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“I would like to thank the organizers . . .

. . . bla bla bla . . . ”

(Just to spare my voice!)
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Thanks a lot Karin, Donna, and Sasha!!!
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The Basic Problem

One of the fundamental questions in affine algebraic geometry
is the following. (For simplicity we will work over C.)

Question
How can an algebraic group G act on affine n-space An?

• Actions of the additive group C+ and of unipotent groups?
• Actions of C∗ and of tori?
• Actions of finite groups?
• Actions of reductive groups?
• Fixed points?
• Invariants and quotient An//G?
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The Basic Problem

Recall that the group GAn of polynomial automorphisms of An

has the structure of an infinite dimensional algebraic group:

GAn =
⋃
d

GA(d)
n

where GA(d)
n denotes the automorphisms ϕ = (ϕ1, . . . , ϕn) of

degree degϕ := max(degϕi) ≤ d (SHAFAREVICH, 1966).

Question
What is the algebraic & geometric structure of the group GAn?
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Two Specific Questions

Linearization Problem
Is every action of a reductive algebraic group G on affine
n-space An linearizable, i.e. is there a G-equivariant
isomorphism An ∼→ V where V is a representation of G?
Equivalently, is every reductive subgroup G ⊂ GAn conjugate to
a subgroup of GLn?

Fixed Point Problem
Does every action of a reductive algebraic group G on affine
n-space An have a fixed point?
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Early Results

1 GA2 is an amalgamated product Aff2 ?B2 Jonc2 (VAN DER

KULK 1953) and so every reductive group action on A2 is
linearizable (KAMBAYASHI 1979).

2 A faithful action of a torus T on An is linearisable if
dim T ≥ n − 1 (BIALYNICKI-BIRULA, 1966/67).

3 If a reductive group action on An has no invariants (i.e.
An//G = {∗}), then it is linearizable (LUNA 1973).

4 A semisimple group action on A3 or A4 is linearizable
(K.-POPOV 1985, PANYUSHEV 1984).
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Remarks

1 The structure of GA2 as an amalgamated product holds for
every ground field K .

2 It implies the non-existence of non-trivial forms of A2 (or of
the polynomial ring C[x , y ]).
(This question is completely open in higher dimensions!)

3 An amalgamated product structure on GAn like above
does not exist for n ≥ 3.
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Counterexamples

1 First examples of non-linearizable actions: O2(C) on A4

and SL2(C) on A7 (SCHWARZ 1989).
2 Counterexamples for all connected reductive group except

tori (KNOP 1991).
3 Examples and counterexamples for reductiv group actions

with one-dimensional quotient An//G (K.-SCHWARZ 1992).
4 Counterexamples for many non-commutative finite groups

(MASUDA-MOSER-J.-PETRIE 1991).

OPEN: commutative reductive groups!
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Remarks

1 All conterexamples so far come from non-trivial G-vector
bundles (idea of BASS-HABOUSH 1987).

2 No such counterexamples for commutative reductive
groups (work of MASUDA-MOSER-PETRIE, DE

CONCINI-FAGNANI)
3 All conterexamples so far are holomorphically linearizable

(equivariant Oka-principle, HEINZNER-KUTZSCHEBAUCH

1994).
4 Counterexamples in the holomorphic setting for every

complex reductive group (DERKSEN-KUTZSCHEBAUCH

1998).
5 Conterexamples for commutative groups over

non-algebraically closed fields (WINKELMANN 2008).
6 No examples without fixed points!
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Recent Results

1 C∗-actions on C3 are linearizable (KORAS-RUSSELL 1997).
2 Free C+-actions on A3 are translations (KALIMAN 2004;

not true in dimension ≥ 5.).
3 GA3 is not generated by Aff3 and Jonc3 (SHESTAKOV-

UMIRBAEV 2004).

Theorem (K.-RUSSELL 2008)

Action of non-finite reductive groups on A3 are linearizable.
(I.e. we know all non-finite reductive subgroups of GA3.)

This result and some others are based on our study of families
of automorphisms and of group actions on affine n-space.
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The Geometry of GAn

Recall

GAn has the structure of an
infinite dimensional algebraic
group:

GAn =
[
d

GA(d)
n

GA(d)
n := {ϕ | degϕ ≤ d}

degϕ := max(degϕi )

Questions
1 Closed subgroups and closures of

subgroups of GAn?
2 Locally finite automorphisms?
3 Structure of conjugacy classes in GAn?
4 ”Discrete” subgroups? (I.e. G ∩GA(d)

n
finite for all d.)

Caution!

In general, for a subset C ⊂ GAn,

C 6=
[
d

C ∩ GA(d)
n .
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A Strange Example

Example (HILLE-K.-KRAMMER 2008)

There is an action of the braid group B3 on A3 as a discrete
subgroup with one invariant f = xyz − x2 − y2 − z2 and two
fixed points, the singular points of f = 0.

One construction uses the action of B3 on the free group with
two generators, the other comes from representations of
quivers.
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Some Properties of GAn

1 GAn is “rationally” connected.
2 GAn is N-transitive (on An) for every N ∈ N.
3 If F ⊂ An is a finite subset, then F = (An)G for some

(closed) subgroup G ⊂ GAn.
4 Usual Galois correspondence:

{closed subsets X ⊂ An} ↔ {closed subgroups G ⊂ GAn}

5 ϕ locally finite⇔ 〈ϕ〉 is a commutative algebraic group,
and 〈ϕ〉 is isomorphic to

C+ × C∗r × F or C∗r × F with F finite cyclic.
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More Properties of GAn

1 The representation of GAn on the polynomial ring
C[x1, . . . , xn] is irreducible.

2 Every automorphism of GA2 is inner, up to field
automorphisms (DESERTI, 2007).

3 GAn is a simple group for n > 1 (?)
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Question

Well-known Facts about Algebraic Groups

Let G be an algebraic group.
1 The unipotent elements form a closed subset.
2 G reductive⇔ semisimple elements are dense⇔

elements of finite order are dense.
3 Semisimple conjugacy classes are closed.

Question
What about GAn?

Caution!

C 6=
[
d

C ∩ GA(d)
n .
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Semisimple Conjugacy Classes

Proposition (FURTER-K. 2008)
1 If the conjugacy class of a semisimple element s ∈ GAn is

closed then s is diagonalizable.
2 If the conjugacy class of a G-action with fixed points is

closed, then the action is linearizable.

Lemma
A semisimple automorphism of An has a fixed point.

Theorem (FURTER-MAUBACH 2008)
Semisimple conjugacy classes in GA2 are closed.
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Families of Automorphisms

Definition
Let X be a variety. A family of automorphisms of An is an
automorphism ρ = (ρx)x∈X of X × An over X .
Similarly one defines a family of actions of an algebraic group
G on An.

Proposition (K. 1989)
A family of linear actions of a reductive group G is locally trivial
in the Zariski-topology. It is given by a vector bundle V → X of
the form

V =
⊕
λ

Vλ ⊗ Vλ

where Vλ are simple G-modules and Vλ vector bundles over X.
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Lifts of Actions

Proposition (K.-KUTZSCHEBAUCH 1989)
Let G be reductive and Z an affine G-variety. Then every lift of
the action to Z × A1 is trivial, i.e. of the form Z × Cχ with a
character χ of G.

Corollary

Every G-action by Jonquière automorphisms is linearizable.

Caution!

Lifts from Z to Z × An for n > 1 are in general not trivial!
(In fact, the counterexamples to the linearization problem constructed so far are
G-vector bundles over G-modules V !)
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Generic Triviality

Theorem (K.-RUSSELL 2005)
Let A,B be two G-varieties and ϕ : A→ X and ψ : B → X two
affine G-invariant morphisms. Assume that the fibers Ax and Bx
are G-isomorphic for all x ∈ X. Then there is an étale dominant
morphism U → X such that the pull-backs U ×X A and
µ : U ×X B are G-isomorphic.

A ←−−−− U ×X A
∼→−−−−→ U ×X B −−−−→ B

ϕ

y y y yψ
X

µ←−−−− U U
µ−−−−→ X
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Local Triviality

Lemma
A family ρ = (ρx)x∈X which is locally finite on an open dense set
U ⊂ X is locally finite on X.

Does this hold if U ⊂ X is only dense?

Proposition

Assume that there is a dense set X ′ ⊂ X such that all ρx ,
x ∈ X ′, are conjugate to a fixed locally finite automorphism ρ0.
Then ρ is locally finite. Moreover, if ρ0 is semisimple or
unipotent, then so are all ρx .
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Semisimple Families

Corollary
Let G be a reductive group. The conjugacy class of a G-action
on A2 is closed. In particular, the semisimple conjugacy
classes in GA2 are closed.

Corollary

An action of a reductive group G on A3 leaving a variable
invariant is linearizable.
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Linearizable Families

Theorem
A family of linearizable G-actions on An is linearizable, i.e.
isomorphic to a family of linear representations, provided the
G-representation is “nice”.

Here a representation V is called “nice” if every G-equivariant
automorphism of V is linear.
E.g. the adjoint representation of a simple group is nice, but
there exist non-nice representations (A. KURTH, 1997).

Corollary

Let G act on An and assume that there is a G-equivariant
projection ϕ : An → (An)G such that the general fiber is a nice
linearizable action. Then the G-action on An is linearizable.
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Thank you for your attention!
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