally $Sp(n, \mathbb{R})$ for $F = \mathbb{R}$, U(n, n) for $F = \mathbb{C}$ and $SO^*(4n)$ for $F = \mathbb{H}$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

- Let $F = \mathbb{R}$, \mathbb{C} or \mathbb{H} . If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.
- Let \mathfrak{g}_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form

$$\left[\begin{array}{cc} A & X \\ Y & -A^* \end{array}\right]$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that \mathfrak{g}_F is a Lie subalgebra of $M_{2n}(F)$.

- We take for G the corresponding subgroup of GL(2n, F) or a finite covering group. (If one wants a simple Lie group one needs to take the commutator subgroup if $F = \mathbb{C}$.)
- The groups given in this way are locally $Sp(n,\mathbb{R})$ for $F=\mathbb{R}$, U(n,n) for $F=\mathbb{C}$ and $SO^*(4n)$ for $F=\mathbb{H}$.
- The group K is respectively locally U(n), $U(n) \times U(n)$ and U(2n).

ullet There is one more example of a "field" over ${\mathbb R}$ the Octonians, ${\mathbb O}$.

- ullet There is one more example of a "field" over ${\mathbb R}$ the Octonians, ${\mathbb O}$.
- Here we attempt to make the $2n \times 2n$ matrices over $\mathbb O$ in the above block form. This fails to produce a Lie algebra.

- ullet There is one more example of a "field" over ${\mathbb R}$ the Octonians, ${\mathbb O}$.
- Here we attempt to make the $2n \times 2n$ matrices over O in the above block form. This fails to produce a Lie algebra.
- A reinterpretation of the block form above sets up the new example. First we note that we can look upon $\mathcal{A}_F = \{X \in M_n(F) | X^* = X\}$ as a Jordan algebra under $X \circ Y = \frac{1}{2}(XY + YX)$. The automorphism groups of these Jordan algebras are O(n), U(n) and Sp(n) under the obvious action. The upshot is that we can look upon the Cartan decomposition of $M_n(F)$ as giving a direct sum decomposition $Der(\mathcal{A}_F) \oplus \{L_X | X \in \mathcal{A}_F\}$. $L_X Y = X \circ Y$. The total Lie algebra is $\mathcal{A}_F^* \oplus (Der(\mathcal{A}_F) \oplus \{L_X | X \in \mathcal{A}_F\}) \oplus \mathcal{A}_F$.

- There is one more example of a "field" over $\mathbb R$ the Octonians, $\mathbb O$.
- Here we attempt to make the $2n \times 2n$ matrices over $\mathbb O$ in the above block form. This fails to produce a Lie algebra.
- A reinterpretation of the block form above sets up the new example. First we note that we can look upon $\mathcal{A}_F = \{X \in M_n(F) | X^* = X\}$ as a Jordan algebra under $X \circ Y = \frac{1}{2}(XY + YX)$. The automorphism groups of these Jordan algebras are O(n), U(n) and Sp(n) under the obvious action. The upshot is that we can look upon the Cartan decomposition of $M_n(F)$ as giving a direct sum decomposition $Der(A_F) \oplus \{L_X | X \in A_F\}$. $L_X Y = X \circ Y$. The total Lie algebra is $\mathcal{A}_F^* \oplus (Der(\mathcal{A}_F) \oplus \{L_X | X \in \mathcal{A}_F\}) \oplus \mathcal{A}_F.$
- $\mathcal{A}_{\mathbb{O}} = \{X \in M_3(\mathbb{O}) | X^* = X\}$ under $X \circ Y = \frac{1}{2}(XY + YX)$ forms a Jordan algebra. $Der(\mathcal{A}_{\Omega})$ is isomorphic with the compact real form of F_4 . The Lie algebra $Der(A_{\mathbb{O}}) \oplus \{L_X | X \in A_{\mathbb{O}}\}$ is isomorphic to the direct sum of a one dimensional center and a rank 2 real form of E_6 . The total Lie algebra (putting together all the parts) is the rank 3 real form of E_7 .

• We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.

- We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.
- Let P = MAN be a Langlands decomposition of P. Then in each of the four cases Lie(M) is the indicated Lie algebra. In each case the group is a real form of $L_{\mathbb{C}}$.

- We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.
- Let P = MAN be a Langlands decomposition of P. Then in each of the four cases Lie(M) is the indicated Lie algebra. In each case the group is a real form of $L_{\mathbb{C}}$.
- We set $V_{\mathbb{R}} = Lie(N/[N,N])$. Then the generic unitary characters of \overline{N} (identified with $V_{\mathbb{R}}$) for which the quaternionic discrete series has a generalized Whittaker model form one open orbit under MA. We note that there are 4 open orbits.

- We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.
- Let P = MAN be a Langlands decomposition of P. Then in each of the four cases Lie(M) is the indicated Lie algebra. In each case the group is a real form of $L_{\mathbb{C}}$.
- We set $V_{\mathbb{R}} = Lie(N/[N,N])$. Then the generic unitary characters of \overline{N} (identified with $V_{\mathbb{R}}$) for which the quaternionic discrete series has a generalized Whittaker model form one open orbit under MA. We note that there are 4 open orbits.
- We now move to the groups M.

• For F_4 , E_6 , E_7 , E_8 , respectively, we assign the field of dimension 1, 2, 4 or 8, F. Then for the first 3, MA is the subgroup of GL(6, F) corresponding to the Lie algebra constructed above for n=3. For the octonions the group is the real form of E_7 constructed above. In other words these are groups of automorphisms of the Hermitian symmetric tube domains of rank 3.

- For F_4 , E_6 , E_7 , E_8 , respectively, we assign the field of dimension 1, 2, 4 or 8, F. Then for the first 3, MA is the subgroup of GL(6, F) corresponding to the Lie algebra constructed above for n=3. For the octonions the group is the real form of E_7 constructed above. In other words these are groups of automorphisms of the Hermitian symmetric tube domains of rank 3.
- Associated to M is a conjugacy class of real parabolic subgroups with abelian nilradical. Their Lie algebras can be described, in the notation above, as $(Der(\mathcal{A}_F) \oplus \{L_a | a \in \mathcal{A}_F\}) \oplus \mathcal{A}_F$.

- For F_4 , E_6 , E_7 , E_8 , respectively, we assign the field of dimension 1, 2, 4 or 8, F. Then for the first 3, MA is the subgroup of GL(6, F) corresponding to the Lie algebra constructed above for n=3. For the octonions the group is the real form of E_7 constructed above. In other words these are groups of automorphisms of the Hermitian symmetric tube domains of rank 3.
- Associated to M is a conjugacy class of real parabolic subgroups with abelian nilradical. Their Lie algebras can be described, in the notation above, as $(Der(\mathcal{A}_F) \oplus \{L_a | a \in \mathcal{A}_F\}) \oplus \mathcal{A}_F$.
- This is the Shilov boundary parabolic for each of these tube domains.
 The full Lie algebra is

$$\mathcal{A}_F^* \oplus (Der(\mathcal{A}_F) \oplus \{L_a | a \in \mathcal{A}_F\}) \oplus \mathcal{A}_F.$$

• We note that if \overline{N} is the unipotent radical of the corresponding opposite parabolic subgroup of M then the unitary characters of \overline{N} are given by elements of \mathcal{A}_F . The element 1 has as stabilizer in M the compact symmetric subgroup corresponding to $Der(\mathcal{A}_F)$.

- We note that if \overline{N} is the unipotent radical of the corresponding opposite parabolic subgroup of M then the unitary characters of \overline{N} are given by elements of \mathcal{A}_F . The element 1 has as stabilizer in M the compact symmetric subgroup corresponding to $Der(\mathcal{A}_F)$.
- This condition allows one to characterize all Bessel models for admissible representations of these groups. This problem was solved this year.

- We note that if \overline{N} is the unipotent radical of the corresponding opposite parabolic subgroup of M then the unitary characters of \overline{N} are given by elements of \mathcal{A}_F . The element 1 has as stabilizer in M the compact symmetric subgroup corresponding to $Der(\mathcal{A}_F)$.
- This condition allows one to characterize all Bessel models for admissible representations of these groups. This problem was solved this year.
- Set H equal to the normalizer in G of $Der(A_F) \oplus \{L_a | a \in A_F\}$. This is the next to the last level of groups we will study.

12 / 14

• These groups are GL(3, F) for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .

N. Wallach (UCSD) Four Families 09/09 13 / 14

- These groups are GL(3, F) for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .
- Let B be a minimal parabolic subgroup of H. Then H/B is, respectively, the manifold of flags in $\mathbb{P}^2(F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .

- These groups are GL(3, F) for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .
- Let B be a minimal parabolic subgroup of H. Then H/B is, respectively, the manifold of flags in $\mathbb{P}^2(F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .
- A maximal compact subgroup of H, K_H , is respectively O(3), U(3), Sp(3) and F_4 .

- These groups are GL(3, F) for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .
- Let B be a minimal parabolic subgroup of H. Then H/B is, respectively, the manifold of flags in $\mathbb{P}^2(F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .
- A maximal compact subgroup of H, K_H , is respectively O(3), U(3), Sp(3) and F_4 .
- The flag varieties are thus given by $K_H/B \cap K_H$.

• The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and Spin(8) for \mathbb{O} .

14 / 14

N. Wallach (UCSD) Four Families 09/09

- The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and Spin(8) for \mathbb{O} .
- Notice that each of these groups has triality (an S_3) of outer automorphisms.

14 / 14

- The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and Spin(8) for \mathbb{O} .
- Notice that each of these groups has triality (an S_3) of outer automorphisms.
- Using this triality, in my 1972, Annals paper I showed that each of these flag varieties admitted a, homogeneous, positively pinched, Riemannian structure.

- The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and Spin(8) for \mathbb{O} .
- Notice that each of these groups has triality (an S_3) of outer automorphisms.
- Using this triality, in my 1972, Annals paper I showed that each of these flag varieties admitted a, homogeneous, positively pinched, Riemannian structure.
- The only known examples of simply connected, compact, manifolds admitting a positively pinched Riemannian structure of dimension greater than 24 are the spheres and projective spaces over $F = \mathbb{C}$, \mathbb{H} .