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I. Polynomiality of the semicentre of parabolic subalgebras.

Let g be a finite dimensional complex semisimple Lie algebra and p

a parabolic subalgebra of g : p is a Lie subalgebra of g = n− ⊕ b

which contains the Borel subalgebra b of g.
Denote by g′ the Levi of p.
Both algebras g′ and g are semisimple Lie algebras.
Denote by π the set of simple roots of g and π′ ⊂ π the set of
simple roots of g′ (wrt the Cartan subalgebra h of g).



Definitions

Recall that the adjoint action of p (coming from the Lie bracket)
induces a derivation on the symmetric algebra S(p) of p, which we
will still denote by ad .

Definition

An element s ∈ S(p) is said to be semi-invariant when for all x ∈ p

there exists λ(x) ∈ C such that (ad x)(s) = λ(x)s.
The semicentre Sy(p) of S(p) is the C-vectorspace generated by
the semi-invariants of S(p).



Remarks

Remark 1: we have a similar definition for the semicentre
Sz(p) of the enveloping algebra U(p) of p.

Remark 2: let p′ = [p, p] denote the derived algebra of p.
Then Sy(p) = S(p)p′ .

Fact: The semicentres Sy(p) and Sz(p) are C-algebras which
are isomorphic, by an extension of the Duflo map (result of
Rentschler and Vergne).



Main theorem

Theorem

(Joseph+FM - 2005) Suppose that g is a product of simple Lie
algebras of type A or C (shortly g of type AC ), and p is any
parabolic subalgebra of g.
Then the semicentre Sy(p) of S(p) is a polynomial C-algebra in
Card(Π) generators, each generator having a weight equal to δΓ,
Γ ∈ Π and a degree also given by some ”receipt”.

Remark 1: The polynomiality of Sy(p) is still true for g in other
types and particular parabolic subalgebras p.
Remark 2: In type E8, the polynomiality of Sy(p) fails for some
particular p (result of Yakimova).



More about the Theorem (1)

What is Π ?

Let w0, resp. w ′0, denote the longest element of the Weyl group of
g, resp. of g′.
Define involutions i and j of π as follows.
For all α ∈ π, j(α) = −w0(α),
for all α ∈ π′, i(α) = −w ′0(α)
and for all α ∈ π \ π′, i(α) = j(ij)r (α) where r ∈ N is the smallest
nonnegative integer such that j(ij)r (α) 6∈ π′.
Then Π is the set of the 〈ji〉-orbits of π.



First example

Suppose g of type A6, π = {α1, . . . , α6} and π′ = π \ {α4, α6}
@

@
@

@
@@


Then i(α4) = α6 because j(α4) = α3 ∈ π′ and jij(α4) = α6 6∈ π′
and then i(α6) = α4.
There are three 〈ji〉-orbits of π which are Γ1 = {α1, α4},
Γ2 = {α2, α5} and Γ3 = {α3, α6}.
Thus the semicentre Sy(p) is a polynomial algebra in three
generators.



Example of the ”big” maximal parabolic subalgebra

Suppose g = sln+1(C) and p the maximal parabolic subalgebra
where the last row is zero.Then π = {α1, . . . , αn} and
π′ = π \ {αn}. 
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Here i(αn) = αn and then (ji)(αn) = α1,
(ji)2(αn) = j(αn−1) = α2,..., and finally (ji)k(αn) = αk for all
1 ≤ k ≤ n.
Thus Card(Π) = 1 and Sy(p) = C[d ] : polynomial C-algebra in
one generator d ∈ Sy(p) : result already proved by Dixmier and by
Joseph in 1976 and 1977.



More about the Theorem (2)

What is the weight δΓ of each generator of the polynomial
algebra Sy(p)?

Denote by {$α}α∈π, resp. {$′α}α∈π′ , the set of fundamental
weights associated to π, resp. to π′.
Assign to each Γ ∈ Π the elements dΓ =

∑
γ∈Γ $γ and

d ′Γ =
∑

γ∈Γ∩π′ $
′
γ .

Then the weight δΓ of each generator of the polynomial algebra
Sy(p) is
δΓ = w ′0(dΓ)−w0(dΓ) = w ′0(d ′Γ)−d ′Γ+dΓ−w0(dΓ) ∈

∑
α∈π\π′ N$α.



Examples

First example: g of type A6, π = {α1, . . . , α6} and
π′ = π \ {α4, α6}.
Here we get $i = $′i + i

4$4 for all 1 ≤ i ≤ 3 and
$5 = $′5 + 1

2$4 + 1
2$6.

The weight of each generator of Sy(p) is equal to δΓi
= 2$4 +$6

for all 1 ≤ i ≤ 3.
Example of the ”big” maximal parabolic: here we get

$i = $′i + i
n$n for all 1 ≤ i ≤ n − 1 and the weight of the unique

generator d of Sy(p) is equal to (n + 1)$n.



More about the Theorem (3)

What is the degree of each generator of Sy(p)?

Let Γ ∈ Π/〈−w0〉. If Γ = −w0Γ then there is only one generator sΓ

in Sy(p) corresponding to Γ.Otherwise there are two generators sΓ

and tΓ in Sy(p) corresponding to Γ and deg(tΓ) = deg(sΓ) + 1.
When g = sln+1(C), the degree of each sΓ can be computed as
follows.
Here π = {α1, . . . , αn}. Assign to each simple root α ∈ π the
integer ∂α := min{i , n + 1− i |α = αi}.
Each connected component of π′ is again of type A, so assign to
each α ∈ π′ an integer ∂′α by the same procedure applied to each
component.
Finally set ∂′α = 0 if α ∈ π \ π′.
Then deg(sΓ) =

∑
α∈Γ(∂α + ∂′α).



Examples

First example Here we get three generators sΓ1 , tΓ1 and sΓ2 which
degrees are: deg(sΓ1) = 1 + 3 + 1 = 5, deg(tΓ1) = deg(sΓ1) + 1 = 6
and deg(sΓ2) = 2 + 2 + 2 + 1 = 7.
Example of the ”big” maximal parabolic: If n is even,

deg(d) = 2(1+2+ . . .+ n
2 )+2(1+2+ . . .+ n−2

2 )+ n
2 = n(n+1)/2.

If n is odd,
deg(d) = 2(1+2+. . .+n−1

2 )+n+1
2 +2(1+2+. . .+n−1

2 ) = n(n+1)/2.



Sketch of proof

The proof is based on two results, one coming from the quantum
case and the other from the classical case of the Borel.More
precisely, we use the following theorems

Theorem 1

(Joseph+FM -2001) ( coming from quantum case) Let U(g)? be
the Hopf dual of the enveloping algebra U(g) of g, m the nilradical
of the parabolic p and mU(g)? := {f ∈ U(g)?; f (U(g)m) = 0}. Let
(mU(g)?)p′ be the algebra of the invariants of mU(g)? under the
coadjoint action of p′.
Then (mU(g)?)p′ is a C-polynomial algebra in Card(Π) generators,
each generator having a weight (for the coadjoint action of h)
equal to δΓ, Γ ∈ Π.



Theorem 2

(Joseph - 1977) (Borel) Let g be a finite dimensional complex
semisimple Lie algebra, b a Borel of g and n the maximal nilpotent
subalgebra of g contained in b wrt a Cartan subalgebra h of g

(b = n⊕ h).
Then the Poisson centre Y(n) = S(n)n of S(n) and the semicentre
Sy(b) = S(b)n of S(b) are polynomial C-algebras, each generator
having a degree and a weight well defined.
Moreover Y(n) and Sy(b) have the same set B of weights and, for
each weight B ∈ B, the weight subspace Y(n)B is one-dimensional.



The lower bound

We can define on U(g)? a decreasing filtration FK , called Kostant
filtration, such that we get the following isomorphism of algebras
and U(p)-modules

grFK
(mU(g)?) ' S(p)

and then

grFK
((mU(g)?)p′) ⊂ (grFK

(mU(g)?))p′ ' S(p)p′ = Sy(p)



The upper bound

There exist suitable graduations gr′ and gr′′ on S(p) and a
polynomial subalgebra S of S(p) such that

gr′(gr′′(Sy(p))) ⊂ S

Remark 1: the algebra S is essentially equal to Y(n)Y(n′−)
where n′− is the subalgebra of n− such that p = n′− ⊕ b.

Remark 2: these graduations gr′ and gr′′ respect the natural
degree on S(p) and are invariant under the adjoint action of h.

Remark 3: the polynomial algebra S has Card(Π) generators,
each of them having a weight equal to δΓ or to δΓ/2 (always
δΓ when g is of type AC ).



End of proof

If g is of type AC , then we can show that the lower and the upper
bounds coincide.
Indeed the formal character of (mU(g)?)p′ is less than the formal
character of gr′(gr′′(Sy(p))), which is less than the formal
character of S.
But, in case AC , the polynomial algebras (mU(g)?)p′ and S have
exactly the same number of generators with the same weight so
they have the same formal character.
Thus we have the equality gr′(gr′′(Sy(p))) = S in this case and we
easily deduce that Sy(p) is also a polynomial algebra with the
same number of generators with the same weight and degree as for
S.



II. A conjectural construction of the invariants

Since g is semisimple, we have

S(g) = Y(g)⊕ (ad U(g)+)(S(g))

where U(g)+ is the kernel of the augmentation of U(g).
Denote by q the projection on the first factor.
Choose, for each B ∈ B, an element aB in Y(n−)−B .
To each b ∈ Sy(b)B , associate the element ϕ(b) = q(aB b) ∈ Y(g)
and extend this map linearly to the whole Sy(b) = ⊕B∈BSy(b)B .

Remark: for each b ∈ Sy(b)B , ϕ(b) ∈ (adU(g)(aB b))g and
dim(adU(g)(aB b))g ≤ 1.
Indeed (adU(g)(aB b)) = (adU(g)(aB))(adU(g)(b)).
Moreover B = −w0B (property of weights in B) and then
(adU(g)(aB)) and (adU(g)(b)) are simple U(g)-modules dual
of each other.



Properties and conjecture about ϕ

Proposition

(Joseph+FM - 2008) The linear morphism ϕ : Sy(b) −→ Y(g) is
injective iff g is of type AC .
If g is of type AC , then ϕ is also surjective.

Conjecture 1

The linear morphism ϕ is always surjective.

Conjecture 2

There exist a subset S of B × B and elements aλ ∈ Y(n−)−λ and
bµ ∈ Sy(b)µ for all (λ, µ) ∈ S st

S(g) =
∑

(λ, µ)∈S

(ad U(g)(aλ bµ))



III. Towards a more precise description of the
semi-invariants

Suppose g of type An and g′ consisting of two blocks (k , n + 1− k)
st k and n + 1− k are coprime. Then Sy(p) = C[d ] = Y(p′).
Let V be a finite dimensional simple U(g′)-module and, for a
U(g′)-module M, denote by MV the isotypical component of type
V in M.
Let H(g′) be the space of harmonic elements of S(g′) and Hs(g′)
its subspace of homogeneous polynomials of degree s.

Hypotheses

Suppose that there are a finite dimensional simple U(g′)-module V
and a couple of nonnegative integers (s, t) st
i) gr′(gr′′(d)) ∈ Ss(g′)St(m)V ,
ii) [St(m) : V ] = 1,
iii)[Hs(g′) : V ∗] = 1.



g′-invariant coming from principal term

Definition

Under the hypotheses above, the unique - up to scalars -
g′-invariant dP coming from the ”principal term” of d is the
element in (Hs(g′)V ∗St(m)V )g′

Remark: this element dP exists and is unique - up to scalars -
by Schur’s lemma.



Towards a more precise description of the semi-invariants

Example of the ”big” maximal parabolic.

Suppose g = sln+1(C) and π′ = π \ {αn}. Then
Sy(p) = Y(p′) = C[d ] and a nice description of d was given by
Joseph (1977).
Observe that the ”principal term” of d satisfies

gr′(gr′′(d)) ∈ Sn(n−1)/2(g′)Sn(m).

It was shown by Joseph that

d = dP

up to scalars.
Indeed m is isomorphic, as a U(g′)-module, to the standard
representation of g′. Moreover its k-fold symmetric power is still
irreducible and its dual occurs in H(g′) iff n divides k.



Another example

What happens for another example of the same type?

For example, for g of type A4, and π′ = π \ {α2}, that is g′

consisting of blocks (2, 3) of sl5(C).

p =

@
@

@@


g′ =

@
@

@@





Case (2, 3) in sl5(C)

In this case, we still have Sy(p) = C[d ] = Y(p′) for some
d ∈ Sy(p), deg(d) = 9 and d is of weight 5$2.
To obtain a similar description of d as for the previous case, the
difficulty is that m ' L($′1 +$′4) as U(g′)-module but the k-fold
symmetric power of this irreducible module is no more irreducible.
Set V = L(2($′1 +$′3 +$′4)) and W = L(3$′3) : irreducible
g′-modules resp. of highest weight 2($′1 +$′3 +$′4) and 3$′3.The
principal term of d satisfies

gr′(gr′′(d)) ∈ S3(g′)S6(m)V .

We can show that

d ∈ (H3(g′)V ∗S6(m)V )g′ ⊕ (H3(g′)W ∗S6(m)W )g′

but, for the moment, we are not able to claim that both
contributions are non zero.


