Superbosonization of invariant matrix ensembles

Peter Littelmann Universität zu Köln

joint work with M. Zirnbauer (Köln) and H.-J. Sommers (Essen)

Ascona 2009

September 11, 2009

 $G=GL_n(\mathbb{C})$ (or one of the classical groups $O_n(\mathbb{C}), Sp_{2m}(\mathbb{C})$)

 $K = U_n$ (more generally, a maximal compact subgroup of G)

 $G = GL_n(\mathbb{C})$ (or one of the classical groups $O_n(\mathbb{C}), Sp_{2m}(\mathbb{C})$)

 $K = U_n$ (more generally, a maximal compact subgroup of G)

Let V be the following $\mathbb{Z}/2\mathbb{Z}$ - graded vector space $V=V_0\oplus V_1$:

$$V_0 = \mathit{Hom}(\mathbb{C}^n, \mathbb{C}^p) \oplus \mathit{Hom}(\mathbb{C}^p, \mathbb{C}^n)$$

$$V_1 = \mathit{Hom}(\mathbb{C}^n, \mathbb{C}^q) \oplus \mathit{Hom}(\mathbb{C}^q, \mathbb{C}^n)$$

with action $g \cdot ((A, B), (C, D)) = ((gA, Bg^{-1}), (gC, Dg^{-1})).$

 $G=GL_n(\mathbb{C})$ (or one of the classical groups $O_n(\mathbb{C}), Sp_{2m}(\mathbb{C})$)

 $K = U_n$ (more generally, a maximal compact subgroup of G)

Let V be the following $\mathbb{Z}/2\mathbb{Z}$ - graded vector space $V=V_0\oplus V_1$:

$$V_0 = \mathit{Hom}(\mathbb{C}^n, \mathbb{C}^p) \oplus \mathit{Hom}(\mathbb{C}^p, \mathbb{C}^n)$$

$$V_1 = \mathit{Hom}(\mathbb{C}^n, \mathbb{C}^q) \oplus \mathit{Hom}(\mathbb{C}^q, \mathbb{C}^n)$$

with action
$$g \cdot ((A, B), (C, D)) = ((gA, Bg^{-1}), (gC, Dg^{-1})).$$

We are interested in the following problems:

1) A_V^G = algebra of G-equivariant holomorphic maps

$$f: V_0 \longrightarrow \Lambda^{\bullet} V_1^*$$

Try to mimic categorical quotient in the sense that G-equivariant holomorphic maps will come from holomorphic maps

$$F: W_0 \longrightarrow \Lambda^{\bullet}W_1^*$$

for some (to be specified) \mathbb{Z}_2 -graded vector space $W=W_0\oplus W_1.$

1) A_V^G = algebra of G-equivariant holomorphic maps

$$f: V_0 \longrightarrow \Lambda^{\bullet} V_1^*$$

Try to mimic categorical quotient in the sense that G-equivariant holomorphic maps will come from holomorphic maps

$$F: W_0 \longrightarrow \Lambda^{\bullet}W_1^*$$

for some (to be specified) \mathbb{Z}_2 -graded vector space $W=W_0\oplus W_1.$

2) given $f \in \mathcal{A}_{V}^{G}$, consider integral in the sense of Berezin

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} f^{ ext{top degree part}} d\mu$$

Aim is to simplify the integral by reduction of the number of variables: replace integral over $f^{\text{top degree part}}$ by integral over $F^{\text{top degree part}}$

$$V_0=M_{n,p}\oplus M_{p,n},\ V_1=0,\ \Lambda^{\bullet}V_1^*=\mathbb{C}$$

$$V_0 = M_{n,p} \oplus M_{p,n}, \ V_1 = 0, \ \Lambda^{\bullet}V_1^* = \mathbb{C}$$

 $f:V_0\to\mathbb{C}=\Lambda^{\bullet}V_1^*$ is "just" a *G*-invariant holomorphic function.

$$V_0 = M_{n,p} \oplus M_{p,n}, \ V_1 = 0, \ \Lambda^{\bullet}V_1^* = \mathbb{C}$$

 $f:V_0 \to \mathbb{C} = \Lambda^{ullet} V_1^*$ is "just" a G-invariant holomorphic function.

Step 1: Determine $\mathcal{A}_{V}^{G} = \text{algebra of } G\text{-equivariant holomorphic maps } f: V_0 \longrightarrow \mathbb{C} \left(= \Lambda^{\bullet} V_1^*\right).$

$$V_0=M_{n,p}\oplus M_{p,n},\ V_1=0,\ \Lambda^{\bullet}V_1^*=\mathbb{C}$$

 $f:V_0 o\mathbb{C}=\Lambda^ullet V_1^*$ is "just" a G-invariant holomorphic function.

Step 1: Determine A_V^G = algebra of G-equivariant holomorphic maps $f: V_0 \longrightarrow \mathbb{C} \ (= \Lambda^{\bullet} V_1^*)$.

Classical invariant theory: (recall $n \ge p$) GL_n -invariant polynomials: $\mathbb{C}[V_0]^G \simeq \mathbb{C}[M_{p,p}]$, the isomorphism being induced by the quotient map:

$$\pi: V_0 = M_{n,p} \oplus M_{p,n} \longrightarrow M_{p,p}, \quad (A,B) \mapsto BA.$$

$$V_0=M_{n,p}\oplus M_{p,n},\ V_1=0,\ \Lambda^{\bullet}V_1^*=\mathbb{C}$$

 $f:V_0 o\mathbb{C}=\Lambda^ullet V_1^*$ is "just" a G-invariant holomorphic function.

Step 1: Determine A_V^G = algebra of G-equivariant holomorphic maps $f: V_0 \longrightarrow \mathbb{C} \ (= \Lambda^{\bullet} V_1^*)$.

Classical invariant theory: (recall $n \ge p$) GL_n -invariant polynomials: $\mathbb{C}[V_0]^G \simeq \mathbb{C}[M_{p,p}]$, the isomorphism being induced by the quotient map:

$$\pi: V_0 = M_{n,p} \oplus M_{p,n} \longrightarrow M_{p,p}, \quad (A,B) \mapsto BA.$$

Same holds for holomorphic invariant functions (Luna):

Theorem

Every holomorphic invariant function on V_0 is the pull back of the form f(A,B)=F(BA), F a holomorphic function on $W_0=M_{p,p}$. \diamond

Step 2: Given $f \in \mathcal{A}_{V}^{G}$, simplify the integral

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} f \mathrm{d} \mu \qquad \text{ (here } f = f^{\mathrm{top}})$$

by reducing the number of variables.

$$V_{0,\mathbb{R}}=M_{n,p}\hookrightarrow M_{n,p}\oplus M_{p,n},\ A\mapsto (A,\overline{A}^t)$$

Assumption: f analytic on $V_{0,\mathbb{R}}$, rapid decay

Step 2: Given $f \in \mathcal{A}_{V}^{G}$, simplify the integral

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} f \mathrm{d} \mu \qquad \text{ (here } f = f^{\mathrm{top}})$$

by reducing the number of variables.

$$V_{0,\mathbb{R}}=M_{n,p}\hookrightarrow M_{n,p}\oplus M_{p,n},\ A\mapsto (A,\overline{A}^t)$$

Assumption: f analytic on $V_{0,\mathbb{R}}$, rapid decay

Aim: reduction to an integral over a function on the quotient.

Recall:

quotient map
$$\pi: V_0 \to M_{p,p}$$
, $(A,B) \mapsto BA$,

 $\pi(V_{0,\mathbb{R}})$ = non-neg. hermitian $p \times p$ -matrices

Let $V'_{0,\mathbb{R}} \subset V_{0,\mathbb{R}} \simeq M_{n,p}$ be the matrices of maximal rank.

 $V_{0,\mathbb{R}}$ and $V_{0,\mathbb{R}}'$ are stable under the induced U_n -action

An element $L=(A,\overline{A}^t)\in V'_{0,\mathbb{R}}$ gives a decomposition $\mathbb{C}^n=\ker(A)\oplus im(\overline{A}^t)$ and hence an element in the Grassmann variety $(U_p\times U_{n-p})\backslash U_n$ of p-planes in \mathbb{C}^n .

Fixing a unitary basis of $im(\overline{A}^t)$ one can identify the restriction of A to $im(\overline{A}^t)$ with a matrix in $GL_p(\mathbb{C})$.

Let $V'_{0,\mathbb{R}} \subset V_{0,\mathbb{R}} \simeq M_{n,p}$ be the matrices of maximal rank.

 $V_{0,\mathbb{R}}$ and $V_{0,\mathbb{R}}'$ are stable under the induced U_n -action

An element $L=(A,\overline{A}^t)\in V_{0,\mathbb{R}}'$ gives a decomposition $\mathbb{C}^n=\ker(A)\oplus im(\overline{A}^t)$ and hence an element in the Grassmann variety $(U_p\times U_{n-p})\backslash U_n$ of p-planes in \mathbb{C}^n .

Fixing a unitary basis of $im(\overline{A}^t)$ one can identify the restriction of A to $im(\overline{A}^t)$ with a matrix in $GL_p(\mathbb{C})$.

In other words:

$$V'_{0,\mathbb{R}} \simeq GL_p \times_{U_p} U_{n-p} \backslash U_n.$$

Theorem. f invariant holomorphic function on V_0 , F the corresponding holomorphic function on $M_{p,p}$, then the Berezin integral

$$\Omega_V(f) = 2^{-pn} \frac{vol(U_n)}{vol(U_{n-p})} \int_{D_p = p \times p} F(x) \det^n(x) d\mu_{D_p}.$$

where we identify GL_p/U_p with the pos. herm. matrices by $gU_p\mapsto g\overline{g}^t$.

 \Diamond

Theorem. f invariant holomorphic function on V_0 , F the corresponding holomorphic function on $M_{p,p}$, then the Berezin integral

$$\Omega_V(f) = 2^{-pn} \frac{vol(U_n)}{vol(U_{n-p})} \int_{D_p = p \times p} F(x) \det^n(x) d\mu_{D_p}.$$

where we identify GL_p/U_p with the pos. herm. matrices by $gU_p\mapsto g\overline{g}^t$.

Remark: In this case the formula is not new for the physicists. Advantage: generalizes directly to the other classical groups.

 \Diamond

The case: q = 0, $n \ge p$ respectively $n \ge 2p$.

Theorem

 $G=GL_n(\mathbb{C}), O_n(\mathbb{C}), Sp_n(\mathbb{C})$: f a G-invariant holomorphic function on V_0 , F the corresponding holomorphic function on the (algebraic) quotient $W_0=V_0/\!\!/G$, then the Berezin integral

$$\Omega_V(f) = 2^{-p(n+m)} \frac{\operatorname{vol}(K_n)}{\operatorname{vol}(K_{n,p})} \int_{D_p = G_p/K_p} F(x) \operatorname{det}^{n'}(x) d\mu_{D_p}.$$

where

G	K _n	G_p	K_p	$K_{n,p}$	m	n'
$GL_n(\mathbb{C})$	Un	$GL_p(\mathbb{C})$	U_p	U_{n-p}	0	n
$O_n(\mathbb{C})$	On	$GL_{2p}(\mathbb{R})$	$O_{2p}(\mathbb{R})$	$O_{n-2p}(\mathbb{R})$	1	<u>n</u> 2
$Sp_n(\mathbb{C})$	USp_n	$GL_p(\mathbb{H})$	USp_{2p}	USp_{n-2p}	-1	<u>n</u> 2

Remark: view G_p/K_p embedded in G_p via Cartan embedding $g \mapsto g\Theta(g^{-1})$, so $\det^{\frac{n}{2}}$ makes sense.

Recall:

$$V_0 = Hom(\mathbb{C}^n, \mathbb{C}^p) \oplus Hom(\mathbb{C}^p, \mathbb{C}^n) \quad V_1 = Hom(\mathbb{C}^n, \mathbb{C}^q) \oplus Hom(\mathbb{C}^q, \mathbb{C}^n)$$

Given: $f: V_0 \longrightarrow \Lambda^{\bullet}V_1^*$

$$\Omega_{V}(f) := \int_{V_{0,\mathbb{R}}} D_{Z,\tilde{Z},\xi,\tilde{\xi}} f(Z,\tilde{Z},\xi,\tilde{\xi})$$

• Z, \tilde{Z} – commuting variables $z_{i,j}, \tilde{z}_{j,i}$ on $V_0 = M_{n,p} \oplus M_{p,n}$

Recall:

$$V_0 = Hom(\mathbb{C}^n, \mathbb{C}^p) \oplus Hom(\mathbb{C}^p, \mathbb{C}^n) \quad V_1 = Hom(\mathbb{C}^n, \mathbb{C}^q) \oplus Hom(\mathbb{C}^q, \mathbb{C}^n)$$

Given: $f: V_0 \longrightarrow \Lambda^{\bullet} V_1^*$

$$\Omega_{V}(f) := \int_{V_{0,\mathbb{R}}} D_{Z,\tilde{Z},\xi,\tilde{\xi}} f(Z,\tilde{Z},\xi,\tilde{\xi})$$

- Z, \tilde{Z} commuting variables $z_{i,j}, \tilde{z}_{j,i}$ on $V_0 = M_{n,p} \oplus M_{p,n}$
- ullet $\xi, ilde{\xi}$ anti-commuting variables $\xi_{i,j}, ilde{\xi}_{j,i}$ on $V_1=M_{n,q}\oplus M_{q,n}$;

Recall:

$$V_0 = Hom(\mathbb{C}^n, \mathbb{C}^p) \oplus Hom(\mathbb{C}^p, \mathbb{C}^n) \quad V_1 = Hom(\mathbb{C}^n, \mathbb{C}^q) \oplus Hom(\mathbb{C}^q, \mathbb{C}^n)$$

Given: $f: V_0 \longrightarrow \Lambda^{\bullet} V_1^*$

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} D_{Z,\tilde{Z},\xi,\tilde{\xi}} f(Z,\tilde{Z},\xi,\tilde{\xi})$$

- Z, \tilde{Z} commuting variables $z_{i,j}, \tilde{z}_{j,i}$ on $V_0 = M_{n,p} \oplus M_{p,n}$
- ullet $\xi, ilde{\xi}$ anti-commuting variables $\xi_{i,j}, ilde{\xi}_{j,i}$ on $V_1=M_{n,q}\oplus M_{q,n}$;

So $f(Z,\tilde{Z},\xi,\tilde{\xi})=$ short way of writing for $f:V_0\to \Lambda^{ullet}V_1^*$

$$\sum_{f_{i_1,j_1,\ldots,k_1,l_1,\ldots}\left(z_{i,j},\tilde{z}_{i,j}\right)} f_{i_1,j_1} \wedge \ldots \wedge \xi_{i_t,j_t} \wedge \tilde{\xi}_{k_1,l_1} \wedge \ldots \wedge \tilde{\xi}_{k_s,l_s}$$
 ordered exterior products

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} D_{Z,\tilde{Z},\xi,\tilde{\xi}} f(Z,\tilde{Z},\xi,\tilde{\xi})$$

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} D_{Z,\tilde{Z},\xi,\tilde{\xi}} f(Z,\tilde{Z},\xi,\tilde{\xi})$$

• Berezin form: $D_{Z,\tilde{Z},\xi,\tilde{\xi}} =$

$$2^{2pn}\prod_{c=1}^{p}\prod_{i=1}^{n}|d\mathfrak{R}e(z_{i,c})|d\mathfrak{I}m(z_{i,c})|\otimes(2\pi)^{qn}\prod_{e=1}^{q}\prod_{i=1}^{n}\frac{\partial^{2}}{\partial\xi_{j,e}\partial\tilde{\xi}_{e,j}}$$

ullet Convention: $\frac{\partial^2}{\partial \xi \partial \tilde{\xi}} \tilde{\xi} \xi = 1.$

Up to constants: $D_{Z,\tilde{Z},\xi,\tilde{\xi}}$ projects f on the component of maximum degree f^{top} in the anti-commuting variables, Lebesgue measure on $V_{0,\mathbb{R}}$.

$$\Omega_V(f) := \int_{V_{0,\mathbb{R}}} D_{Z,\tilde{Z},\xi,\tilde{\xi}} f(Z,\tilde{Z},\xi,\tilde{\xi})$$

• Berezin form: $D_{Z,\tilde{Z},\xi,\tilde{\xi}} =$

$$2^{2pn} \prod_{c=1}^p \prod_{i=1}^n |d \mathfrak{R} e(z_{i,c})| d \mathfrak{I} m(z_{i,c})| \otimes (2\pi)^{qn} \prod_{e=1}^q \prod_{i=1}^n \frac{\partial^2}{\partial \xi_{j,e} \partial \tilde{\xi}_{e,j}}$$

ullet Convention: $\frac{\partial^2}{\partial \xi \partial \tilde{\xi}} \tilde{\xi} \xi = 1.$

Up to constants: $D_{Z,\tilde{Z},\xi,\tilde{\xi}}$ projects f on the component of maximum degree f^{top} in the anti-commuting variables, Lebesgue measure on $V_{0,\mathbb{R}}$.

• $V_{0,\mathbb{R}}=\{(A,{}^t\overline{A})|A\in M_{n,p}(\mathbb{C})\}\subset V_0$, $f|_{V_{0,\mathbb{R}}}$ analytic, rapid decay.

Given ensemble of disordered Hamiltonians (for example hermitian $n \times n$ matrices, real symmetric matrices), probabilty distribution rapid decay at infinity, or bounded support (for example Gaussian distribution).

Goal: study spectral correlation functions and other "observable quantities".

Given ensemble of disordered Hamiltonians (for example hermitian $n \times n$ matrices, real symmetric matrices), probabilty distribution rapid decay at infinity, or bounded support (for example Gaussian distribution).

Goal: study spectral correlation functions and other "observable quantities".

Supersymmetry method:

Starting point: characteristic function of the probabilty measure of a given ensemble of disordered Hamiltonians.

$$\mathcal{F}(K) = \int e^{-i\mathsf{Tr}(KH)} d\mu(H)$$

What is the Fourier variable K?

The exact meaning of the Fourier variable K depends on what observable is to be computed.

In our case one should think of a lattice with (p+q)-sites, associated to each site a vector space of dimension n, n is the number of orbitals / states per site (granular materials).

$$V = V_0 \oplus V_1, \left\{ egin{array}{l} V_0 = M_{n,p} \oplus M_{p,n} ext{ commuting variables } z_{i,j}, ilde{z}_{j,i} \ V_1 = M_{n,q} \oplus M_{q,n} ext{ anti-commuting variables } \zeta_{k,l}, ilde{\zeta}_{l,k} \end{array}
ight.$$

p-bosonic and q-fermionic copies of the vector space \mathbb{C}^n .

Interest: study behavior for $n \to \infty$

The $\tilde{\ }$ -variables come into the picture due to the complexification of the picture (analytic \to holomorphic).

For such a situation, in general the matrix entries of K will be of the form

$$K_{i,j} = \sum_{l=1}^{p} z_{i,l} \tilde{z}_{l,j} + \sum_{m=1}^{q} \zeta_{i,m} \tilde{\zeta}_{m,j}$$

where $z_{i,j}, \tilde{z}_{j,i}$ commuting variables, $1 \leq i \leq n, 1 \leq j \leq p$ $\zeta_{k,l}, \tilde{\zeta}_{l,k}$ anti-commuting variables, $1 \leq i \leq n, 1 \leq j \leq q$.

For such a situation, in general the matrix entries of K will be of the form

$$K_{i,j} = \sum_{l=1}^{p} z_{i,l} \tilde{z}_{l,j} + \sum_{m=1}^{q} \zeta_{i,m} \tilde{\zeta}_{m,j}$$

where $z_{i,j}, \tilde{z}_{j,i}$ commuting variables, $1 \le i \le n, 1 \le j \le p$ $\zeta_{k,l}, \tilde{\zeta}_{l,k}$ anti-commuting variables, $1 \le i \le n, 1 \le j \le q$.

To calculate the spectral correlation function for example, one has to calculate the Berezin integral for

$$f = \exp\left(i\sum_{l,l'} z_{l,l'} E_{l'} \tilde{z}_{l',l} + i\sum_{k,k'} \zeta_{k,k'} F_{k'} \tilde{\zeta}_{k',k}\right) \mathcal{F}(K)$$

For such a situation, in general the matrix entries of K will be of the form

$$K_{i,j} = \sum_{l=1}^{p} z_{i,l} \tilde{z}_{l,j} + \sum_{m=1}^{q} \zeta_{i,m} \tilde{\zeta}_{m,j}$$

where $z_{i,j}, \tilde{z}_{j,i}$ commuting variables, $1 \le i \le n, 1 \le j \le p$ $\zeta_{k,l}, \tilde{\zeta}_{l,k}$ anti-commuting variables, $1 \le i \le n, 1 \le j \le q$.

To calculate the spectral correlation function for example, one has to calculate the Berezin integral for

$$f = \exp\left(i\sum_{l,l'} z_{l,l'} E_{l'} \tilde{z}_{l',l} + i\sum_{k,k'} \zeta_{k,k'} F_{k'} \tilde{\zeta}_{k',k}\right) \mathcal{F}(K)$$

Note: f is a map $f: V_0 \to \Lambda^{\bullet} V_1^*$, a so-called *superfunction*. parameters E_I , F_I - physical meaning of energy

Leaving out many details, to calculate for example the spectral correlation function one ends up with the following problem: have a holomorphic map or superfunction

$$f: V_0 \to \Lambda^{\bullet} V_1^*$$

and one has to calculate the Berezin integral, i.e.:

Leaving out many details, to calculate for example the spectral correlation function one ends up with the following problem: have a holomorphic map or superfunction

$$f: V_0 \to \Lambda^{\bullet} V_1^*$$

and one has to calculate the Berezin integral, i.e.:

$$\Omega_{V}(f) = \int_{M_{n,p}} D_{z,\tilde{z},\zeta,\tilde{\zeta}} f(z,\tilde{z},\zeta,\tilde{\zeta})$$

where $M_{n,p}$ is embedded in $V_0=M_{n,p}\oplus M_{p,n}$ as a real subspace via

$$A \mapsto (A, \overline{A}^t).$$

Assume: f analytic on the diagonal $M_{n,p}$, rapid decay (Schwartz function, functions that decrease faster than any power).

Remark: doubling of the variables, complexification of a real situation

Summarizing:

```
V = V_0 \oplus V_1 where
```

- $V_0 = M_{n,p} \oplus M_{p,n}$ commuting variables $z_{i,j}, \tilde{z}_{i,j}$
- $V_1 = M_{n,q} \oplus M_{q,n}$ anti-commuting variables $\zeta_{i,j}, ilde{\zeta}_{i,j}$
- looking at holomorphic maps $f:V_0 o \Lambda^ullet(V_1^*)$

Summarizing:

- $V = V_0 \oplus V_1$ where
- $V_0 = M_{n,p} \oplus M_{p,n}$ commuting variables $z_{i,j}, \tilde{z}_{i,j}$
- $V_1 = M_{n,q} \oplus M_{q,n}$ anti-commuting variables $\zeta_{i,j}, \widetilde{\zeta}_{i,j}$
- looking at holomorphic maps $f:V_0 o \Lambda^ullet(V_1^*)$

In the following we have in addition:

- $G = GL_n(\mathbb{C})$ (or a classical group: $Sp_n(\mathbb{C}), O_n(\mathbb{C})$)
- probability measure $d\mu(H)$ on the the ensemble is K-invariant
- hence *f* is *G*-equivariant

Summarizing:

 $V = V_0 \oplus V_1$ where

- $V_0 = M_{n,p} \oplus M_{p,n}$ commuting variables $z_{i,j}, \tilde{z}_{i,j}$
- $V_1 = M_{n,q} \oplus M_{q,n}$ anti-commuting variables $\zeta_{i,j}, ilde{\zeta}_{i,j}$
- looking at holomorphic maps $f:V_0 o \Lambda^ullet(V_1^*)$

In the following we have in addition:

- $G = GL_n(\mathbb{C})$ (or a classical group: $Sp_n(\mathbb{C}), O_n(\mathbb{C})$)
- probability measure $d\mu(H)$ on the the ensemble is K-invariant
- hence f is G-equivariant

Superbosonization (Efetov): use the additional symmetry to simplify the Berezin integral

- assume $n \geq p$ for $G = GL_n(\mathbb{C}), \ n \geq 2p$ for $Sp_n(\mathbb{C}), \ O_n(\mathbb{C})$ Example

$$\Omega_{V}(f) = 2^{-pn} \frac{vol(U_n)}{vol(U_{n-p})} \int_{D_p = p \times p} F(x) \det^{n}(x) d\mu_{D_p}.$$

The other extreme case: p = 0, q > 0.

First consider again $G = GL_n(\mathbb{C})$. Since p = 0 one has $V_0 = 0$ and

ince p = 0 one has $v_0 = 0$ and

$$V = V_1 = \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^q) \oplus \operatorname{Hom}(\mathbb{C}^q, \mathbb{C}^n) = M_{n,q}(\mathbb{C}) \oplus M_{q,n}(\mathbb{C}).$$

The algebra \mathcal{A}_V of holomorphic maps $V_0 o \Lambda^ullet V_1^*$ ist just

$$\mathcal{A}_V = \Lambda^{\bullet}(V_1^*).$$

First consider again $G = GL_n(\mathbb{C})$. Since p = 0 one has $V_0 = 0$ and

$$V = V_1 = \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^q) \oplus \operatorname{Hom}(\mathbb{C}^q, \mathbb{C}^n) = M_{n,q}(\mathbb{C}) \oplus M_{q,n}(\mathbb{C}).$$

The algebra \mathcal{A}_V of holomorphic maps $V_0 o \Lambda^ullet V_1^*$ ist just

$$\mathcal{A}_V = \Lambda^{\bullet}(V_1^*).$$

The action of G on $V=V_1$: $g\cdot (A,B)=(gA,Bg^{-1})$, induces an action on \mathcal{A}_V , and the algebra \mathcal{A}_V^G of G-equivariant holomorphic maps $V_0\to \Lambda^{\bullet}V_1^*$ are just the G-fixed points in $\Lambda^{\bullet}(V_1^*)$.

First consider again $G = GL_n(\mathbb{C})$.

Since p=0 one has $V_0=0$ and

$$V = V_1 = \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^q) \oplus \operatorname{Hom}(\mathbb{C}^q, \mathbb{C}^n) = M_{n,q}(\mathbb{C}) \oplus M_{q,n}(\mathbb{C}).$$

The algebra \mathcal{A}_V of holomorphic maps $V_0 o \Lambda^ullet V_1^*$ ist just

$$\mathcal{A}_V = \Lambda^{\bullet}(V_1^*).$$

The action of G on $V=V_1$: $g\cdot (A,B)=(gA,Bg^{-1})$, induces an action on \mathcal{A}_V , and the algebra \mathcal{A}_V^G of G-equivariant holomorphic maps $V_0\to \Lambda^{\bullet}V_1^*$ are just the G-fixed points in $\Lambda^{\bullet}(V_1^*)$.

Since $A_V = \Lambda^{\bullet} V_1^*$, the algebras A_V and A_V^{G} come equipped with natural grading.

Berezin integral = projection of $f \in \mathcal{A}_V^G$ onto its top-degree component:

$$\Omega_V: \mathcal{A}_V^G \to \Lambda^{2qn}V^*, \quad f \mapsto f^{top}$$

To get a uniform formula also for cases $p, q \neq 0$, we would like to get a formula for $\Omega_V(f)$ in this case similar to the formula we had in the case q = 0:

To get a uniform formula also for cases $p, q \neq 0$, we would like to get a formula for $\Omega_V(f)$ in this case similar to the formula we had in the case q = 0:

Old case q=0: replace f= invariant function on V_0 by F= function on quotient space W, replace Berezin integral $\Omega(f)$ by: factor $\int_{symm.\ space\ D_p} F det^n d\mu_{D_p}$.

New case p=0: replace $f\in (\Lambda^{\bullet}V_1^*)^G$ by an H-invariant function on W (but what is H, what space W??), replace projection by integration over a ?symmetric space?.

1st step Howe duality: For simplicity n even, $G = GL_n$.

1st step Howe duality: For simplicity n even, $G = GL_n$.

Set N=qn, let $\mathcal{C}(V_1\oplus V_1^*)$ be the Clifford algebra, i.e.:

 $\mathcal{C}(V_1 \oplus V_1^*)$ is the $\mathbb C$ algebra generated by $V_1 \oplus V_1^*$ subject to the condition

$$ww' + w'w = s(w, w') \cdot 1,$$

where for

$$w = v + \phi, w' = v' + \phi' \in V_1 \oplus V_1^* : s(v + \phi, v' + \phi') = \phi'(v) + \phi(v').$$

```
Recall: linear span of ww'-w'w stable under [\cdot,\cdot] realization of the Lie algebra \mathfrak{o}(V_1\oplus V_1^*), get Spin-representation of Spin_{4N} on \Lambda^{\bullet}V_1^* (recall N=qn) action of G on V_1,V_1^* gives rise to a map \phi:GL_n\to Spin_{4N} Set G'= centralizer in Spin_{4N} of G, then G'=GL_{2q}(\mathbb{C}). G'=GL_{2q}(\mathbb{C}) is called the Howe dual of G=GL_{p}(\mathbb{C})
```

```
Recall: linear span of ww' - w'w stable under [\cdot, \cdot]
realization of the Lie algebra \mathfrak{o}(V_1 \oplus V_1^*),
get Spin-representation of Spin<sub>4N</sub> on \Lambda^{\bullet}V_1^*
                                                                               (recall N = qn)
action of G on V_1, V_1^* gives rise to a map \phi: GL_n \to Spin_{4N}
Set G' = \text{centralizer in } Spin_{4N} \text{ of } G, then G' = GL_{2g}(\mathbb{C}).
G' = GL_{2g}(\mathbb{C}) is called the Howe dual of G = GL_{n}(\mathbb{C})
(To see G' = GL_{2\sigma}(\mathbb{C}), recall: V_1 \oplus V_1^* \simeq \mathbb{C}^n \otimes \mathbb{C}^{2q^*} \oplus \mathbb{C}^{n^*} \otimes \mathbb{C}^{2q}.)
```

Recall: linear span of ww' - w'w stable under $[\cdot, \cdot]$ realization of the Lie algebra $\mathfrak{o}(V_1 \oplus V_1^*)$, get Spin-representation of Spin_{4N} on $\Lambda^{\bullet}V_1^*$ (recall N = qn) action of G on V_1, V_1^* gives rise to a map $\phi: GL_n \to Spin_{4N}$ Set $G' = \text{centralizer in } Spin_{4N} \text{ of } G$, then $G' = GL_{2g}(\mathbb{C})$. $G' = GL_{2g}(\mathbb{C})$ is called the Howe dual of $G = GL_{n}(\mathbb{C})$ (To see $G' = GL_{2\sigma}(\mathbb{C})$, recall: $V_1 \oplus V_1^* \simeq \mathbb{C}^n \otimes \mathbb{C}^{2q^*} \oplus \mathbb{C}^{n^*} \otimes \mathbb{C}^{2q}$.)

Seems to be leading away from the problem...but

By Howe duality:

 $\Lambda^{\bullet} V_1^*$ ist a direct sum

$$\Lambda^{\bullet}V_{1}^{*}\simeq\bigoplus U_{i}\otimes N_{i}$$

where U_i , N_i irreducible G resp. G'-modules, and $\forall i \neq j$: $U_i \not\simeq U_j$, $N_i \not\simeq N_j$.

By Howe duality:

 $\Lambda^{\bullet}V_1^*$ ist a direct sum

$$\Lambda^{\bullet}V_{1}^{*}\simeq\bigoplus U_{i}\otimes N_{i}$$

where U_i , N_i irreducible G resp. G'-modules, and $\forall i \neq j$: $U_i \not\simeq U_j$, $N_i \not\simeq N_j$.

In particular: $\mathcal{A}_V^G = \Lambda^{\bullet}(V_1^*)^G$ is an irreducible G'-module:

$$\mathcal{A}_{V}^{G}\simeq V(\frac{n}{2},\ldots,\frac{n}{2},-\frac{n}{2},\ldots,-\frac{n}{2}).$$

By Howe duality:

 $\Lambda^{\bullet}V_1^*$ ist a direct sum

$$\Lambda^{\bullet}V_1^*\simeq\bigoplus U_i\otimes N_i$$

where U_i , N_i irreducible G resp. G'-modules, and $\forall i \neq j$: $U_i \not\simeq U_j$, $N_i \not\simeq N_j$.

In particular: $\mathcal{A}_V^G = \Lambda^{\bullet}(V_1^*)^G$ is an irreducible G'-module:

$$\mathcal{A}_{V}^{G}\simeq V(\frac{n}{2},\ldots,\frac{n}{2},-\frac{n}{2},\ldots,-\frac{n}{2}).$$

Note: $\Lambda^0(V_1^*) \subset \Lambda^{\bullet}(V_1^*)^G$ and $\Lambda^{2N}(V_1^*) \subset \Lambda^{\bullet}(V_1^*)^G$ are highest (vacuum) / lowest weight vectors. So Berezin integral becomes projection onto the lowest weight vector.

Consider the "Levi decomposition":

$$\mathfrak{g}' = \mathsf{Lie}\, \mathsf{GL}_{2q}, \quad \mathfrak{g}' = \mathfrak{u}^- \oplus \mathfrak{h} \oplus \mathfrak{u}^+$$

where $\mathfrak{h}=\operatorname{Lie} GL_q\oplus\operatorname{Lie} GL_q$, \mathfrak{u}^- and \mathfrak{u}^+ are isomorphic to $M_q(\mathbb{C})$, so

$$\mathfrak{u}^{-} = \left(\begin{array}{cc} 0 & 0 \\ * & 0 \end{array}\right), \mathfrak{h} = \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right), \mathfrak{u}^{+} = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right),$$

Consider the "Levi decomposition":

$$\mathfrak{g}' = \mathsf{Lie}\, \mathsf{GL}_{2q}, \quad \mathfrak{g}' = \mathfrak{u}^- \oplus \mathfrak{h} \oplus \mathfrak{u}^+$$

where $\mathfrak{h}=\operatorname{Lie} GL_q\oplus\operatorname{Lie} GL_q$, \mathfrak{u}^- and \mathfrak{u}^+ are isomorphic to $M_q(\mathbb{C})$, so

$$\mathfrak{u}^{-} = \left(\begin{array}{cc} 0 & 0 \\ * & 0 \end{array}\right), \mathfrak{h} = \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right), \mathfrak{u}^{+} = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right),$$

Set $\lambda = (\frac{n}{2}, \dots, \frac{n}{2}, -\frac{n}{2}, \dots, -\frac{n}{2})$, so $\mathcal{A}_{V}^{G} \simeq V(\lambda)$ as G'-module.

Consider the "Levi decomposition":

$$\mathfrak{g}' = \mathsf{Lie}\, \mathsf{GL}_{2q}, \quad \mathfrak{g}' = \mathfrak{u}^- \oplus \mathfrak{h} \oplus \mathfrak{u}^+$$

where $\mathfrak{h}=\operatorname{Lie} GL_q\oplus\operatorname{Lie} GL_q$, \mathfrak{u}^- and \mathfrak{u}^+ are isomorphic to $M_q(\mathbb{C})$, so

$$\mathfrak{u}^{-} = \left(\begin{array}{cc} 0 & 0 \\ * & 0 \end{array}\right), \mathfrak{h} = \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right), \mathfrak{u}^{+} = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right),$$

Set $\lambda = (\frac{n}{2}, \dots, \frac{n}{2}, -\frac{n}{2}, \dots, -\frac{n}{2})$, so $\mathcal{A}_{V}^{G} \simeq V(\lambda)$ as G'-module.

 λ extends to $\mathfrak{h}\oplus\mathfrak{u}^+$, consider the parabolic Verma module

$$M(\lambda) = U(\mathfrak{g}') \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}^+)} \mathbb{C}_{\lambda}$$

Interpretation as functions:

projection of parabolic Verma module $M(\lambda) o V(\lambda) \simeq \mathcal{A}_V^G$

Interpretation as functions:

projection of parabolic Verma module $M(\lambda) \to V(\lambda) \simeq \mathcal{A}_V^G$ as $U(\mathfrak{h})$ -module: $M(\lambda) \simeq U(\mathfrak{u}^-) \otimes \mathbb{C}_{\lambda} \simeq \mathbb{C}[M_q] \otimes \mathbb{C}_{\lambda}$ since the enveloping algebra $U(\mathfrak{u}^-)$ is commutative. Moreover, \mathfrak{h} -action on $M(\lambda)$ integrates to $H = GL_q \times GL_q$ -action on $M(\lambda)$.

Interpretation as functions:

projection of parabolic Verma module $M(\lambda) o V(\lambda)\simeq \mathcal{A}_V^{\mathcal{G}}$

as $U(\mathfrak{h})$ -module: $M(\lambda) \simeq U(\mathfrak{u}^-) \otimes \mathbb{C}_{\lambda} \simeq \mathbb{C}[M_q] \otimes \mathbb{C}_{\lambda}$ since the enveloping algebra $U(\mathfrak{u}^-)$ is commutative. Moreover, \mathfrak{h} -action on $M(\lambda)$ integrates to $H = GL_q \times GL_q$ -action on $M(\lambda)$.

 $H = GL_q \times GL_q$ -action on M_q is spherical, so irreducible H-representations in $\mathbb{C}[M_q]$ have multiplicity at most one.

Interpretation as functions:

projection of parabolic Verma module $M(\lambda) o V(\lambda) \simeq \mathcal{A}_V^G$

as $U(\mathfrak{h})$ -module: $M(\lambda) \simeq U(\mathfrak{u}^-) \otimes \mathbb{C}_{\lambda} \simeq \mathbb{C}[M_q] \otimes \mathbb{C}_{\lambda}$ since the enveloping algebra $U(\mathfrak{u}^-)$ is commutative. Moreover, \mathfrak{h} -action on $M(\lambda)$ integrates to $H = GL_q \times GL_q$ -action on $M(\lambda)$.

 $H = GL_q \times GL_q$ -action on M_q is spherical, so irreducible H-representations in $\mathbb{C}[M_q]$ have multiplicity at most one.

It follows

 $\dim\operatorname{Hom}_H(M(\lambda),V(\lambda)_{-\lambda})=\dim\operatorname{Hom}_H(\mathbb{C}[M_q]\otimes\mathbb{C}_\lambda,V(\lambda)_{-\lambda})\leq 1.$

Interpretation as functions:

projection of parabolic Verma module $\mathit{M}(\lambda) o \mathit{V}(\lambda) \simeq \mathcal{A}_{\mathit{V}}^{\mathit{G}}$

as $U(\mathfrak{h})$ -module: $M(\lambda)\simeq U(\mathfrak{u}^-)\otimes \mathbb{C}_\lambda\simeq \mathbb{C}[M_q]\otimes \mathbb{C}_\lambda$ since the enveloping algebra $U(\mathfrak{u}^-)$ is commutative. Moreover, \mathfrak{h} -action on $M(\lambda)$ integrates to $H=GL_q\times GL_q$ -action on $M(\lambda)$.

 $H = GL_q \times GL_q$ -action on M_q is spherical, so irreducible H-representations in $\mathbb{C}[M_q]$ have multiplicity at most one.

It follows

$$\dim \operatorname{Hom}_{H}(M(\lambda), V(\lambda)_{-\lambda}) = \dim \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{\lambda}, V(\lambda)_{-\lambda}) \leq 1.$$

and hence

$$\operatorname{Hom}_{H}(V(\lambda), V(\lambda)_{-\lambda}) = \operatorname{Hom}_{H}(M(\lambda), V(\lambda)_{-\lambda})$$

is one dimensional and spanned by the Berezin integral

So we can identify the Berezin integral in the following way with an element in $\operatorname{Hom}_H(M(\lambda),V(\lambda)_{-\lambda})$ and hence:

$$\begin{array}{ll} \operatorname{Hom}_{H}(V(\lambda),V(\lambda)_{-\lambda}) &= \operatorname{Hom}_{H}(M(\lambda),V(\lambda)_{-\lambda}) \\ &= \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{\lambda},V(\lambda)_{-\lambda}) \\ &= \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{2\lambda},\mathbb{C}) \end{array}$$

So we can identify the Berezin integral in the following way with an element in $\operatorname{Hom}_H(M(\lambda),V(\lambda)_{-\lambda})$ and hence:

$$\begin{array}{ll} \operatorname{Hom}_{H}(V(\lambda),V(\lambda)_{-\lambda}) &= \operatorname{Hom}_{H}(M(\lambda),V(\lambda)_{-\lambda}) \\ &= \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{\lambda},V(\lambda)_{-\lambda}) \\ &= \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{2\lambda},\mathbb{C}) \end{array}$$

and, as H-modules ($H = GL_q \times GL_q$):

$$\mathbb{C}[GL_q] = \mathbb{C}[M_q]_{\mathsf{det}} \supset \mathbb{C}[M_q] \otimes \mathbb{C}_{2\lambda} = \frac{1}{\mathsf{det}^n} \mathbb{C}[M_q]$$

So we can identify the Berezin integral in the following way with an element in $\operatorname{Hom}_H(M(\lambda),V(\lambda)_{-\lambda})$ and hence:

$$\begin{array}{ll} \operatorname{Hom}_{H}(V(\lambda),V(\lambda)_{-\lambda}) &= \operatorname{Hom}_{H}(M(\lambda),V(\lambda)_{-\lambda}) \\ &= \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{\lambda},V(\lambda)_{-\lambda}) \\ &= \operatorname{Hom}_{H}(\mathbb{C}[M_{q}] \otimes \mathbb{C}_{2\lambda},\mathbb{C}) \end{array}$$

and, as *H*-modules $(H = GL_q \times GL_q)$:

$$\mathbb{C}[GL_q] = \mathbb{C}[M_q]_{\text{det}} \supset \mathbb{C}[M_q] \otimes \mathbb{C}_{2\lambda} = \frac{1}{\det^n} \mathbb{C}[M_q]$$

Here one has an obvious projector onto the invariants

$$\mathbb{C}[GL_q] \to \mathbb{C}, \quad F \mapsto \int_{U_q} F dk$$

It follows:

$$f\in (\Lambda^{ullet}V_1^*)^G o f\in V(\lambda)$$
 identification with an element in the $G'=GL_{2q}(\mathbb C)$ -module

It follows:

$$f \in (\Lambda^{\bullet}V_1^*)^G \rightarrow f \in V(\lambda)$$
 identification with an element in the $G' = GL_{2q}(\mathbb{C})$ -module $\rightarrow u \otimes z_{\lambda} \in U(\mathfrak{u}^-) \otimes \mathbb{C}_{\lambda}$ lifting the element to the Verma module

It follows:

$$f \in (\Lambda^{ullet} V_1^*)^G o f \in V(\lambda)$$
 identification with an element in the $G' = GL_{2q}(\mathbb{C})$ -module $\to u \otimes z_\lambda \in U(\mathfrak{u}^-) \otimes \mathbb{C}_\lambda$ lifting the element to the Verma module $\to F(x) \mathrm{det}^{-n}(x) \in \mathbb{C}[M_q] \otimes \mathbb{C}_{2\lambda} \subset \mathbb{C}[GL_q(\mathbb{C})]$ identification with a function on $GL_q(\mathbb{C})$

and for the Berezin integral we the identification:

$$\Omega_V(f)$$
 = projection on the lowest weight space

It follows:

$$f \in (\Lambda^{ullet} V_1^*)^G
ightarrow f \in V(\lambda)$$
 identification with an element in the $G' = GL_{2q}(\mathbb{C})$ -module $ightarrow u \otimes z_\lambda \in U(\mathfrak{u}^-) \otimes \mathbb{C}_\lambda$ lifting the element to the Verma module $ightarrow F(x) \mathrm{det}^{-n}(x) \in \mathbb{C}[M_q] \otimes \mathbb{C}_{2\lambda} \subset \mathbb{C}[GL_q(\mathbb{C})]$ identification with a function on $GL_q(\mathbb{C})$

and for the Berezin integral we the identification:

 $\Omega_V(f)=$ projection on the lowest weight space = projection on the unique 1-dimensional H-submodule for the character $-\lambda$

It follows:

$$f \in (\Lambda^{ullet} V_1^*)^G
ightarrow f \in V(\lambda)$$
 identification with an element in the $G' = GL_{2q}(\mathbb{C})$ -module $ightarrow u \otimes z_\lambda \in U(\mathfrak{u}^-) \otimes \mathbb{C}_\lambda$ lifting the element to the Verma module $ightarrow F(x) \mathrm{det}^{-n}(x) \in \mathbb{C}[M_q] \otimes \mathbb{C}_{2\lambda} \subset \mathbb{C}[GL_q(\mathbb{C})]$ identification with a function on $GL_q(\mathbb{C})$

and for the Berezin integral we the identification:

$$\Omega_V(f)$$
 = projection on the lowest weight space
 = projection on the unique 1-dimensional
 H -submodule for the character $-\lambda$
 = projection of $F(k) \det^{-n}$ onto its "invariant part"

= projection of
$$F(k)$$
 det "onto its invariant part"

$$= \int_{U_q} F(k) \det^{-n}(k) dk.$$

The other extremal case: p=0, q>0, $G=GL_n(\mathbb{C}), O_n(\mathbb{C}), Sp_n(\mathbb{C})$

Theorem

For $f \in \Lambda^{\bullet}(V_1^*)^G \simeq V(\lambda)$, let $F \in \mathbb{C}[W] \simeq U(\mathfrak{u}^-)$ be a lift. The Berezin integral $f \mapsto \Omega_V(f)$ can be computed as an integral over the compact symmetric space K/K_0 :

$$\Omega_V(f) = (2\pi)^{qn} 2^{qm} \frac{vol(K_n)}{vol(K_{n,q})} \int_{D_q = K/K_0} F(y) det^{-n'}(y) d\mu_{D_q}$$

where

G	K _n	$K_{n,q}$	K	K_0	m	n'
$GL_n(\mathbb{C})$	Un	U_{n+q}	$U_q \times U_q$	$\Delta(U_q)$	0	n
$O_n(\mathbb{C})$	$O_n(\mathbb{R})$	$O_{n+2q}(\mathbb{R})$	U_{2q}	USp_{2q}	1	n/2
$Sp_n(\mathbb{C})$	USp_n	USp_{n+2q}	U_{2q}	$O_{2q}(\mathbb{R})$	-1	n/2

Note: in the case O_n one has $K/K_0 \subset$ skew symmetric matrices, so $\det^{\frac{1}{2}}$ is defined.

In the formulas before $(G = GL_n(\mathbb{C}))$:

$$\Omega_V(f) = constant \int_{D_p = p \times p} F(x) det^n(x) d\mu_{D_p}.$$

for p = 0

$$\Omega_V(f) = constant \int_{D_q = K/K_0} F(y) det^{-n}(y) d\mu_{D_q}$$

for q = 0.

In the formulas before $(G = GL_n(\mathbb{C}))$:

$$\Omega_V(f) = constant \int_{D_p = p \times p} F(x) det^n(x) d\mu_{D_p}.$$

for p = 0

$$\Omega_V(f) = constant \int_{D_q = K/K_0} F(y) det^{-n}(y) d\mu_{D_q}$$

for q = 0.

For the general case we have to combine the positive powers of the determinant $\det^{n}(x)$ and the negative powers $\det^{-n}(y)$, this is done by the Berezinian.

Background: in the framework of supermanifolds the Berezinian plays the same role as the determinant when considering coordinate changes on a supermanifold.

Consider the \mathbb{Z}_2 -graded vector space $W=W_0\oplus W_1$, where

$$W_0 = W_{0,0} \oplus W_{1,1} = M_{p,p} \oplus M_{q,q}$$

$$W_1 = W_{0,1} \oplus W_{1,0} = M_{p,q} \oplus M_{q,p}.$$

Consider the \mathbb{Z}_2 -graded vector space $W=W_0\oplus W_1$, where

$$W_0 = W_{0,0} \oplus W_{1,1} = M_{p,p} \oplus M_{q,q}$$

$$W_1 = W_{0,1} \oplus W_{1,0} = M_{p,q} \oplus M_{q,p}.$$

An element $P \in W$ can be considered as a "block matrix" or "super matrix" for the "super space" $\mathbb{C}^{p|q}$:

$$P = \begin{pmatrix} x & \sigma \\ \tau & y \end{pmatrix} \qquad \begin{matrix} x \in W_{0,0} & \sigma \in W_{1,0} \\ \tau \in W_{0,1} & y \in W_{1,1} \end{matrix}$$

Consider the \mathbb{Z}_2 -graded vector space $W=W_0\oplus W_1$, where

$$W_0 = W_{0,0} \oplus W_{1,1} = M_{p,p} \oplus M_{q,q}$$

$$W_1 = W_{0,1} \oplus W_{1,0} = M_{p,q} \oplus M_{q,p}.$$

An element $P \in W$ can be considered as a "block matrix" or "super matrix" for the "super space" $\mathbb{C}^{p|q}$:

$$P = \begin{pmatrix} x & \sigma \\ \tau & y \end{pmatrix} \qquad \begin{matrix} x \in W_{0,0} & \sigma \in W_{1,0} \\ \tau \in W_{0,1} & y \in W_{1,1} \end{matrix}$$

Let $W'' \subset W$ be the subset of supermatrices such that x, y are invertible, then the superdeterminant:

$$SDet \begin{pmatrix} x & \sigma \\ \tau & y \end{pmatrix} = \frac{\det(x)}{\det(y - \tau x^{-1}\sigma)} = \frac{\det(x - \sigma y^{-1}\tau)}{\det(y)}$$

is well defined.

$$SDet \left(\begin{array}{cc} x & \sigma \\ \tau & y \end{array} \right) = \frac{\det(x - \sigma y^{-1} \tau)}{\det(y)}$$

For q = 0 set SDet(x) = det(x) and for p = 0 we set $SDet(y) = det^{-1}(y)$.

A similar function which we will need is

$$J(x,y) = \frac{\det^q(x) \det^q(y)}{\det^{q-p}(y - \tau x^{-1}\sigma)}.$$

Superbosonization formula:

Consider now the general case for $G = GL_n(\mathbb{C})$: assume $n \geq p \geq 0, q \geq 0$.

$$V_0 = M_{n,p} \oplus M_{p,n}, \quad V_1 = M_{n,q} \oplus M_{q,n}$$

$$W_0=M_{p,p}\oplus M_{q,q}, \quad W_1=M_{p,q}\oplus M_{q,p}.$$

Proposition: If $n \ge p$, then \exists surjective homomorphism between

- holomorphic maps $F:W_0 o \Lambda^ullet(W_1^*)$ and
- holomorphic $G=GL_n$ -equivariant maps $f:V_0 o \Lambda^ullet(V_1^*).$

Consider now the general case for $G = GL_n(\mathbb{C})$: assume $n \geq p \geq 0, q \geq 0$.

$$V_0 = M_{n,p} \oplus M_{p,n}, \quad V_1 = M_{n,q} \oplus M_{q,n}$$

$$W_0=M_{p,p}\oplus M_{q,q}, \quad W_1=M_{p,q}\oplus M_{q,p}.$$

Proposition: If $n \ge p$, then \exists surjective homomorphism between

- holomorphic maps $F:W_0 o \Lambda^ullet(W_1^*)$ and
- holomorphic $G=GL_n$ -equivariant maps $f:V_0 o \Lambda^ullet(V_1^*).$

Proof.

Consider now the general case for $G = GL_n(\mathbb{C})$: assume $n \geq p \geq 0, q \geq 0$.

$$V_0 = M_{n,p} \oplus M_{p,n}, \quad V_1 = M_{n,q} \oplus M_{q,n}$$

$$W_0=M_{p,p}\oplus M_{q,q}, \quad W_1=M_{p,q}\oplus M_{q,p}.$$

Proposition: If $n \ge p$, then \exists surjective homomorphism between

- holomorphic maps $F:W_0 o \Lambda^ullet(W_1^*)$ and
- holomorphic $G=GL_n$ -equivariant maps $f:V_0 o \Lambda^ullet(V_1^*).$

Proof.

algebraic G-equivariant maps $f:V_0\to \Lambda^ullet V_1^*$

Consider now the general case for $G = GL_n(\mathbb{C})$: assume $n \geq p \geq 0, q \geq 0$.

$$V_0 = M_{n,p} \oplus M_{p,n}, \quad V_1 = M_{n,q} \oplus M_{q,n}$$

$$W_0=M_{p,p}\oplus M_{q,q}, \quad W_1=M_{p,q}\oplus M_{q,p}.$$

Proposition: If $n \ge p$, then \exists surjective homomorphism between

- holomorphic maps $F:W_0 o \Lambda^ullet(W_1^*)$ and
- holomorphic $G=GL_n$ -equivariant maps $f:V_0 o \Lambda^ullet(V_1^*).$

Proof.

algebraic G-equivariant maps $f:V_0\to \Lambda^{ullet}V_1^*$ $(S^{ullet}V_0^*\otimes \Lambda^{ullet}V_1^*)^G=(graded \ \text{symmetric algebra})^G=S^{ullet}(V_0^*\oplus V_1^*)^G$

$$= (T(V_0^* \oplus V_1^*)/ < x \otimes x' - (-1)^{|x||x'|}x' \otimes x >)^G$$

Now the degree 2 part is

$$S^2(V_0^* \oplus V_1^*)^G = S^2(V_0^*)^G \oplus (\Lambda^2 V_1^*)^G \oplus (V_0^* \otimes V_1^*)^G.$$

Now the degree 2 part is

$$S^{2}(V_{0}^{*} \oplus V_{1}^{*})^{G} = S^{2}(V_{0}^{*})^{G} \oplus (\Lambda^{2}V_{1}^{*})^{G} \oplus (V_{0}^{*} \otimes V_{1}^{*})^{G}.$$

invariants come from pairings of column and row vectors

$$W_0 = \text{even part} = \begin{array}{ll} S^2(V_0^*)^G = S^2(M_{n,p}^* \oplus M_{p,n}^*)^G & = & M_{p,p}^* \\ \Lambda^2(V_1^*)^G = \Lambda^2(M_{n,q}^* \oplus M_{q,n}^*)^G & = & M_{q,q}^* \end{array}$$

Now the degree 2 part is

$$S^{2}(V_{0}^{*} \oplus V_{1}^{*})^{G} = S^{2}(V_{0}^{*})^{G} \oplus (\Lambda^{2}V_{1}^{*})^{G} \oplus (V_{0}^{*} \otimes V_{1}^{*})^{G}.$$

invariants come from pairings of column and row vectors

$$W_0 = \text{even part} = \begin{array}{ccc} S^2(V_0^*)^G = S^2(M_{n,p}^* \oplus M_{p,n}^*)^G & = & M_{p,p}^* \\ \Lambda^2(V_1^*)^G = \Lambda^2(M_{n,q}^* \oplus M_{q,n}^*)^G & = & M_{q,q}^* \end{array}$$

and for the odd part we get $W_1 =$

$$(V_0^* \otimes V_1^*)^G = ((M_{n,p}^* \oplus M_{p,n}^*) \otimes (M_{n,q}^* \oplus M_{q,n}^*))^G = M_{p,q}^* \oplus M_{q,p}^*.$$

Now the degree 2 part is

$$S^{2}(V_{0}^{*} \oplus V_{1}^{*})^{G} = S^{2}(V_{0}^{*})^{G} \oplus (\Lambda^{2}V_{1}^{*})^{G} \oplus (V_{0}^{*} \otimes V_{1}^{*})^{G}.$$

invariants come from pairings of column and row vectors

$$W_0 = ext{even part} = egin{array}{ll} S^2(V_0^*)^G &= S^2(M_{n,p}^* \oplus M_{p,n}^*)^G &= M_{p,p}^* \ \Lambda^2(V_1^*)^G &= \Lambda^2(M_{n,q}^* \oplus M_{q,n}^*)^G &= M_{q,q}^* \ \end{array}$$

and for the odd part we get $W_1 =$

$$(V_0^* \otimes V_1^*)^G = ((M_{n,p}^* \oplus M_{p,n}^*) \otimes (M_{n,q}^* \oplus M_{q,n}^*))^G = M_{p,q}^* \oplus M_{q,p}^*.$$

Isomorphism of vector spaces induces a surjective map (Howe)

$$S^{\bullet}(W_0^* \bigoplus W_1^*) \rightarrow S^{\bullet}(V_0^* \bigoplus V_1^*)^G$$

Now the degree 2 part is

$$S^{2}(V_{0}^{*} \oplus V_{1}^{*})^{G} = S^{2}(V_{0}^{*})^{G} \oplus (\Lambda^{2}V_{1}^{*})^{G} \oplus (V_{0}^{*} \otimes V_{1}^{*})^{G}.$$

invariants come from pairings of column and row vectors

$$W_0 = ext{even part} = egin{array}{ll} S^2(V_0^*)^G &= S^2(M_{n,p}^* \oplus M_{p,n}^*)^G &= M_{p,p}^* \ \Lambda^2(V_1^*)^G &= \Lambda^2(M_{n,q}^* \oplus M_{q,n}^*)^G &= M_{q,q}^* \ \end{array}$$

and for the odd part we get $\mathit{W}_1 =$

$$(V_0^* \otimes V_1^*)^G = ((M_{n,p}^* \oplus M_{p,n}^*) \otimes (M_{n,q}^* \oplus M_{q,n}^*))^G = M_{p,q}^* \oplus M_{q,p}^*.$$

Isomorphism of vector spaces induces a surjective map (Howe)

$$S^{\bullet}(W_0^* \bigoplus W_1^*) \rightarrow S^{\bullet}(V_0^* \bigoplus V_1^*)^G$$

G. Schwarz: holomorphic equiv. maps are of the form $f = f_1 f_2$, where f_2 is an algebraic equiv. map and f_1 is an hol. invariant function on V_0 .

$$G = GL_n(\mathbb{C})$$

Theorem:(Superbosonization formula) Let $F: W_0 \to \Lambda^{\bullet}(W_1^*)$ be a lift for $f: V_0 \to \Lambda^{\bullet}(V_1^*)$, then the Berezin integral:

$$\Omega_V(f) = \text{factor} \int_D proj_{high.\ deg.} J(x,y) SDet^n(x,y) F(x,y) d\mu_{Dp} dk$$

where

$$D = (space \ of \ positive \ hermitian \ p imes p \ matrices) imes U_q$$

and SDet = super-determinant / Berezinian

$$SDet \left(\begin{array}{cc} x & \sigma \\ \tau & y \end{array} \right) = \frac{\det(x)}{\det(y - \tau x^{-1}\sigma)}$$

and
$$J(x, y) = \det^q(x) \det^q(y) / \det^{q-p}(y - \tau x^{-1}\sigma)$$
.

The general case:
$$G = O_n, Sp_n$$

$$V_0 = M_{n,p} \oplus M_{p,n}, \quad V_1 = M_{n,q} \oplus M_{q,n}$$

$$W_0 = Sym_{2p,2p} \oplus Alt_{2q,2q}, \quad W_1 = M_{2p,2q} \text{ for } G = O_n.$$

$$W_0 = Alt_{2p,2p} \oplus Sym_{2q,2q}, \quad W_1 = M_{2p,2q} \text{ for } G = Sp_n.$$

Lemma: If $n \ge 2p$, then \exists surjective homomorphism between

- holomorphic maps $F:W_0 o \Lambda^ullet(W_1^*)$ and
- holomorphic G-equivariant map $f:V_0 o \Lambda^ullet(V_1^*).$

Set
$$J(x, y) = \det^{q}(x) \det^{q-m/2}(y) / \det^{q-m/2-p}(y - \tau x^{-1}\sigma)$$
.

Here
$$m = 1, -1$$
 for $G = O_n, Sp_n$.

The general case: $G = GL_n$, $n \ge p$ resp. $G = O_n$, Sp_n , $n \ge 2p$

Theorem

(Superbosonization formula) Let $F: W_0 \to \Lambda^{\bullet}(W_1^*)$ be a lift for the G-equivariant holomorphic map $f: V_0 \to \Lambda^{\bullet}(V_1^*)$, then the Berezin integral:

$$\Omega_V(f) = factor \int_D proj_{high.\ deg} J(x, y) SDet^{n'}(x, y) F(x, y) d\mu_{Dp} dk$$

where $n' = n/(1 + |m|) \ge p$, m = 0, 1, -1 for $G = GL_n, O_n, Sp_n$, and the domain for the integration is:

$$D = GL_p(\mathbb{C})/U_p \times U_q$$
 for $G = GL_n$

$$D = GL_{2p}(\mathbb{R})/O_{2p} \times U_{2q}/USp_{2q}$$
 for $G = O_n$

$$D = GL_p(\mathbb{H})/USp_{2p} \times U_{2q}/O_{2q}$$
 for $G = Sp_n$

Two remarks:

- factors can be made precise, so formulas can be used for calculations
- method extends to case where one uses products of these groups.

- Advantage of the new method: by conversion from its original role as the number of integrations to do, the (usually) big integer n has been turned into an exponent

- Advantage of the new method: by conversion from its original role as the number of integrations to do, the (usually) big integer n has been turned into an exponent
- applicable in cases where other methods (non-Gaussian distribution) did not work so far

- Advantage of the new method: by conversion from its original role as the number of integrations to do, the (usually) big integer n has been turned into an exponent
- applicable in cases where other methods (non-Gaussian distribution) did not work so far
- even in cases where other methods work get interesting equalities. As an example, Martin Zirnbauer applied the new method Wegners *n*-orbital model with *n* orbitals per site and unitary symmetry. Be warned, however, that this equivalence of the formulas obtained by the new method and Hubbard-Stratonovich is by no means easy to see directly.

- Advantage of the new method: by conversion from its original role as the number of integrations to do, the (usually) big integer n has been turned into an exponent
- applicable in cases where other methods (non-Gaussian distribution) did not work so far
- even in cases where other methods work get interesting equalities. As an example, Martin Zirnbauer applied the new method Wegners *n*-orbital model with *n* orbitals per site and unitary symmetry. Be warned, however, that this equivalence of the formulas obtained by the new method and

Hubbard-Stratonovich is by no means easy to see directly.

- the restriction $n \ge p$ has been removed in a paper by Bunder, Efetov, Kravtsov, Yevtushenko, and Zirnbauer (but formula gets more complicated...naturally)

Thank you very much!