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The problem

G = GLn(C) (or one of the classical groups On(C), Sp2m(C))

K = Un (more generally, a maximal compact subgroup of G )

Let V be the following Z/2Z - graded vector space V = V0 ⊕ V1:

V0 = Hom(Cn,Cp)⊕ Hom(Cp,Cn)

V1 = Hom(Cn,Cq)⊕ Hom(Cq,Cn)

with action g · ((A,B), (C ,D)) = ((gA,Bg−1), (gC ,Dg−1)).

We are interested in the following problems:
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The problem

1) AG
V = algebra of G -equivariant holomorphic maps

f : V0 −→ Λ•V ∗1

Try to mimic categorical quotient in the sense that G -equivariant
holomorphic maps will come from holomorphic maps

F : W0 −→ Λ•W ∗
1

for some (to be specified) Z2-graded vector space W = W0 ⊕W1.

2) given f ∈ AG
V , consider integral in the sense of Berezin

ΩV (f ) :=

∫
V0,R

f top degree partdµ

Aim is to simplify the integral by reduction of the number of
variables: replace integral over f top degree part by integral over
F top degree part.
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The simplest case: q = 0, G = GLn, n ≥ p

V0 = Mn,p ⊕Mp,n, V1 = 0, Λ•V ∗1 = C

f : V0 → C = Λ•V ∗1 is “just” a G -invariant holomorphic function.

Step 1: Determine AG
V = algebra of G -equivariant holomorphic

maps f : V0 −→ C (= Λ•V ∗1 ).

Classical invariant theory: (recall n ≥ p)
GLn-invariant polynomials: C[V0]G ' C[Mp,p], the isomorphism
being induced by the quotient map:

π : V0 = Mn,p ⊕Mp,n −→ Mp,p, (A,B) 7→ BA.

Same holds for holomorphic invariant functions (Luna):

Theorem

Every holomorphic invariant function on V0 is the pull back of the
form f (A,B) = F (BA), F a holomorphic function on W0 = Mp,p.�
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The simplest case: q = 0, G = GLn, n ≥ p

Step 2: Given f ∈ AG
V , simplify the integral

ΩV (f ) :=

∫
V0,R

f dµ (here f = f top)

by reducing the number of variables.

V0,R = Mn,p ↪→ Mn,p ⊕Mp,n, A 7→ (A,A
t
)

Assumption: f analytic on V0,R, rapid decay

Aim: reduction to an integral over a function on the quotient.

Recall:
quotient map π : V0 → Mp,p, (A,B) 7→ BA,

π(V0,R) = non-neg. hermitian p × p-matrices
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The simplest case: q = 0, G = GLn, n ≥ p

Let V ′0,R ⊂ V0,R ' Mn,p be the matrices of maximal rank.

V0,R and V ′0,R are stable under the induced Un-action

An element L = (A,A
t
) ∈ V ′0,R gives a decomposition

Cn = ker(A)⊕ im(A
t
) and hence an element in the Grassmann

variety (Up × Un−p)\Un of p-planes in Cn.

Fixing a unitary basis of im(A
t
) one can identify the restriction of

A to im(A
t
) with a matrix in GLp(C).

In other words:
V ′0,R ' GLp ×Up Un−p\Un.
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The simplest case: q = 0, G = GLn, n ≥ p

Theorem. f invariant holomorphic function on V0, F the
corresponding holomorphic function on Mp,p, then the Berezin
integral

ΩV (f ) = 2−pn vol(Un)

vol(Un−p)

∫
Dp=p×p pos.herm.matrices

F (x)detn(x)dµDp .

where we identify GLp/Up with the pos. herm. matrices by
gUp 7→ gg t . �

Remark: In this case the formula is not new for the physicists.
Advantage: generalizes directly to the other classical groups.
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The case: q = 0, n ≥ p respectively n ≥ 2p.

Theorem

G = GLn(C),On(C),Spn(C): f a G -invariant holomorphic
function on V0, F the corresponding holomorphic function on the
(algebraic) quotient W0 = V0//G , then the Berezin integral

ΩV (f ) = 2−p(n+m) vol(Kn)

vol(Kn,p)

∫
Dp=Gp/Kp

F (x)detn
′
(x)dµDp .

where

G Kn Gp Kp Kn,p m n′

GLn(C) Un GLp(C) Up Un−p 0 n

On(C) On GL2p(R) O2p(R) On−2p(R) 1 n
2

Spn(C) USpn GLp(H) USp2p USpn−2p −1 n
2

Remark: view Gp/Kp embedded in Gp via Cartan embedding
g 7→ gΘ(g−1), so det

n
2 makes sense. �
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Berezin integral

Recall:

V0 = Hom(Cn,Cp)⊕Hom(Cp,Cn) V1 = Hom(Cn,Cq)⊕Hom(Cq,Cn)

Given: f : V0 −→ Λ•V ∗1

ΩV (f ) :=

∫
V0,R

DZ ,Z̃ ,ξ,ξ̃f (Z , Z̃ , ξ, ξ̃)

• Z , Z̃ – commuting variables zi ,j , z̃j ,i on V0 = Mn,p ⊕Mp,n

• ξ, ξ̃ – anti-commuting variables ξi ,j , ξ̃j ,i on V1 = Mn,q ⊕Mq,n;

So f (Z , Z̃ , ξ, ξ̃) = short way of writing for f : V0 → Λ•V ∗1∑
ordered exterior products

fi1,j1,...,k1,l1,...(zi ,j , z̃i ,j) ξi1,j1∧...∧ξit ,jt∧ξ̃k1,l1∧...∧ξ̃ks ,ls
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Berezin integral

ΩV (f ) :=

∫
V0,R

DZ ,Z̃ ,ξ,ξ̃f (Z , Z̃ , ξ, ξ̃)

• Berezin form: DZ ,Z̃ ,ξ,ξ̃=

22pn
p∏

c=1

n∏
i=1

|dRe(zi ,c) dIm(zi ,c)| ⊗ (2π)qn
q∏

e=1

n∏
i=1

∂2

∂ξj ,e∂ξ̃e,j

• Convention: ∂2

∂ξ∂ξ̃
ξ̃ξ = 1.

Up to constants: DZ ,Z̃ ,ξ,ξ̃ projects f on the component of

maximum degree f top in the anti-commuting variables, Lebesgue
measure on V0,R.

• V0,R = {(A, tA)|A ∈ Mn,p(C)} ⊂ V0, f |V0,R analytic, rapid decay.
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Superbosonization - A brief characterization

Given ensemble of disordered Hamiltonians (for example hermitian
n × n matrices, real symmetric matrices), probabilty distribution
rapid decay at infinity, or bounded support (for example Gaussian
distribution).
Goal: study spectral correlation functions and other “observable
quantities”.

Supersymmetry method:

Starting point: characteristic function of the probabilty measure of
a given ensemble of disordered Hamiltonians.

F(K ) =

∫
e−iTr(KH)dµ(H)

What is the Fourier variable K ?
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Superbosonization - A brief characterization

The exact meaning of the Fourier variable K depends on what
observable is to be computed.

In our case one should think of a lattice with (p + q)-sites,
associated to each site a vector space of dimension n, n is the
number of orbitals / states per site (granular materials).

V = V0⊕V1,

{
V0 = Mn,p ⊕Mp,n commuting variables zi ,j , z̃j ,i

V1 = Mn,q ⊕Mq,n anti-commuting variables ζk,l , ζ̃l ,k

p-bosonic and q-fermionic copies of the vector space Cn.

Interest: study behavior for n→∞
The -̃variables come into the picture due to the complexification
of the picture (analytic → holomorphic).
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Superbosonization - A brief characterization

For such a situation, in general the matrix entries of K will be of
the form

Ki ,j =

p∑
l=1

zi ,l z̃l ,j +

q∑
m=1

ζi ,mζ̃m,j

where zi ,j , z̃j ,i commuting variables, 1 ≤ i ≤ n, 1 ≤ j ≤ p
ζk,l , ζ̃l ,k anti-commuting variables, 1 ≤ i ≤ n, 1 ≤ j ≤ q.

To calculate the spectral correlation function for example, one has
to calculate the Berezin integral for

f = exp

(
i
∑
l ,l ′

zl ,l ′El ′ z̃l ′,l + i
∑
k,k ′

ζk,k ′Fk ′ ζ̃k ′,k

)
F(K )

Note: f is a map f : V0 → Λ•V ∗1 , a so-called superfunction.
parameters El , Fl - physical meaning of energy
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Superbosonization - A brief characterization

Leaving out many details, to calculate for example the spectral
correlation function one ends up with the following problem: have
a holomorphic map or superfunction

f : V0 → Λ•V ∗1

and one has to calculate the Berezin integral, i.e.:

ΩV (f ) =

∫
Mn,p

Dz,z̃,ζ,ζ̃ f (z , z̃ , ζ, ζ̃)

where Mn,p is embedded in V0 = Mn,p ⊕Mp,n as a real subspace
via

A 7→ (A,A
t
).

Assume: f analytic on the diagonal Mn,p, rapid decay (Schwartz
function, functions that decrease faster than any power).
Remark: doubling of the variables, complexification of a real
situation
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Summarizing:

V = V0 ⊕ V1 where
- V0 = Mn,p ⊕Mp,n commuting variables zi ,j , z̃i ,j

- V1 = Mn,q ⊕Mq,n anti-commuting variables ζi ,j , ζ̃i ,j
- looking at holomorphic maps f : V0 → Λ•(V ∗1 )

In the following we have in addition:
- G = GLn(C) (or a classical group: Spn(C),On(C))
- probability measure dµ(H) on the the ensemble is K -invariant
- hence f is G -equivariant

Superbosonization (Efetov): use the additional symmetry to
simplify the Berezin integral
- assume n ≥ p for G = GLn(C), n ≥ 2p for Spn(C),On(C)
Example

ΩV (f ) = 2−pn vol(Un)

vol(Un−p)

∫
Dp=p×p pos.herm.matrices

F (x)detn(x)dµDp .

Peter Littelmann Superbosonization of invariant matrix ensembles



Summarizing:

V = V0 ⊕ V1 where
- V0 = Mn,p ⊕Mp,n commuting variables zi ,j , z̃i ,j

- V1 = Mn,q ⊕Mq,n anti-commuting variables ζi ,j , ζ̃i ,j
- looking at holomorphic maps f : V0 → Λ•(V ∗1 )

In the following we have in addition:
- G = GLn(C) (or a classical group: Spn(C),On(C))
- probability measure dµ(H) on the the ensemble is K -invariant
- hence f is G -equivariant

Superbosonization (Efetov): use the additional symmetry to
simplify the Berezin integral
- assume n ≥ p for G = GLn(C), n ≥ 2p for Spn(C),On(C)
Example

ΩV (f ) = 2−pn vol(Un)

vol(Un−p)

∫
Dp=p×p pos.herm.matrices

F (x)detn(x)dµDp .

Peter Littelmann Superbosonization of invariant matrix ensembles



Summarizing:
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The other extreme case: p = 0, q > 0.

First consider again G = GLn(C).
Since p = 0 one has V0 = 0 and

V = V1 = Hom(Cn,Cq)⊕ Hom(Cq,Cn) = Mn,q(C)⊕Mq,n(C).

The algebra AV of holomorphic maps V0 → Λ•V ∗1 ist just

AV = Λ•(V ∗1 ).

The action of G on V = V1: g · (A,B) = (gA,Bg−1), induces an
action on AV , and the algebra AG

V of G -equivariant holomorphic
maps V0 → Λ•V ∗1 are just the G -fixed points in Λ•(V ∗1 ).

Since AV = Λ•V ∗1 , the algebras AV and AG
V come equipped with

natural grading.
Berezin integral = projection of f ∈ AG

V onto its top-degree
component:

ΩV : AG
V → Λ2qnV ∗, f 7→ f top
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The other extreme case: p = 0, q > 0.

To get a uniform formula also for cases p, q 6= 0, we would like to
get a formula for ΩV (f ) in this case similar to the formula we had
in the case q = 0:

Old case q = 0: replace f = invariant function on V0 by F =
function on quotient space W , replace Berezin integral Ω(f ) by:
factor

∫
symm. space Dp

FdetndµDp .

New case p = 0: replace f ∈ (Λ•V ∗1 )G by an H-invariant function
on W (but what is H, what space W ??), replace projection by
integration over a ?symmetric space?.
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The other extreme case: p = 0, q > 0.

1st step Howe duality: For simplicity n even, G = GLn.

Set N = qn, let C(V1 ⊕ V ∗1 ) be the Clifford algebra, i.e.:

C(V1 ⊕ V ∗1 ) is the C algebra generated by V1 ⊕ V ∗1 subject to the
condition

ww ′ + w ′w = s(w ,w ′) · 1,

where for

w = v +φ,w ′ = v ′+φ′ ∈ V1⊕V ∗1 : s(v +φ, v ′+φ′) = φ′(v)+φ(v ′).
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The other extreme case: p = 0, q > 0.

Recall: linear span of ww ′ − w ′w stable under [·, ·]

realization of the Lie algebra o(V1 ⊕ V ∗1 ),

get Spin-representation of Spin4N on Λ•V ∗1 (recall N = qn)

action of G on V1,V
∗
1 gives rise to a map φ : GLn → Spin4N

Set G ′ = centralizer in Spin4N of G , then G ′ = GL2q(C).

G ′ = GL2q(C) is called the Howe dual of G = GLn(C)

(To see G ′ = GL2q(C), recall: V1⊕V ∗1 ' Cn⊗C2q∗⊕Cn∗⊗C2q.)

Seems to be leading away from the problem...but
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The other extreme case: p = 0, q > 0.

By Howe duality:

Λ•V ∗1 ist a direct sum

Λ•V ∗1 '
⊕

Ui ⊗ Ni

where Ui ,Ni irreducible G resp. G ′-modules,
and ∀i 6= j : Ui 6' Uj ,Ni 6' Nj .

In particular: AG
V = Λ•(V ∗1 )G is an irreducible G ′-module:

AG
V ' V (

n

2
, . . . ,

n

2
,−n

2
, . . . ,−n

2
).

Note: Λ0(V ∗1 ) ⊂ Λ•(V ∗1 )G and Λ2N(V ∗1 ) ⊂ Λ•(V ∗1 )G are
highest (vacuum) / lowest weight vectors. So Berezin integral
becomes projection onto the lowest weight vector.
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The other extreme case: p = 0, q > 0.

Consider the ”Levi decomposition”:

g′ = Lie GL2q, g′ = u− ⊕ h⊕ u+

where h = Lie GLq ⊕ Lie GLq, u− and u+ are isomorphic to Mq(C),
so

u− =

(
0 0
∗ 0

)
, h =

(
∗ 0
0 ∗

)
, u+ =

(
0 ∗
0 0

)
,

Set λ = (n
2 , . . . ,

n
2 ,−

n
2 , . . . ,−

n
2 ), so AG

V ' V (λ) as G ′-module.

λ extends to h⊕ u+, consider the parabolic Verma module

M(λ) = U(g′)⊗U(h⊕n+) Cλ
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The other extreme case: p = 0, q > 0.

Interpretation as functions:

projection of parabolic Verma module M(λ)→ V (λ) ' AG
V

as U(h)-module: M(λ) ' U(u−)⊗ Cλ ' C[Mq]⊗ Cλ since the
enveloping algebra U(u−) is commutative. Moreover, h-action on
M(λ) integrates to H = GLq × GLq-action on M(λ).

H = GLq × GLq-action on Mq is spherical, so irreducible
H-representations in C[Mq] have multiplicity at most one.

It follows

dim HomH(M(λ),V (λ)−λ) = dim HomH(C[Mq]⊗Cλ,V (λ)−λ) ≤ 1.

and hence

HomH(V (λ),V (λ)−λ) = HomH(M(λ),V (λ)−λ)

is one dimensional and spanned by the Berezin integral
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The other extreme case: p = 0, q > 0.

So we can identify the Berezin integral in the following way with
an element in HomH(M(λ),V (λ)−λ) and hence:

HomH(V (λ),V (λ)−λ) = HomH(M(λ),V (λ)−λ)
= HomH(C[Mq]⊗ Cλ,V (λ)−λ)
= HomH(C[Mq]⊗ C2λ,C)

and, as H-modules (H = GLq × GLq):

C[GLq] = C[Mq]det ⊃ C[Mq]⊗ C2λ =
1

detn
C[Mq]

Here one has an obvious projector onto the invariants

C[GLq]→ C, F 7→
∫

Uq

Fdk
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The other extreme case: p = 0, q > 0.

It follows:

f ∈ (Λ•V ∗1 )G → f ∈ V (λ) identification with an
element in the G ′ = GL2q(C)-module

→ u ⊗ zλ ∈ U(u−)⊗ Cλ lifting the element
to the Verma module

→ F (x)det−n(x) ∈ C[Mq]⊗ C2λ ⊂ C[GLq(C)]
identification with a function on GLq(C)

and for the Berezin integral we the identification:

ΩV (f ) = projection on the lowest weight space
= projection on the unique 1-dimensional

H-submodule for the character −λ
= projection of F (k) det−n onto its ”invariant part”
=

∫
Uq

F (k)det−n(k) dk.
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The other extremal case: p = 0, q > 0,
G = GLn(C), On(C), Spn(C)

Theorem

For f ∈ Λ•(V ∗1 )G ' V (λ), let F ∈ C[W ] ' U(u−) be a lift. The
Berezin integral f 7→ ΩV (f ) can be computed as an integral over
the compact symmetric space K/K0:

ΩV (f ) = (2π)qn2qm vol(Kn)

vol(Kn,q)

∫
Dq=K/K0

F (y)det−n′
(y)dµDq

where
G Kn Kn,q K K0 m n′

GLn(C) Un Un+q Uq × Uq ∆(Uq) 0 n

On(C) On(R) On+2q(R) U2q USp2q 1 n/2

Spn(C) USpn USpn+2q U2q O2q(R) −1 n/2

Note: in the case On one has K/K0 ⊂ skew symmetric matrices,

so det
1
2 is defined. �
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The Berezinian or superdeterminant

In the formulas before (G = GLn(C)):

ΩV (f ) = constant

∫
Dp=p×p pos.herm.matrices

F (x)detn(x)dµDp .

for p = 0

ΩV (f ) = constant

∫
Dq=K/K0

F (y)det−n(y)dµDq

for q = 0.

For the general case we have to combine the positive powers of the
determinant detn(x) and the negative powers det−n(y), this is
done by the Berezinian.
Background: in the framework of supermanifolds the Berezinian
plays the same role as the determinant when considering
coordinate changes on a supermanifold.
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for p = 0
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∫
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for q = 0.
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done by the Berezinian.
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The Berezinian or superdeterminant

Consider the Z2-graded vector space W = W0 ⊕W1, where

W0 = W0,0 ⊕W1,1 = Mp,p ⊕Mq,q

W1 = W0,1 ⊕W1,0 = Mp,q ⊕Mq,p.

An element P ∈W can be considered as a ”block matrix” or
”super matrix” for the ”super space” Cp|q:

P =

(
x σ
τ y

)
x ∈W0,0 σ ∈W1,0

τ ∈W0,1 y ∈W1,1

Let W ′′ ⊂W be the subset of supermatrices such that x , y are
invertible, then the superdeterminant:

SDet

(
x σ
τ y

)
=

det(x)

det(y − τx−1σ)
=

det(x − σy−1τ)

det(y)

is well defined.
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The Berezinian or superdeterminant

SDet

(
x σ
τ y

)
=

det(x − σy−1τ)

det(y)

For q = 0 set SDet(x) = det(x) and for p = 0 we set
SDet(y) = det−1(y).
A similar function which we will need is

J(x , y) =
detq(x) detq(y)

detq−p(y − τx−1σ)
.
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Superbosonization formula:

Consider now the general case for G = GLn(C):
assume n ≥ p ≥ 0, q ≥ 0.

V0 = Mn,p ⊕Mp,n, V1 = Mn,q ⊕Mq,n

W0 = Mp,p ⊕Mq,q, W1 = Mp,q ⊕Mq,p.

Proposition: If n ≥ p, then ∃ surjective homomorphism between
- holomorphic maps F : W0 → Λ•(W ∗

1 )
and
- holomorphic G = GLn-equivariant maps f : V0 → Λ•(V ∗1 ).

Proof.

algebraic G -equivariant maps f : V0 → Λ•V ∗1
(S•V ∗0 ⊗Λ•V ∗1 )G = (graded symmetric algebra)G = S•(V ∗0 ⊕V ∗1 )G

=
(
T (V ∗0 ⊕ V ∗1 )/ < x ⊗ x ′ − (−1)|x ||x

′|x ′ ⊗ x >
)G
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Superbosonization formula:

Now the degree 2 part is

S2(V ∗0 ⊕ V ∗1 )G = S2(V ∗0 )G ⊕ (Λ2V ∗1 )G ⊕ (V ∗0 ⊗ V ∗1 )G .

invariants come from pairings of column and row vectors

W0 = even part =
S2(V ∗0 )G = S2(M∗n,p ⊕M∗p,n)G = M∗p,p
Λ2(V ∗1 )G = Λ2(M∗n,q ⊕M∗q,n)G = M∗q,q

and for the odd part we get W1 =

(V ∗0 ⊗ V ∗1 )G =
(
(M∗n,p ⊕M∗p,n)⊗ (M∗n,q ⊕M∗q,n)

)G
= M∗p,q ⊕M∗q,p.

Isomorphism of vector spaces induces a surjective map (Howe)

S•(W ∗
0

⊕
W ∗

1 )→ S•(V ∗0
⊕

V ∗1 )G

G. Schwarz: holomorphic equiv. maps are of the form f = f1f2,
where f2 is an algebraic equiv. map and f1 is an hol. invariant
function on V0.
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Superbosonization formula:

G = GLn(C)

Theorem:(Superbosonization formula) Let F : W0 → Λ•(W ∗
1 ) be

a lift for f : V0 → Λ•(V ∗1 ), then the Berezin integral:

ΩV (f ) = factor

∫
D

projhigh. deg . J(x , y)SDetn(x , y)F (x , y)dµDpdk

where

D = (space of positive hermitian p × p matrices)× Uq

and SDet = super-determinant / Berezinian

SDet

(
x σ
τ y

)
=

det(x)

det(y − τx−1σ)

and J(x , y) = detq(x) detq(y)/ detq−p(y − τx−1σ).
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Superbosonization formula:

The general case: G = On, Spn

V0 = Mn,p ⊕Mp,n, V1 = Mn,q ⊕Mq,n

W0 = Sym2p,2p ⊕ Alt2q,2q, W1 = M2p,2q for G = On.

W0 = Alt2p,2p ⊕ Sym2q,2q, W1 = M2p,2q for G = Spn.

Lemma: If n ≥ 2p, then ∃ surjective homomorphism between
- holomorphic maps F : W0 → Λ•(W ∗

1 )
and
- holomorphic G -equivariant map f : V0 → Λ•(V ∗1 ).

Set J(x , y) = detq(x) detq−m/2(y)/ detq−m/2−p(y − τx−1σ).

Here m = 1,−1 for G = On,Spn.
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Superbosonization formula:

The general case: G = GLn, n ≥ p resp. G = On,Spn, n ≥ 2p

Theorem

(Superbosonization formula) Let F : W0 → Λ•(W ∗
1 ) be a lift for

the G -equivariant holomorphic map f : V0 → Λ•(V ∗1 ), then the
Berezin integral:

ΩV (f ) = factor

∫
D

projhigh. deg J(x , y)SDetn′
(x , y)F (x , y)dµDpdk

where n′ = n/(1 + |m|) ≥ p, m = 0, 1,−1 for G = GLn,On,Spn,
and the domain for the integration is:

D = GLp(C)/Up × Uq for G = GLn

D = GL2p(R)/O2p × U2q/USp2q for G = On

D = GLp(H)/USp2p × U2q/O2q for G = Spn
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Two remarks:

- factors can be made precise, so formulas can be used for
calculations

- method extends to case where one uses products of these groups.
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Summarizing:
- Advantage of the new method: by conversion from its original
role as the number of integrations to do, the (usually) big integer n
has been turned into an exponent

- applicable in cases where other methods (non-Gaussian
distribution) did not work so far
- even in cases where other methods work get interesting
equalities. As an example, Martin Zirnbauer applied the new
method Wegners n-orbital model with n orbitals per site and
unitary symmetry. Be warned, however, that this equivalence of
the formulas obtained by the new method and
Hubbard-Stratonovich is by no means easy to see directly.
- the restriction n ≥ p has been removed in a paper by Bunder,
Efetov, Kravtsov, Yevtushenko, and Zirnbauer (but formula gets
more complicated...naturally)
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Thank you very much!
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