Semicentre of parabolic subalgebras ASCONA CONFERENCE

F. FAUQUANT-MILLET Florence.Millet@univ-st-etienne.fr

31/08/2009

References

- Joint work with Anthony JOSEPH
- F. Fauquant-Millet and A. Joseph, "Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple", Ann. Sci. École Norm. Sup.(4) 38 (2005), no. 2, 155-191.
- F. Fauquant-Millet and A. Joseph, "La somme des faux degrés – un mystère en théorie des invariants", Advances in Maths, Vol. 217/4, 2008, 1476-1520.

Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra and \mathfrak{p} a parabolic subalgebra of \mathfrak{g} : \mathfrak{p} is a Lie subalgebra of $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{b}$ which contains the Borel subalgebra \mathfrak{b} of \mathfrak{g} . Denote by \mathfrak{g}' the Levi of \mathfrak{p} . Both algebras \mathfrak{g}' and \mathfrak{g} are semisimple Lie algebras. Denote by π the set of simple roots of \mathfrak{g} and $\pi' \subset \pi$ the set of simple roots of \mathfrak{g}' (wrt the Cartan subalgebra \mathfrak{h} of \mathfrak{g}). Recall that the adjoint action of \mathfrak{p} (coming from the Lie bracket) induces a derivation on the symmetric algebra $S(\mathfrak{p})$ of \mathfrak{p} , which we will still denote by ad.

Definition

An element $s \in S(\mathfrak{p})$ is said to be *semi-invariant* when for all $x \in \mathfrak{p}$ there exists $\lambda(x) \in \mathbb{C}$ such that $(ad x)(s) = \lambda(x)s$. The *semicentre* $Sy(\mathfrak{p})$ of $S(\mathfrak{p})$ is the \mathbb{C} -vectorspace generated by the semi-invariants of $S(\mathfrak{p})$.

Remarks

- Remark 1: we have a similar definition for the semicentre Sz(p) of the enveloping algebra U(p) of p.
- Remark 2: let $\mathfrak{p}' = [\mathfrak{p}, \mathfrak{p}]$ denote the derived algebra of \mathfrak{p} . Then $Sy(\mathfrak{p}) = S(\mathfrak{p})^{\mathfrak{p}'}$.
- Fact: The semicentres Sy(p) and Sz(p) are \mathbb{C} -algebras which are isomorphic, by an extension of the Duflo map (result of Rentschler and Vergne).

Theorem

(Joseph+FM - 2005) Suppose that \mathfrak{g} is a product of simple Lie algebras of type A or C (shortly \mathfrak{g} of type AC), and \mathfrak{p} is any parabolic subalgebra of \mathfrak{g} . Then the semicentre $Sy(\mathfrak{p})$ of $S(\mathfrak{p})$ is a polynomial \mathbb{C} -algebra in $Card(\Pi)$ generators, each generator having a weight equal to δ_{Γ} , $\Gamma \in \Pi$ and a degree also given by some "receipt".

Remark 1: The polynomiality of Sy(p) is still true for \mathfrak{g} in other types and particular parabolic subalgebras \mathfrak{p} . Remark 2: In type E_8 , the polynomiality of $Sy(\mathfrak{p})$ fails for some particular \mathfrak{p} (result of Yakimova). \bullet What is Π ?

Let w_0 , resp. w'_0 , denote the longest element of the Weyl group of \mathfrak{g} , resp. of \mathfrak{g}' . Define involutions i and j of π as follows. For all $\alpha \in \pi$, $j(\alpha) = -w_0(\alpha)$, for all $\alpha \in \pi'$, $i(\alpha) = -w'_0(\alpha)$ and for all $\alpha \in \pi \setminus \pi'$, $i(\alpha) = j(ij)^r(\alpha)$ where $r \in \mathbb{N}$ is the smallest nonnegative integer such that $j(ij)^r(\alpha) \notin \pi'$. Then Π is the set of the $\langle ji \rangle$ -orbits of π . Suppose \mathfrak{g} of type A_6 , $\pi = \{\alpha_1, \ldots, \alpha_6\}$ and $\pi' = \pi \setminus \{\alpha_4, \alpha_6\}$

Then $i(\alpha_4) = \alpha_6$ because $j(\alpha_4) = \alpha_3 \in \pi'$ and $jij(\alpha_4) = \alpha_6 \notin \pi'$ and then $i(\alpha_6) = \alpha_4$. There are three $\langle ji \rangle$ -orbits of π which are $\Gamma_1 = \{\alpha_1, \alpha_4\}$, $\Gamma_2 = \{\alpha_2, \alpha_5\}$ and $\Gamma_3 = \{\alpha_3, \alpha_6\}$. Thus the semicentre $Sy(\mathfrak{p})$ is a polynomial algebra in three generators. Suppose $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$ and \mathfrak{p} the maximal parabolic subalgebra where the last row is zero. Then $\pi = \{\alpha_1, \ldots, \alpha_n\}$ and $\pi' = \pi \setminus \{\alpha_n\}.$

Here $i(\alpha_n) = \alpha_n$ and then $(ji)(\alpha_n) = \alpha_1$, $(ji)^2(\alpha_n) = j(\alpha_{n-1}) = \alpha_2$,..., and finally $(ji)^k(\alpha_n) = \alpha_k$ for all $1 \le k \le n$. Thus $Card(\Pi) = 1$ and $Sv(n) = \mathbb{C}[d]$: polynomial \mathbb{C} -algebra in

Thus $\operatorname{Card}(\Pi) = 1$ and $\operatorname{Sy}(\mathfrak{p}) = \mathbb{C}[d]$: polynomial \mathbb{C} -algebra in one generator $d \in \operatorname{Sy}(\mathfrak{p})$: result already proved by Dixmier and by Joseph in 1976 and 1977.

• What is the weight δ_{Γ} of each generator of the polynomial algebra $Sy(\mathfrak{p})$?

Denote by $\{\varpi_{\alpha}\}_{\alpha\in\pi}$, resp. $\{\varpi'_{\alpha}\}_{\alpha\in\pi'}$, the set of fundamental weights associated to π , resp. to π' . Assign to each $\Gamma \in \Pi$ the elements $d_{\Gamma} = \sum_{\gamma\in\Gamma} \varpi_{\gamma}$ and $d'_{\Gamma} = \sum_{\gamma\in\Gamma\cap\pi'} \varpi'_{\gamma}$. Then the weight δ_{Γ} of each generator of the polynomial algebra $Sy(\mathfrak{p})$ is $\delta_{\Gamma} = w'_0(d_{\Gamma}) - w_0(d_{\Gamma}) = w'_0(d'_{\Gamma}) - d'_{\Gamma} + d_{\Gamma} - w_0(d_{\Gamma}) \in \sum_{\alpha\in\pi\setminus\pi'} \mathbb{N}\varpi_{\alpha}$.

Examples

First example: \mathfrak{g} of type A_6 , $\pi = \{\alpha_1, \ldots, \alpha_6\}$ and $\overline{\pi' = \pi \setminus \{\alpha_4, \alpha_6\}}$. Here we get $\varpi_i = \varpi'_i + \frac{i}{4} \varpi_4$ for all $1 \le i \le 3$ and $\varpi_5 = \varpi'_5 + \frac{1}{2} \varpi_4 + \frac{1}{2} \varpi_6$. The weight of each generator of $\operatorname{Sy}(\mathfrak{p})$ is equal to $\delta_{\Gamma_i} = 2 \varpi_4 + \varpi_6$ for all $1 \le i \le 3$. Example of the "big" maximal parabolic: here we get $\overline{\varpi_i = \varpi'_i + \frac{i}{n} \varpi_n}$ for all $1 \le i \le n - 1$ and the weight of the unique generator d of $\operatorname{Sy}(\mathfrak{p})$ is equal to $(n + 1) \varpi_n$. • What is the degree of each generator of Sy(p)?

Let $\Gamma \in \Pi/\langle -w_0 \rangle$. If $\Gamma = -w_0\Gamma$ then there is only one generator s_{Γ} in $\operatorname{Sy}(\mathfrak{p})$ corresponding to Γ . Otherwise there are two generators s_{Γ} and t_{Γ} in $\operatorname{Sy}(\mathfrak{p})$ corresponding to Γ and $\operatorname{deg}(t_{\Gamma}) = \operatorname{deg}(s_{\Gamma}) + 1$. When $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$, the degree of each s_{Γ} can be computed as follows.

Here $\pi = \{\alpha_1, \ldots, \alpha_n\}$. Assign to each simple root $\alpha \in \pi$ the integer $\partial_{\alpha} := \min\{i, n+1-i \mid \alpha = \alpha_i\}$.

Each connected component of π' is again of type A, so assign to each $\alpha \in \pi'$ an integer ∂'_{α} by the same procedure applied to each component.

Finally set $\partial'_{\alpha} = 0$ if $\alpha \in \pi \setminus \pi'$. Then deg $(s_{\Gamma}) = \sum_{\alpha \in \Gamma} (\partial_{\alpha} + \partial'_{\alpha})$.

Examples

 $\begin{array}{l} \hline \text{First example Here we get three generators } s_{\Gamma_1}, \ t_{\Gamma_1} \ \text{and } s_{\Gamma_2} \ \text{which} \\ \hline \text{degrees are: } \deg(s_{\Gamma_1}) = 1 + 3 + 1 = 5, \ \deg(t_{\Gamma_1}) = \deg(s_{\Gamma_1}) + 1 = 6 \\ \text{and } \deg(s_{\Gamma_2}) = 2 + 2 + 2 + 1 = 7. \\ \hline \text{Example of the "big" maximal parabolic: If } n \ \text{is even,} \\ \hline \text{deg}(d) = 2(1 + 2 + \ldots + \frac{n}{2}) + 2(1 + 2 + \ldots + \frac{n-2}{2}) + \frac{n}{2} = n(n+1)/2. \\ \hline \text{If } n \ \text{is odd,} \\ \hline \text{deg}(d) = 2(1 + 2 + \ldots + \frac{n-1}{2}) + \frac{n+1}{2} + 2(1 + 2 + \ldots + \frac{n-1}{2}) = n(n+1)/2. \end{array}$

The proof is based on two results, one coming from the quantum case and the other from the classical case of the Borel.More precisely, we use the following theorems

Theorem 1

(Joseph+FM -2001) (coming from quantum case) Let $\mathbf{U}(\mathfrak{g})^*$ be the Hopf dual of the enveloping algebra $\mathbf{U}(\mathfrak{g})$ of \mathfrak{g} , \mathfrak{m} the nilradical of the parabolic \mathfrak{p} and ${}^{\mathfrak{m}}\mathbf{U}(\mathfrak{g})^* := \{f \in \mathbf{U}(\mathfrak{g})^*; f(\mathbf{U}(\mathfrak{g})\mathfrak{m}) = 0\}$. Let $({}^{\mathfrak{m}}\mathbf{U}(\mathfrak{g})^*)^{\mathfrak{p}'}$ be the algebra of the invariants of ${}^{\mathfrak{m}}\mathbf{U}(\mathfrak{g})^*$ under the coadjoint action of \mathfrak{p}' . Then $({}^{\mathfrak{m}}\mathbf{U}(\mathfrak{g})^*)^{\mathfrak{p}'}$ is a \mathbb{C} -polynomial algebra in $\operatorname{Card}(\Pi)$ generators, each generator having a weight (for the coadjoint action of \mathfrak{h}) equal to $\delta_{\Gamma}, \Gamma \in \Pi$.

Theorem 2

(Joseph - 1977) (Borel) Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra, \mathfrak{b} a Borel of \mathfrak{g} and \mathfrak{n} the maximal nilpotent subalgebra of \mathfrak{g} contained in \mathfrak{b} wrt a Cartan subalgebra \mathfrak{h} of \mathfrak{g} ($\mathfrak{b} = \mathfrak{n} \oplus \mathfrak{h}$).

Then the Poisson centre $Y(\mathfrak{n}) = S(\mathfrak{n})^{\mathfrak{n}}$ of $S(\mathfrak{n})$ and the semicentre $Sy(\mathfrak{b}) = S(\mathfrak{b})^{\mathfrak{n}}$ of $S(\mathfrak{b})$ are polynomial \mathbb{C} -algebras, each generator having a degree and a weight well defined.

Moreover $Y(\mathfrak{n})$ and $Sy(\mathfrak{b})$ have the same set \mathcal{B} of weights and, for each weight $B \in \mathcal{B}$, the weight subspace $Y(\mathfrak{n})_B$ is one-dimensional.

We can define on $\mathbf{U}(\mathfrak{g})^*$ a decreasing filtration \mathcal{F}_K , called Kostant filtration, such that we get the following isomorphism of algebras and $\mathbf{U}(\mathfrak{p})$ -modules

$$\operatorname{gr}_{\mathcal{F}_{\mathcal{K}}}({}^{\mathfrak{m}}\mathsf{U}(\mathfrak{g})^{\star})\simeq \operatorname{S}(\mathfrak{p})$$

and then

$$\mathrm{gr}_{\mathcal{F}_{\mathcal{K}}}(({}^{\mathfrak{m}}\mathsf{U}(\mathfrak{g})^{\star})^{\mathfrak{p}'}) \subset (\mathrm{gr}_{\mathcal{F}_{\mathcal{K}}}({}^{\mathfrak{m}}\mathsf{U}(\mathfrak{g})^{\star}))^{\mathfrak{p}'} \simeq \mathrm{S}(\mathfrak{p})^{\mathfrak{p}'} = \mathrm{Sy}(\mathfrak{p})$$

There exist suitable graduations gr' and gr'' on $S(\mathfrak{p})$ and a polynomial subalgebra S of $S(\mathfrak{p})$ such that

 $\operatorname{gr}'(\operatorname{gr}''(\operatorname{Sy}(\mathfrak{p})))\subset \operatorname{S}$

- Remark 1: the algebra S is essentially equal to Y(n)Y(n'⁻) where n'⁻ is the subalgebra of n⁻ such that p = n'⁻ ⊕ b.
- Remark 2: these graduations gr' and gr'' respect the natural degree on $S(\mathfrak{p})$ and are invariant under the adjoint action of \mathfrak{h} .
- Remark 3: the polynomial algebra S has $Card(\Pi)$ generators, each of them having a weight equal to δ_{Γ} or to $\delta_{\Gamma}/2$ (always δ_{Γ} when g is of type AC).

- If \mathfrak{g} is of type AC, then we can show that the lower and the upper bounds coincide.
- Indeed the formal character of $({}^{\mathfrak{m}}\mathbf{U}(\mathfrak{g})^{\star})^{\mathfrak{p}'}$ is less than the formal character of $\operatorname{gr}'(\operatorname{gr}''(\operatorname{Sy}(\mathfrak{p})))$, which is less than the formal character of S.
- But, in case AC, the polynomial algebras $({}^{\mathfrak{m}}\mathbf{U}(\mathfrak{g})^{\star})^{\mathfrak{p}'}$ and S have exactly the same number of generators with the same weight so they have the same formal character.
- Thus we have the equality $gr'(gr''(Sy(\mathfrak{p}))) = S$ in this case and we easily deduce that $Sy(\mathfrak{p})$ is also a polynomial algebra with the same number of generators with the same weight and degree as for S.

Since ${\mathfrak g}$ is semisimple, we have

$$\mathrm{S}(\mathfrak{g})=\mathrm{Y}(\mathfrak{g})\oplus(\mathsf{ad}\:\mathsf{U}(\mathfrak{g})_+)(\mathrm{S}(\mathfrak{g}))$$

where $\mathbf{U}(\mathfrak{g})_+$ is the kernel of the augmentation of $\mathbf{U}(\mathfrak{g})$. Denote by q the projection on the first factor. Choose, for each $B \in \mathcal{B}$, an element a_B in $Y(\mathfrak{n}^-)_{-B}$. To each $b \in Sy(\mathfrak{b})_B$, associate the element $\varphi(b) = q(a_B b) \in Y(\mathfrak{g})$ and extend this map linearly to the whole $Sy(\mathfrak{b}) = \bigoplus_{B \in \mathcal{B}} Sy(\mathfrak{b})_B$.

• Remark: for each $b \in \operatorname{Sy}(\mathfrak{b})_B$, $\varphi(b) \in (ad\mathbf{U}(\mathfrak{g})(a_B b))^{\mathfrak{g}}$ and dim $(ad\mathbf{U}(\mathfrak{g})(a_B b))^{\mathfrak{g}} \leq 1$. Indeed $(ad\mathbf{U}(\mathfrak{g})(a_B b)) = (ad\mathbf{U}(\mathfrak{g})(a_B))(ad\mathbf{U}(\mathfrak{g})(b))$. Moreover $B = -w_0B$ (property of weights in \mathcal{B}) and then $(ad\mathbf{U}(\mathfrak{g})(a_B))$ and $(ad\mathbf{U}(\mathfrak{g})(b))$ are simple $\mathbf{U}(\mathfrak{g})$ -modules dual of each other.

Properties and conjecture about φ

Proposition

(Joseph+FM - 2008) The linear morphism $\varphi : Sy(\mathfrak{b}) \longrightarrow Y(\mathfrak{g})$ is injective iff \mathfrak{g} is of type AC. If \mathfrak{g} is of type AC, then φ is also surjective.

Conjecture 1

The linear morphism φ is always surjective.

Conjecture 2

There exist a subset S of $\mathcal{B} \times \mathcal{B}$ and elements $a_{\lambda} \in Y(\mathfrak{n}^{-})_{-\lambda}$ and $b_{\mu} \in Sy(\mathfrak{b})_{\mu}$ for all $(\lambda, \mu) \in S$ st

$$\mathrm{S}(\mathfrak{g}) = \sum_{(\lambda,\,\mu)\in\mathcal{S}} (\mathsf{ad}\, \mathbf{U}(\mathfrak{g})(\mathfrak{a}_{\lambda}\,b_{\mu}))$$

III. Towards a more precise description of the semi-invariants

Suppose g of type A_n and g' consisting of two blocks (k, n+1-k) st k and n+1-k are coprime. Then $Sy(\mathfrak{p}) = \mathbb{C}[d] = Y(\mathfrak{p}')$. Let V be a finite dimensional simple $U(\mathfrak{g}')$ -module and, for a $U(\mathfrak{g}')$ -module M, denote by M^V the isotypical component of type V in M.

Let $H(\mathfrak{g}')$ be the space of harmonic elements of $S(\mathfrak{g}')$ and $H_s(\mathfrak{g}')$ its subspace of homogeneous polynomials of degree *s*.

Hypotheses

Suppose that there are a finite dimensional simple $\mathbf{U}(\mathfrak{g}')$ -module Vand a couple of nonnegative integers (s, t) st i) $\operatorname{gr}'(\operatorname{gr}''(d)) \in \operatorname{S}_{s}(\mathfrak{g}')\operatorname{S}_{t}(\mathfrak{m})^{V}$, ii) $[\operatorname{S}_{t}(\mathfrak{m}) : V] = 1$, iii) $[\operatorname{H}_{s}(\mathfrak{g}') : V^{*}] = 1$.

Definition

Under the hypotheses above, the unique - up to scalars - \mathfrak{g}' -invariant d_P coming from the "principal term" of d is the element in $(\mathrm{H}_s(\mathfrak{g}')^{V^*}\mathrm{S}_t(\mathfrak{m})^V)^{\mathfrak{g}'}$

 Remark: this element d_P exists and is unique - up to scalars by Schur's lemma.

Towards a more precise description of the semi-invariants

• Example of the "big" maximal parabolic.

Suppose $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$ and $\pi' = \pi \setminus \{\alpha_n\}$. Then Sy(\mathfrak{p}) = Y(\mathfrak{p}') = $\mathbb{C}[d]$ and a nice description of d was given by Joseph (1977). Observe that the "principal term" of d satisfies

$$\operatorname{gr}'(\operatorname{gr}''(d)) \in \operatorname{S}_{n(n-1)/2}(\mathfrak{g}')\operatorname{S}_n(\mathfrak{m}).$$

It was shown by Joseph that

$$d = d_P$$

up to scalars.

Indeed m is isomorphic, as a $\mathbf{U}(\mathfrak{g}')$ -module, to the standard representation of \mathfrak{g}' . Moreover its *k*-fold symmetric power is still irreducible and its dual occurs in $\mathrm{H}(\mathfrak{g}')$ iff *n* divides *k*.

• What happens for another example of the same type? For example, for \mathfrak{g} of type A_4 , and $\pi' = \pi \setminus \{\alpha_2\}$, that is \mathfrak{g}' consisting of blocks (2, 3) of $\mathfrak{sl}_5(\mathbb{C})$.

Case (2, 3) in $\mathfrak{sl}_5(\mathbb{C})$

In this case, we still have $Sy(\mathfrak{p}) = \mathbb{C}[d] = Y(\mathfrak{p}')$ for some $d \in Sy(\mathfrak{p})$, $\deg(d) = 9$ and d is of weight $5\varpi_2$. To obtain a similar description of d as for the previous case, the difficulty is that $\mathfrak{m} \simeq L(\varpi'_1 + \varpi'_4)$ as $\mathbf{U}(\mathfrak{g}')$ -module but the k-fold symmetric power of this irreducible module is no more irreducible. Set $V = L(2(\varpi'_1 + \varpi'_3 + \varpi'_4))$ and $W = L(3\varpi'_3)$: irreducible \mathfrak{g}' -modules resp. of highest weight $2(\varpi'_1 + \varpi'_3 + \varpi'_4)$ and $3\varpi'_3$. The principal term of d satisfies

$$\operatorname{gr}'(\operatorname{gr}''(d)) \in \operatorname{S}_3(\mathfrak{g}')\operatorname{S}_6(\mathfrak{m})^V.$$

We can show that

$$d \in (\mathrm{H}_3(\mathfrak{g}')^{V^*}\mathrm{S}_6(\mathfrak{m})^V)^{\mathfrak{g}'} \oplus (\mathrm{H}_3(\mathfrak{g}')^{W^*}\mathrm{S}_6(\mathfrak{m})^W)^{\mathfrak{g}'}$$

but, for the moment, we are not able to claim that both contributions are non zero.