The Linearization Problem, Old and New

Hanspeter Kraft

Department of Mathematics University of Basel, Switzerland

Algebraic Groups and Invariant Theory Monte Verita – Ascona August 30 – September 4, 2009

"I would like to thank the organizers

... bla bla bla ... "

(Just to spare my voice!)

イロト 不得 とくほ とくほ とう

∃ 9900

Thanks a lot Karin, Donna, and Sasha!!!

Hanspeter Kraft The Linearization Problem, Old and New

ヘロト 人間 とくほとく ほとう

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group C⁺ and of unipotent groups?
- Actions of C* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient Aⁿ//G?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group C⁺ and of unipotent groups?
- Actions of C* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient $\mathbb{A}^n /\!\!/ G$?

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E > < E >

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group \mathbb{C}^+ and of unipotent groups?
- Actions of C* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient $\mathbb{A}^n /\!\!/ G$?

< 🗇 🕨

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group \mathbb{C}^+ and of unipotent groups?
- Actions of C* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient $\mathbb{A}^n /\!\!/ G$?

< 🗇 🕨

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group \mathbb{C}^+ and of unipotent groups?
- Actions of \mathbb{C}^* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient Aⁿ//G?

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group \mathbb{C}^+ and of unipotent groups?
- Actions of \mathbb{C}^* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient Aⁿ//G?

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group \mathbb{C}^+ and of unipotent groups?
- Actions of \mathbb{C}^* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient Aⁿ//G?

★ Ξ > < Ξ > ...

The Basic Problem

One of the fundamental questions in affine algebraic geometry is the following. (For simplicity we will work over \mathbb{C} .)

Question

How can an algebraic group G act on affine n-space \mathbb{A}^n ?

- Actions of the additive group \mathbb{C}^+ and of unipotent groups?
- Actions of \mathbb{C}^* and of tori?
- Actions of finite groups?
- Actions of reductive groups?
- Fixed points?
- Invariants and quotient Aⁿ//G?

★ Ξ ► < Ξ ► .</p>

The Basic Problem

Recall that the group $G\mathbb{A}_n$ of *polynomial automorphisms* of \mathbb{A}^n has the structure of an infinite dimensional algebraic group:

$$G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$$

where $G\mathbb{A}_n^{(d)}$ denotes the automorphisms $\varphi = (\varphi_1, \dots, \varphi_n)$ of degree deg $\varphi := \max(\deg \varphi_i) \le d$ (SHAFAREVICH, 1966).

Question

What is the algebraic & geometric structure of the group GA_n ?

The Basic Problem

Recall that the group $G\mathbb{A}_n$ of *polynomial automorphisms* of \mathbb{A}^n has the structure of an infinite dimensional algebraic group:

$$G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$$

where $G\mathbb{A}_n^{(d)}$ denotes the automorphisms $\varphi = (\varphi_1, \dots, \varphi_n)$ of degree deg $\varphi := \max(\deg \varphi_i) \le d$ (SHAFAREVICH, 1966).

Question

What is the algebraic & geometric structure of the group GA_n ?

ヘロト 人間 ト ヘヨト ヘヨト

Two Specific Questions

Linearization Problem

Is every action of a reductive algebraic group *G* on affine *n*-space \mathbb{A}^n *linearizable*, i.e. is there a *G*-equivariant isomorphism $\mathbb{A}^n \xrightarrow{\sim} V$ where *V* is a representation of *G*?

Equivalently, is every reductive subgroup $G \subset G\mathbb{A}_n$ conjugate to a subgroup of GL_n ?

Fixed Point Problem

Does every action of a reductive algebraic group G on affine *n*-space \mathbb{A}^n have a fixed point?

Two Specific Questions

Linearization Problem

Is every action of a reductive algebraic group *G* on affine *n*-space \mathbb{A}^n *linearizable*, i.e. is there a *G*-equivariant isomorphism $\mathbb{A}^n \xrightarrow{\sim} V$ where *V* is a representation of *G*?

Equivalently, is every reductive subgroup $G \subset G\mathbb{A}_n$ conjugate to a subgroup of GL_n ?

Fixed Point Problem

Does every action of a reductive algebraic group G on affine n-space \mathbb{A}^n have a fixed point?

くロト (過) (目) (日)

Early Results

- GA_2 is an amalgamated product $Aff_2 \star_{B_2} Jonc_2$ (VAN DER KULK 1953) and so every reductive group action on A^2 is linearizable (KAMBAYASHI 1979).
- 2 A faithful action of a torus T on \mathbb{A}^n is linearisable if dim $T \ge n 1$ (BIALYNICKI-BIRULA, 1966/67).
- If a reductive group action on \mathbb{A}^n has no invariants (i.e. $\mathbb{A}^n / / G = \{*\}$), then it is linearizable (LUNA 1973).
- A semisimple group action on A³ or A⁴ is linearizable (K.-POPOV 1985, PANYUSHEV 1984).

Early Results

- $G\mathbb{A}_2$ is an amalgamated product $Aff_2 *_{B_2} Jonc_2$ (VAN DER KULK 1953) and so every reductive group action on \mathbb{A}^2 is linearizable (KAMBAYASHI 1979).
- **2** A faithful action of a torus T on \mathbb{A}^n is linearisable if dim $T \ge n-1$ (BIALYNICKI-BIRULA, 1966/67).
- If a reductive group action on Aⁿ has no invariants (i.e. Aⁿ // G = {*}), then it is linearizable (LUNA 1973).
- A semisimple group action on A³ or A⁴ is linearizable (K.-POPOV 1985, PANYUSHEV 1984).

Early Results

- $G\mathbb{A}_2$ is an amalgamated product $Aff_2 *_{B_2} Jonc_2$ (VAN DER KULK 1953) and so every reductive group action on \mathbb{A}^2 is linearizable (KAMBAYASHI 1979).
- **2** A faithful action of a torus T on \mathbb{A}^n is linearisable if dim $T \ge n-1$ (BIALYNICKI-BIRULA, 1966/67).
- If a reductive group action on \mathbb{A}^n has no invariants (i.e. $\mathbb{A}^n / / G = \{*\}$), then it is linearizable (LUNA 1973).
- A semisimple group action on A³ or A⁴ is linearizable (K.-POPOV 1985, PANYUSHEV 1984).

Early Results

- $G\mathbb{A}_2$ is an amalgamated product $Aff_2 *_{B_2} Jonc_2$ (VAN DER KULK 1953) and so every reductive group action on \mathbb{A}^2 is linearizable (KAMBAYASHI 1979).
- **2** A faithful action of a torus T on \mathbb{A}^n is linearisable if dim $T \ge n-1$ (BIALYNICKI-BIRULA, 1966/67).
- If a reductive group action on \mathbb{A}^n has no invariants (i.e. $\mathbb{A}^n /\!\!/ G = \{*\}$), then it is linearizable (LUNA 1973).
- A semisimple group action on A³ or A⁴ is linearizable (K.-POPOV 1985, PANYUSHEV 1984).

ヘロト 人間 ト ヘヨト ヘヨト

Remarks

- The structure of $G\mathbb{A}_2$ as an amalgamated product holds for every ground field K.
- It implies the non-existence of non-trivial forms of A² (or of the polynomial ring C[x, y]).
 (This question is completely open in higher dimensions!)
- 3 An amalgamated product structure on GA_n like above does **not** exist for $n \ge 3$.

ヘロト ヘ戸ト ヘヨト ヘヨト

- The structure of GA₂ as an amalgamated product holds for every ground field K.
- It implies the non-existence of non-trivial forms of A² (or of the polynomial ring C[x, y]).
 (This question is completely open in higher dimensions!)
- 3 An amalgamated product structure on GA_n like above does **not** exist for $n \ge 3$.

ヘロア ヘビア ヘビア・

- The structure of GA₂ as an amalgamated product holds for every ground field K.
- It implies the non-existence of non-trivial forms of A² (or of the polynomial ring C[x, y]).
 (This question is completely open in higher dimensions!)
- 3 An amalgamated product structure on $G\mathbb{A}_n$ like above does **not** exist for $n \ge 3$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Counterexamples

- First examples of non-linearizable actions: O₂(ℂ) on A⁴ and SL₂(ℂ) on A⁷ (SCHWARZ 1989).
- Counterexamples for all connected reductive group except tori (KNOP 1991).
- Examples and counterexamples for reductiv group actions with one-dimensional quotient Aⁿ//G (K.-SCHWARZ 1992).
- Counterexamples for many non-commutative finite groups (MASUDA-MOSER-J.-PETRIE 1991).

OPEN: commutative reductive groups!

・ロット (雪) () () () ()

Counterexamples

- First examples of non-linearizable actions: O₂(ℂ) on A⁴ and SL₂(ℂ) on A⁷ (SCHWARZ 1989).
- Counterexamples for all connected reductive group except tori (KNOP 1991).
- In Examples and counterexamples for reductiv group actions with one-dimensional quotient Aⁿ//G (К.-Sснwarz 1992).
- Counterexamples for many non-commutative finite groups (MASUDA-MOSER-J.-PETRIE 1991).

OPEN: commutative reductive groups!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Counterexamples

- First examples of non-linearizable actions: O₂(ℂ) on A⁴ and SL₂(ℂ) on A⁷ (SCHWARZ 1989).
- Counterexamples for all connected reductive group except tori (KNOP 1991).
- Examples and counterexamples for reductiv group actions with one-dimensional quotient Aⁿ//G (K.-SCHWARZ 1992).
- Counterexamples for many non-commutative finite groups (MASUDA-MOSER-J.-PETRIE 1991).

OPEN: commutative reductive groups!

ヘロン ヘアン ヘビン ヘビン

Counterexamples

- First examples of non-linearizable actions: O₂(ℂ) on A⁴ and SL₂(ℂ) on A⁷ (SCHWARZ 1989).
- Counterexamples for all connected reductive group except tori (KNOP 1991).
- Examples and counterexamples for reductiv group actions with one-dimensional quotient Aⁿ//G (K.-SCHWARZ 1992).
- Counterexamples for many non-commutative finite groups (MASUDA-MOSER-J.-PETRIE 1991).

OPEN: commutative reductive groups!

・ 通 と ・ ヨ と ・ ヨ と

Counterexamples

- First examples of non-linearizable actions: O₂(ℂ) on A⁴ and SL₂(ℂ) on A⁷ (SCHWARZ 1989).
- Counterexamples for all connected reductive group except tori (KNOP 1991).
- Examples and counterexamples for reductiv group actions with one-dimensional quotient Aⁿ//G (K.-SCHWARZ 1992).
- Counterexamples for many non-commutative finite groups (MASUDA-MOSER-J.-PETRIE 1991).

OPEN: commutative reductive groups!

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remarks

- All conterexamples so far come from non-trivial G-vector bundles (idea of BASS-HABOUSH 1987).
- No such counterexamples for commutative reductive groups (work of MASUDA-MOSER-PETRIE, DE CONCINI-FAGNANI)
- All conterexamples so far are holomorphically linearizable (*equivariant Oka-principle*, HEINZNER-KUTZSCHEBAUCH 1994).
- Counterexamples in the holomorphic setting for every complex reductive group (DERKSEN-KUTZSCHEBAUCH 1998).
- Conterexamples for commutative groups over non-algebraically closed fields (WINKELMANN 2008).
- In the second second

・ロト ・ 同ト ・ ヨト ・ ヨト

- All conterexamples so far come from non-trivial G-vector bundles (idea of BASS-HABOUSH 1987).
- No such counterexamples for commutative reductive groups (work of MASUDA-MOSER-PETRIE, DE CONCINI-FAGNANI)
- All conterexamples so far are holomorphically linearizable (*equivariant Oka-principle*, HEINZNER-KUTZSCHEBAUCH 1994).
- Counterexamples in the holomorphic setting for every complex reductive group (DERKSEN-KUTZSCHEBAUCH 1998).
- Conterexamples for commutative groups over non-algebraically closed fields (WINKELMANN 2008).
- In the second second

・ロト ・ 日本・ ・ 日本・

- All conterexamples so far come from non-trivial G-vector bundles (idea of BASS-HABOUSH 1987).
- No such counterexamples for commutative reductive groups (work of MASUDA-MOSER-PETRIE, DE CONCINI-FAGNANI)
- All conterexamples so far are holomorphically linearizable (*equivariant Oka-principle*, HEINZNER-KUTZSCHEBAUCH 1994).
- Counterexamples in the holomorphic setting for every complex reductive group (DERKSEN-KUTZSCHEBAUCH 1998).
- Conterexamples for commutative groups over non-algebraically closed fields (WINKELMANN 2008).
- In the second second

ヘロト ヘワト ヘビト ヘビト

- All conterexamples so far come from non-trivial G-vector bundles (idea of BASS-HABOUSH 1987).
- No such counterexamples for commutative reductive groups (work of MASUDA-MOSER-PETRIE, DE CONCINI-FAGNANI)
- All conterexamples so far are holomorphically linearizable (equivariant Oka-principle, HEINZNER-KUTZSCHEBAUCH 1994).
- Counterexamples in the holomorphic setting for every complex reductive group (DERKSEN-KUTZSCHEBAUCH 1998).
- Conterexamples for commutative groups over non-algebraically closed fields (WINKELMANN 2008).
- In the second second

ヘロト ヘワト ヘビト ヘビト

- All conterexamples so far come from non-trivial G-vector bundles (idea of BASS-HABOUSH 1987).
- No such counterexamples for commutative reductive groups (work of MASUDA-MOSER-PETRIE, DE CONCINI-FAGNANI)
- All conterexamples so far are holomorphically linearizable (equivariant Oka-principle, HEINZNER-KUTZSCHEBAUCH 1994).
- Counterexamples in the holomorphic setting for every complex reductive group (DERKSEN-KUTZSCHEBAUCH 1998).
- Conterexamples for commutative groups over non-algebraically closed fields (WINKELMANN 2008).
 - No examples without fixed points!

→ E > < E >

- All conterexamples so far come from non-trivial G-vector bundles (idea of BASS-HABOUSH 1987).
- No such counterexamples for commutative reductive groups (work of MASUDA-MOSER-PETRIE, DE CONCINI-FAGNANI)
- All conterexamples so far are holomorphically linearizable (equivariant Oka-principle, HEINZNER-KUTZSCHEBAUCH 1994).
- Counterexamples in the holomorphic setting for every complex reductive group (DERKSEN-KUTZSCHEBAUCH 1998).
- Conterexamples for commutative groups over non-algebraically closed fields (WINKELMANN 2008).
- No examples without fixed points!

ヨト イヨト

Recent Results

① \mathbb{C}^* -actions on \mathbb{C}^3 are linearizable (KORAS-RUSSELL 1997).

- Pree C⁺-actions on A³ are translations (KALIMAN 2004; not true in dimension ≥ 5.).
- GA₃ is not generated by Aff₃ and Jonc₃ (SHESTAKOV-UMIRBAEV 2004).

Theorem (K.-RUSSELL 2008)

Action of non-finite reductive groups on \mathbb{A}^3 are linearizable. (I.e. we know all non-finite reductive subgroups of $G\mathbb{A}_3$.)

This result and some others are based on our study of *families* of automorphisms and of group actions on affine *n*-space.

ヘロト ヘワト ヘビト ヘビト

Recent Results

- **①** \mathbb{C}^* -actions on \mathbb{C}^3 are linearizable (KORAS-RUSSELL 1997).
- ② Free \mathbb{C}^+ -actions on \mathbb{A}^3 are translations (KALIMAN 2004; not true in dimension ≥ 5.).
- GA₃ is not generated by Aff₃ and Jonc₃ (SHESTAKOV-UMIRBAEV 2004).

Theorem (K.-RUSSELL 2008)

Action of non-finite reductive groups on \mathbb{A}^3 are linearizable. (I.e. we know all non-finite reductive subgroups of $G\mathbb{A}_3$.)

This result and some others are based on our study of *families* of automorphisms and of group actions on affine *n*-space.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Recent Results

- **①** \mathbb{C}^* -actions on \mathbb{C}^3 are linearizable (KORAS-RUSSELL 1997).
- ② Free \mathbb{C}^+ -actions on \mathbb{A}^3 are translations (KALIMAN 2004; not true in dimension ≥ 5.).
- GA₃ is not generated by Aff₃ and Jonc₃ (SHESTAKOV-UMIRBAEV 2004).

Theorem (K.-RUSSELL 2008)

Action of non-finite reductive groups on \mathbb{A}^3 are linearizable. (I.e. we know all non-finite reductive subgroups of $G\mathbb{A}_3$.)

This result and some others are based on our study of *families* of automorphisms and of group actions on affine *n*-space.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Recent Results

- **①** \mathbb{C}^* -actions on \mathbb{C}^3 are linearizable (KORAS-RUSSELL 1997).
- If ree C⁺-actions on A³ are translations (KALIMAN 2004; not true in dimension ≥ 5.).
- GA₃ is not generated by Aff₃ and Jonc₃ (SHESTAKOV-UMIRBAEV 2004).

Theorem (K.-RUSSELL 2008)

Action of non-finite reductive groups on \mathbb{A}^3 are linearizable. (I.e. we know all non-finite reductive subgroups of $G\mathbb{A}_3$.)

This result and some others are based on our study of *families* of automorphisms and of group actions on affine *n*-space.

ヘロア 人間 アメヨア 人口 ア

Recent Results

- **①** \mathbb{C}^* -actions on \mathbb{C}^3 are linearizable (KORAS-RUSSELL 1997).
- If ree C⁺-actions on A³ are translations (KALIMAN 2004; not true in dimension ≥ 5.).
- GA₃ is not generated by Aff₃ and Jonc₃ (SHESTAKOV-UMIRBAEV 2004).

Theorem (K.-RUSSELL 2008)

Action of non-finite reductive groups on \mathbb{A}^3 are linearizable. (I.e. we know all non-finite reductive subgroups of $G\mathbb{A}_3$.)

This result and some others are based on our study of *families of automorphisms and of group actions* on affine *n*-space.

くロト (過) (目) (日)

The Geometry of GA_n

Recall

 $G\mathbb{A}_n$ has the structure of an infinite dimensional algebraic group:

 $G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$

 $G\mathbb{A}_n^{(d)} := \{ \varphi \mid \deg \varphi \leq d \}$ $\deg \varphi := \max(\deg \varphi_i)$

Questions

Closed subgroups and closures of subgroups of GA_n?
 Locally finite automorphisms?
 Structure of conjugacy classes in GA_n?
 "Discrete" subgroups? (I.e. G∩GA_n^(d) finite for all d.)

Caution!

The Geometry of GA_n

Recall

 $G\mathbb{A}_n$ has the structure of an infinite dimensional algebraic group:

 $G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$

 $G\mathbb{A}_n^{(d)} := \{ \varphi \mid \deg \varphi \le d \}$ $\deg \varphi := \max(\deg \varphi_i)$

Questions

- Closed subgroups and closures of subgroups of GAn?
 - Locally finite automorphisms?
 - Structure of conjugacy classes in GAn?
- ③ "Discrete" subgroups? (I.e. G ∩ GA^(d)_n finite for all d.)

Caution!

The Geometry of GA_n

Recall

 $G\mathbb{A}_n$ has the structure of an infinite dimensional algebraic group:

 $G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$

 $G\mathbb{A}_n^{(d)} := \{ \varphi \mid \deg \varphi \le d \}$ $\deg \varphi := \max(\deg \varphi_i)$

Questions

- Closed subgroups and closures of subgroups of GAn?
- 2 Locally finite automorphisms?
 - Structure of conjugacy classes in GAn?
- ③ "Discrete" subgroups? (I.e. G ∩ GA^(d) finite for all d.)

Caution!

The Geometry of GA_n

Recall

 $G\mathbb{A}_n$ has the structure of an infinite dimensional algebraic group:

$$G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$$

 $G\mathbb{A}_n^{(d)} := \{ \varphi \mid \deg \varphi \le d \}$ $\deg \varphi := \max(\deg \varphi_i)$

Questions

- Closed subgroups and closures of subgroups of GAn?
- 2 Locally finite automorphisms?
- Structure of conjugacy classes in GAn?
- ③ "Discrete" subgroups? (I.e. G ∩ GA^(d) finite for all d.)

Caution!

The Geometry of GA_n

Recall

 $G\mathbb{A}_n$ has the structure of an infinite dimensional algebraic group:

$$G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$$

 $G\mathbb{A}_n^{(d)} := \{ \varphi \mid \deg \varphi \le d \}$ $\deg \varphi := \max(\deg \varphi_i)$

Questions

- Closed subgroups and closures of subgroups of GAn?
- 2 Locally finite automorphisms?
- Structure of conjugacy classes in GAn?
- Init of all d.)
 Init of all d.)
 Init of all d.)

Caution!

The Geometry of GA_n

Recall

 $G\mathbb{A}_n$ has the structure of an infinite dimensional algebraic group:

$$G\mathbb{A}_n = \bigcup_d G\mathbb{A}_n^{(d)}$$

 $G\mathbb{A}_n^{(d)} := \{ \varphi \mid \deg \varphi \le d \}$ $\deg \varphi := \max(\deg \varphi_i)$

Questions

- Closed subgroups and closures of subgroups of GAn?
- 2 Locally finite automorphisms?
- Structure of conjugacy classes in GAn?
- Iniscrete" subgroups? (I.e. G ∩ GA^(d) finite for all d.)

Caution!

$$\overline{C} \neq \bigcup_d \overline{C \cap G\mathbb{A}_n^{(d)}}.$$

A Strange Example

Example (HILLE-K.-KRAMMER 2008)

There is an action of the braid group B_3 on \mathbb{A}^3 as a discrete subgroup with one invariant $f = xyz - x^2 - y^2 - z^2$ and two fixed points, the singular points of f = 0.

One construction uses the action of B_3 on the free group with two generators, the other comes from representations of quivers.

イロト イポト イヨト イヨト

A Strange Example

Example (HILLE-K.-KRAMMER 2008)

There is an action of the braid group B_3 on \mathbb{A}^3 as a discrete subgroup with one invariant $f = xyz - x^2 - y^2 - z^2$ and two fixed points, the singular points of f = 0.

One construction uses the action of B_3 on the free group with two generators, the other comes from representations of quivers.

< 回 > < 回 > < 回 >

Some Properties of GA_n

• GA_n is "rationally" connected.

- **2** GA_n is *N*-transitive (on A^n) for every $N \in \mathbb{N}$.
- If F ⊂ Aⁿ is a finite subset, then F = (Aⁿ)^G for some (closed) subgroup G ⊂ GA_n.
- Usual Galois correspondence:

 $\{\text{closed subsets } X \subset \mathbb{A}^n\} \leftrightarrow \{\text{closed subgroups } G \subset G\mathbb{A}_n\}$

 $\mathbb{C}^+ \times \mathbb{C}^{*r} \times F$ or $\mathbb{C}^{*r} \times F$ with *F* finite cyclic.

イロト 不得 とくほ とくほ とう

Some Properties of GA_n

- GA_n is "rationally" connected.
- **2** GA_n is *N*-transitive (on A^n) for every $N \in \mathbb{N}$.
- If F ⊂ Aⁿ is a finite subset, then F = (Aⁿ)^G for some (closed) subgroup G ⊂ GA_n.
- Usual Galois correspondence:

 ${\text{closed subsets } X \subset \mathbb{A}^n} \leftrightarrow {\text{closed subgroups } G \subset G\mathbb{A}_n}$

• φ locally finite $\Leftrightarrow \overline{\langle \varphi \rangle}$ is a commutative algebraic group, and $\overline{\langle \varphi \rangle}$ is isomorphic to

 $\mathbb{C}^+ \times \mathbb{C}^{*r} \times F$ or $\mathbb{C}^{*r} \times F$ with *F* finite cyclic.

イロト 不得 とくほ とくほ とうほ

Some Properties of GA_n

- GA_n is "rationally" connected.
- **2** GA_n is *N*-transitive (on A^n) for every $N \in \mathbb{N}$.
- If $F \subset \mathbb{A}^n$ is a finite subset, then $F = (\mathbb{A}^n)^G$ for some (closed) subgroup $G \subset G\mathbb{A}_n$.
- Usual Galois correspondence:

 ${\text{closed subsets } X \subset \mathbb{A}^n} \leftrightarrow {\text{closed subgroups } G \subset G\mathbb{A}_n}$

Ically finite $\Leftrightarrow \overline{\langle \varphi \rangle}$ is a commutative algebraic group, and $\overline{\langle \varphi \rangle}$ is isomorphic to

 $\mathbb{C}^+ \times \mathbb{C}^{*'} \times F$ or $\mathbb{C}^{*'} \times F$ with *F* finite cyclic.

イロン 不得 とくほ とくほ とうほ

Some Properties of GA_n

- GA_n is "rationally" connected.
- **2** GA_n is *N*-transitive (on A^n) for every $N \in \mathbb{N}$.
- If F ⊂ Aⁿ is a finite subset, then F = (Aⁿ)^G for some (closed) subgroup G ⊂ GA_n.
- Usual Galois correspondence:

 $\{\text{closed subsets } X \subset \mathbb{A}^n\} \leftrightarrow \{\text{closed subgroups } G \subset G\mathbb{A}_n\}$

• φ locally finite $\Leftrightarrow \overline{\langle \varphi \rangle}$ is a commutative algebraic group, and $\overline{\langle \varphi \rangle}$ is isomorphic to

 $\mathbb{C}^+ \times \mathbb{C}^{*r} \times F$ or $\mathbb{C}^{*r} \times F$ with *F* finite cyclic.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Some Properties of GA_n

- GA_n is "rationally" connected.
- **2** GA_n is *N*-transitive (on A^n) for every $N \in \mathbb{N}$.
- If F ⊂ Aⁿ is a finite subset, then F = (Aⁿ)^G for some (closed) subgroup G ⊂ GA_n.
- Usual Galois correspondence:

 $\{\text{closed subsets } X \subset \mathbb{A}^n\} \leftrightarrow \{\text{closed subgroups } G \subset G\mathbb{A}_n\}$

• φ locally finite $\Leftrightarrow \overline{\langle \varphi \rangle}$ is a commutative algebraic group, and $\overline{\langle \varphi \rangle}$ is isomorphic to

 $\mathbb{C}^+ \times \mathbb{C}^{*'} \times F$ or $\mathbb{C}^{*'} \times F$ with *F* finite cyclic.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

More Properties of GA_n

- The representation of GA_n on the polynomial ring C[x₁,..., x_n] is irreducible.
- Every automorphism of GA₂ is inner, up to field automorphisms (DESERTI, 2007).
- ③ GA_n is a simple group for n > 1 (?)

・ロト ・ 理 ト ・ ヨ ト ・

э

More Properties of GA_n

- The representation of GA_n on the polynomial ring C[x₁,..., x_n] is irreducible.
- Every automorphism of GA₂ is inner, up to field automorphisms (DESERTI, 2007).
- 3 GA_n is a simple group for n > 1 (?)

ヘロン 人間 とくほ とくほ とう

э.

More Properties of GA_n

- The representation of GA_n on the polynomial ring C[x₁,..., x_n] is irreducible.
- Every automorphism of GA₂ is inner, up to field automorphisms (DESERTI, 2007).
- **3** GA_n is a simple group for n > 1 (?)

ヘロン 人間 とくほ とくほ とう

э.

Question

Well-known Facts about Algebraic Groups

Let G be an algebraic group.

- The unipotent elements form a closed subset.
- G reductive semisimple elements are dense elements of finite order are dense.
- Semisimple conjugacy classes are closed.

Question What about $G\mathbb{A}_n$?

・ロット (雪) () () () ()

Question

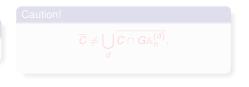
Well-known Facts about Algebraic Groups

Let G be an algebraic group.

- The unipotent elements form a closed subset.
- G reductive semisimple elements are dense elements of finite order are dense.
- Semisimple conjugacy classes are closed.

Question

What about GA_n ?



ヘロト 人間 とくほとくほとう

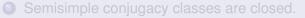
э

Question

Well-known Facts about Algebraic Groups

Let G be an algebraic group.

- The unipotent elements form a closed subset.
- 2 *G* reductive \Leftrightarrow semisimple elements are dense \Leftrightarrow elements of finite order are dense.



ヘロン 人間 とくほとく ほとう

э

Question

Well-known Facts about Algebraic Groups

Let G be an algebraic group.

- The unipotent elements form a closed subset.
- 2 *G* reductive \Leftrightarrow semisimple elements are dense \Leftrightarrow elements of finite order are dense.
- Semisimple conjugacy classes are closed.

Question

Well-known Facts about Algebraic Groups

Let G be an algebraic group.

- The unipotent elements form a closed subset.
- ② G reductive ⇔ semisimple elements are dense ⇔ elements of finite order are dense.
- Semisimple conjugacy classes are closed.

Question

Well-known Facts about Algebraic Groups

Let G be an algebraic group.

- The unipotent elements form a closed subset.
- ② G reductive ⇔ semisimple elements are dense ⇔ elements of finite order are dense.
- Semisimple conjugacy classes are closed.

くロト (過) (目) (日)

Semisimple Conjugacy Classes

Proposition (FURTER-K. 2008)

- If the conjugacy class of a semisimple element $s \in G\mathbb{A}_n$ is closed then s is diagonalizable.
 - If the conjugacy class of a G-action with fixed points is closed, then the action is linearizable.

Lemma

A semisimple automorphism of \mathbb{A}^n has a fixed point.

Theorem (FURTER-MAUBACH 2008)

Semisimple conjugacy classes in GA_2 are closed.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Semisimple Conjugacy Classes

Proposition (FURTER-K. 2008)

- If the conjugacy class of a semisimple element $s \in G\mathbb{A}_n$ is closed then s is diagonalizable.
- If the conjugacy class of a G-action with fixed points is closed, then the action is linearizable.

Lemma

A semisimple automorphism of \mathbb{A}^n has a fixed point.

Theorem (FURTER-MAUBACH 2008)

Semisimple conjugacy classes in GA_2 are closed.

くロト (過) (目) (日)

Semisimple Conjugacy Classes

Proposition (FURTER-K. 2008)

- If the conjugacy class of a semisimple element $s \in G\mathbb{A}_n$ is closed then s is diagonalizable.
- If the conjugacy class of a G-action with fixed points is closed, then the action is linearizable.

Lemma

A semisimple automorphism of \mathbb{A}^n has a fixed point.

Theorem (Furter-Maubach 2008)

Semisimple conjugacy classes in GA_2 are closed.

ヘロア 人間 アメヨア 人口 ア

Semisimple Conjugacy Classes

Proposition (FURTER-K. 2008)

- If the conjugacy class of a semisimple element $s \in G\mathbb{A}_n$ is closed then s is diagonalizable.
- If the conjugacy class of a G-action with fixed points is closed, then the action is linearizable.

Lemma

A semisimple automorphism of \mathbb{A}^n has a fixed point.

Theorem (FURTER-MAUBACH 2008)

Semisimple conjugacy classes in GA_2 are closed.

ヘロト ヘ戸ト ヘヨト ヘヨト

Families of Automorphisms

Definition

Let X be a variety. A *family of automorphisms* of \mathbb{A}^n is an automorphism $\rho = (\rho_X)_{X \in X}$ of $X \times \mathbb{A}^n$ over X.

Similarly one defines *a family of actions* of an algebraic group G on \mathbb{A}^n .

Proposition (K. 1989)

A family of linear actions of a reductive group G is locally trivial in the Zariski-topology. It is given by a vector bundle $\mathcal{V} \to X$ of the form

 $\mathcal{V} = igoplus_{\lambda} \mathcal{V}_{\lambda} \otimes \mathcal{V}_{\lambda}$

where V_{λ} are simple G-modules and V_{λ} vector bundles over X.

-

Families of Automorphisms

Definition

Let X be a variety. A *family of automorphisms* of \mathbb{A}^n is an automorphism $\rho = (\rho_X)_{X \in X}$ of $X \times \mathbb{A}^n$ over X.

Similarly one defines a family of actions of an algebraic group G on \mathbb{A}^n .

Proposition (K. 1989)

A family of linear actions of a reductive group G is locally trivial in the Zariski-topology. It is given by a vector bundle $\mathcal{V} \to X$ of the form

 $\mathcal{V} = igoplus_{\lambda} \mathcal{V}_{\lambda} \otimes \mathcal{V}_{\lambda}$

where V_{λ} are simple G-modules and \mathcal{V}_{λ} vector bundles over X.

DER NERN SER

-

Families of Automorphisms

Definition

Let X be a variety. A *family of automorphisms* of \mathbb{A}^n is an automorphism $\rho = (\rho_X)_{X \in X}$ of $X \times \mathbb{A}^n$ over X.

Similarly one defines a family of actions of an algebraic group G on \mathbb{A}^n .

Proposition (K. 1989)

A family of linear actions of a reductive group G is locally trivial in the Zariski-topology. It is given by a vector bundle $\mathcal{V} \to X$ of the form

$$\mathcal{V} = igoplus_{\lambda} V_{\lambda} \otimes \mathcal{V}_{\lambda}$$

where V_{λ} are simple G-modules and \mathcal{V}_{λ} vector bundles over X.

Lifts of Actions

Proposition (K.-KUTZSCHEBAUCH 1989)

Let G be reductive and Z an affine G-variety. Then every lift of the action to $Z \times \mathbb{A}^1$ is trivial, i.e. of the form $Z \times \mathbb{C}_{\chi}$ with a character χ of G.

Corollary

Every G-action by Jonquière automorphisms is linearizable.

Caution!

Lifts from Z to $Z \times \mathbb{A}^n$ for n > 1 are in general not trivial!

(In fact, the counterexamples to the linearization problem constructed so far are *G*-vector bundles over *G*-modules *V*!)

くロト (過) (目) (日)

Lifts of Actions

Proposition (K.-KUTZSCHEBAUCH 1989)

Let G be reductive and Z an affine G-variety. Then every lift of the action to $Z \times \mathbb{A}^1$ is trivial, i.e. of the form $Z \times \mathbb{C}_{\chi}$ with a character χ of G.

Corollary

Every G-action by Jonquière automorphisms is linearizable.

Caution!

Lifts from Z to $Z \times \mathbb{A}^n$ for n > 1 are in general not trivial!

(In fact, the counterexamples to the linearization problem constructed so far are *G*-vector bundles over *G*-modules *V*!)

くロト (過) (目) (日)

Lifts of Actions

Proposition (K.-KUTZSCHEBAUCH 1989)

Let G be reductive and Z an affine G-variety. Then every lift of the action to $Z \times \mathbb{A}^1$ is trivial, i.e. of the form $Z \times \mathbb{C}_{\chi}$ with a character χ of G.

Corollary

Every G-action by Jonquière automorphisms is linearizable.

Caution!

Lifts from Z to $Z \times \mathbb{A}^n$ for n > 1 are in general not trivial!

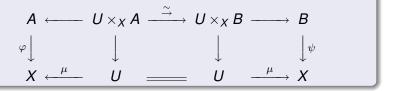
(In fact, the counterexamples to the linearization problem constructed so far are G-vector bundles over G-modules V!)

ヘロト 人間 ト ヘヨト ヘヨト

Generic Triviality

Theorem (K.-RUSSELL 2005)

Let A, B be two G-varieties and $\varphi \colon A \to X$ and $\psi \colon B \to X$ two affine G-invariant morphisms. Assume that the fibers A_x and B_x are G-isomorphic for all $x \in X$. Then there is an étale dominant morphism $U \to X$ such that the pull-backs $U \times_X A$ and $\mu \colon U \times_X B$ are G-isomorphic.



ヘロン 人間 とくほ とくほ とう

Local Triviality

Lemma

A family $\rho = (\rho_x)_{x \in X}$ which is locally finite on an open dense set $U \subset X$ is locally finite on X.

Does this hold if $U \subset X$ is only dense?

Proposition

Assume that there is a dense set $X' \subset X$ such that all ρ_x , $x \in X'$, are conjugate to a fixed locally finite automorphism ρ_0 . Then ρ is locally finite. Moreover, if ρ_0 is semisimple or unipotent, then so are all ρ_x .

イロン 不同 とくほ とくほ とう

Local Triviality

Lemma

A family $\rho = (\rho_x)_{x \in X}$ which is locally finite on an open dense set $U \subset X$ is locally finite on X.

Does this hold if $U \subset X$ is only dense?

Proposition

Assume that there is a dense set $X' \subset X$ such that all ρ_x , $x \in X'$, are conjugate to a fixed locally finite automorphism ρ_0 . Then ρ is locally finite. Moreover, if ρ_0 is semisimple or unipotent, then so are all ρ_x .

イロン 不同 とくほ とくほ とう

Local Triviality

Lemma

A family $\rho = (\rho_x)_{x \in X}$ which is locally finite on an open dense set $U \subset X$ is locally finite on X.

Does this hold if $U \subset X$ is only dense?

Proposition

Assume that there is a dense set $X' \subset X$ such that all ρ_x , $x \in X'$, are conjugate to a fixed locally finite automorphism ρ_0 . Then ρ is locally finite. Moreover, if ρ_0 is semisimple or unipotent, then so are all ρ_x .

イロト イポト イヨト イヨト

Semisimple Families

Corollary

Let G be a reductive group. The conjugacy class of a G-action on \mathbb{A}^2 is closed. In particular, the semisimple conjugacy classes in $G\mathbb{A}_2$ are closed.

Corollary

An action of a reductive group G on \mathbb{A}^3 leaving a variable invariant is linearizable.

ヘロト 人間 ト ヘヨト ヘヨト

Semisimple Families

Corollary

Let G be a reductive group. The conjugacy class of a G-action on \mathbb{A}^2 is closed. In particular, the semisimple conjugacy classes in $G\mathbb{A}_2$ are closed.

Corollary

An action of a reductive group G on \mathbb{A}^3 leaving a variable invariant is linearizable.

→ Ξ → < Ξ →</p>

Linearizable Families

Theorem

A family of linearizable G-actions on \mathbb{A}^n is linearizable, i.e. isomorphic to a family of linear representations, provided the G-representation is "nice".

Here a representation V is called "nice" if every G-equivariant automorphism of V is linear.

E.g. the *adjoint representation* of a simple group is nice, but there exist non-nice representations (A. KURTH, 1997).

Corollary

Let G act on \mathbb{A}^n and assume that there is a G-equivariant projection $\varphi \colon \mathbb{A}^n \to (\mathbb{A}^n)^G$ such that the general fiber is a nice linearizable action. Then the G-action on \mathbb{A}^n is linearizable.

э

Linearizable Families

Theorem

A family of linearizable G-actions on \mathbb{A}^n is linearizable, i.e. isomorphic to a family of linear representations, provided the G-representation is "nice".

Here a representation V is called "nice" if every G-equivariant automorphism of V is linear.

E.g. the *adjoint representation* of a simple group is nice, but there exist non-nice representations (A. KURTH, 1997).

Corollary

Let G act on \mathbb{A}^n and assume that there is a G-equivariant projection $\varphi \colon \mathbb{A}^n \to (\mathbb{A}^n)^G$ such that the general fiber is a nice linearizable action. Then the G-action on \mathbb{A}^n is linearizable.

イロト イポト イヨト イヨト

Thank you for your attention!

Hanspeter Kraft The Linearization Problem, Old and New

ヘロン 人間 とくほ とくほ とう

э