MV-polytopes/cycles and affine buildings

Michael Ehrig

Mathematical Institute, University of Bonn

Ascona, August 31, 2009

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^{-} \subset B^{-}$the unipotent radical of the opposite Borel B^{-},

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^{-} \subset B^{-}$the unipotent radical of the opposite Borel B^{-},
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^{-} \subset B^{-}$the unipotent radical of the opposite Borel B^{-},
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^{-} \subset B^{-}$the unipotent radical of the opposite Borel B^{-},
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,
- Φ the roots and $\Phi^{+} \subset \Phi$ the positive roots,

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^{-} \subset B^{-}$the unipotent radical of the opposite Borel B^{-},
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,
- Φ the roots and $\Phi^{+} \subset \Phi$ the positive roots,
- G^{\vee} the Langlands dual group of G,

Basic notations

Let

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^{-} \subset B^{-}$the unipotent radical of the opposite Borel B^{-},
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,
- Φ the roots and $\Phi^{+} \subset \Phi$ the positive roots,
- G^{\vee} the Langlands dual group of G,
- \mathcal{G} the affine Grassmannian of G.

Geometric Framework

Framework

Geometric Framework

Framework

$$
\begin{aligned}
& \stackrel{\mathcal{G}}{\stackrel{\rightharpoonup}{\vee}} \stackrel{i}{\downarrow} X^{\vee} \quad i(\lambda)=\underline{t}_{\lambda} \\
& \mathbb{P}\left(V\left(\Lambda_{0}\right)\right) \\
& \stackrel{\mu}{{ }^{\mu}} \\
& X^{\vee} \otimes_{\mathbb{Z}} \mathbb{R}
\end{aligned}
$$

- Cartan-decomposition: $\mathcal{G}=\coprod_{\lambda \in X_{+}} \underbrace{G(\mathcal{O}) \underline{t}_{\lambda}}_{=: \mathcal{G}_{\lambda}}$, for $\mathcal{O}=\mathbb{C}[[t]]$.

Geometric Framework

Framework

$$
\begin{aligned}
& \stackrel{\mathcal{G}}{\stackrel{i}{\gtrless}} X^{\vee} \quad i(\lambda)=\underline{t}_{\lambda} \\
& \mathbb{P}\left(V\left(\Lambda_{0}\right)\right) \\
& \downarrow^{\mu} \\
& X^{\vee} \otimes_{\mathbb{Z}} \mathbb{R}
\end{aligned}
$$

- Cartan-decomposition: $\mathcal{G}=\coprod_{\lambda \in X_{+}^{*}} \underbrace{G(\mathcal{O}) \underline{t}_{\lambda}}_{=: \mathcal{G}_{\lambda}}$, for $\mathcal{O}=\mathbb{C}[[t]]$.
- Iwasawa-decomposition: $\mathcal{G}=\coprod_{\nu \in X} \underbrace{U^{-}(\mathcal{K}) \underline{t}_{\nu}}_{=: S_{\nu}}$, for $\mathcal{K}=\operatorname{Frac} \mathcal{O}$.

MV-Cycles/Polytopes

Definition

Let $\lambda \in X_{+}^{\vee}$ and $\nu \in X^{\vee}$. If $\mathcal{G}_{\lambda} \cap S_{\nu} \neq \emptyset$, then the irreducible components $\operatorname{lrr}\left(\overline{\mathcal{G}_{\lambda} \cap S_{\nu}}\right)$ are called Mirković-Vilonen cycles (MV-cycles for short) of coweight (λ, ν).

MV-Cycles/Polytopes

Definition

Let $\lambda \in X_{+}^{\vee}$ and $\nu \in X^{\vee}$. If $\mathcal{G}_{\lambda} \cap S_{\nu} \neq \emptyset$, then the irreducible components $\operatorname{lrr}\left(\overline{\mathcal{G}_{\lambda} \cap S_{\nu}}\right)$ are called Mirković-Vilonen cycles (MV-cycles for short) of coweight (λ, ν).

Definition

A convex polytope P in $X^{\vee} \otimes_{\mathbb{Z}} \mathbb{R}$ is called $M V$-polytope of coweight (λ, ν) if there exists an MV-cycle Z of coweight (λ, ν), such that $\mu(Z)=P$.

Example: MV-polytopes for A_{2}

Example: MV-polytopes for A_{2}

Example: MV-polytopes for A_{2}

Example: MV-polytopes for A_{2}

Description of MV-cycles/polytopes

Remark

Description of MV-cycles/polytopes

Remark

- Gaussent/Littelmann:

Description of MV-cycles/polytopes

Remark

- Gaussent/Littelmann:
- Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta}=\overline{D_{\delta}}$ is an MV-cycle.

Description of MV-cycles/polytopes

Remark

- Gaussent/Littelmann:
- Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta}=\overline{D_{\delta}}$ is an MV-cycle.
- Kamnitzer:

Description of MV-cycles/polytopes

Remark

- Gaussent/Littelmann:
- Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta}=\overline{D_{\delta}}$ is an MV-cycle.
- Kamnitzer:
- Description of MV-polytopes as solutions of tropical equations.

Description of MV-cycles/polytopes

Remark

- Gaussent/Littelmann:
- Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta}=\overline{D_{\delta}}$ is an MV-cycle.
- Kamnitzer:
- Description of MV-polytopes as solutions of tropical equations.
- Gave a construction of MV-cycles starting with MV-polytopes: Let P be an MV-polytope, such that $P=\operatorname{conv}\left(\mu_{w} \mid w \in W\right)$, and

$$
M:=\underbrace{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{\mu_{w}}}_{\text {GGMS stratum }},
$$

then M is an MV-cycle with $\boldsymbol{\mu}(M)=P$.

Problem

Problem

Problem

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.

Problem

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.
- Description via tropical equations is not very explicit.

Problem

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.
- Description via tropical equations is not very explicit.

Question

Is it possible to give an explicit combinatorial description of MV-polytopes/cycles?

Problem

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.
- Description via tropical equations is not very explicit.

Question

Is it possible to give an explicit combinatorial description of MV-polytopes/cycles?

Idea

We want to modify the approach of Gaussent and Littelmann to obtain more fixed points.

Example: LS-gallery for ${S L_{3}(\mathbb{C})}^{(\mathbb{C}}$

LS-gallery δ of type $\left[s_{0}, s_{2}, s_{1}, s_{2}, s_{0}, s_{2}, s_{1}, s_{2}, s_{0}\right]$.

From combinatorics to geometry

Remark

We have the following diagram:

$$
\begin{gathered}
\Gamma\left(\gamma_{\lambda}\right) \xrightarrow[i]{\longrightarrow} \Sigma\left(\gamma_{\lambda}\right) \xrightarrow[r_{w}]{\longrightarrow} \Gamma\left(\gamma_{\lambda}\right) \\
\frac{\downarrow}{\mathcal{G}_{\lambda}}
\end{gathered}
$$

$\Sigma\left(\gamma_{\lambda}\right)$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ}. $\Gamma\left(\gamma_{\lambda}\right)$ denotes the set of all combinatorial galleries of type γ_{λ}.

From combinatorics to geometry

Remark

We have the following diagram:

$$
\begin{gathered}
\Gamma\left(\gamma_{\lambda}\right) \xrightarrow[i]{\longrightarrow} \Sigma\left(\gamma_{\lambda}\right) \underset{r_{w}}{\longrightarrow} \Gamma\left(\gamma_{\lambda}\right) \\
\frac{\downarrow}{\mathcal{G}_{\lambda}}
\end{gathered}
$$

$\Sigma\left(\gamma_{\lambda}\right)$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ}.
$\Gamma\left(\gamma_{\lambda}\right)$ denotes the set of all combinatorial galleries of type γ_{λ}.

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ}. Then

$$
M_{\delta}=\overline{\pi\left(C_{e}(\delta)\right)}, \text { for } C_{e}(\delta)=r_{e}^{-1}(\delta)
$$

is an MV-cycle. Here e denotes the unit of W.

From combinatorics to geometry

Remark

We have the following diagram:

$$
\Gamma\left(\gamma_{\lambda}\right) \underset{i}{\longrightarrow} \Sigma\left(\gamma_{\lambda}\right) \underset{r_{w}}{\longrightarrow} \Gamma\left(\gamma_{\lambda}\right)
$$

π : "multiplication" map
$\Sigma\left(\gamma_{\lambda}\right)$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ}.
$\Gamma\left(\gamma_{\lambda}\right)$ denotes the set of all combinatorial galleries of type γ_{λ}.

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ}. Then

$$
M_{\delta}=\overline{\pi\left(C_{e}(\delta)\right)}, \text { for } C_{e}(\delta)=r_{e}^{-1}(\delta)
$$

is an MV-cycle. Here e denotes the unit of W.

From combinatorics to geometry

Remark

We have the following diagram:

$$
\begin{gathered}
\Gamma\left(\gamma_{\lambda}\right) \underset{i}{\longrightarrow} \Sigma\left(\gamma_{\lambda}\right) \underset{r_{w}}{\longrightarrow} \Gamma\left(\gamma_{\lambda}\right) \\
\downarrow^{\mathcal{G}_{\lambda}}
\end{gathered}
$$

π : "multiplication" map
i : inclusion as T-fixed points
$\Sigma\left(\gamma_{\lambda}\right)$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ}.
$\Gamma\left(\gamma_{\lambda}\right)$ denotes the set of all combinatorial galleries of type γ_{λ}.

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ}. Then

$$
M_{\delta}=\overline{\pi\left(C_{e}(\delta)\right)}, \text { for } C_{e}(\delta)=r_{e}^{-1}(\delta)
$$

is an MV-cycle. Here e denotes the unit of W.

From combinatorics to geometry

Remark

We have the following diagram:

$$
\begin{gathered}
\Gamma\left(\gamma_{\lambda}\right) \underset{i}{\longrightarrow} \Sigma\left(\gamma_{\lambda}\right) \xrightarrow[r_{\omega}]{\longrightarrow} \Gamma\left(\gamma_{\lambda}\right) \\
\downarrow^{\frac{1}{\mathcal{G}_{\lambda}}}
\end{gathered}
$$

π : "multiplication" map
i : inclusion as T-fixed points r_{w} : retraction at infinity with direction w.
$\Sigma\left(\gamma_{\lambda}\right)$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ}.
$\Gamma\left(\gamma_{\lambda}\right)$ denotes the set of all combinatorial galleries of type γ_{λ}.

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ}. Then

$$
M_{\delta}=\overline{\pi\left(C_{e}(\delta)\right)}, \text { for } C_{e}(\delta)=r_{e}^{-1}(\delta),
$$

is an MV-cycle. Here e denotes the unit of W.

Observation

Observation (Gaussent/Littelmann)

Let $\Gamma_{L S}\left(\gamma_{\lambda}, \nu\right)$ be the set of LS-galleries of type γ_{λ} ending in ν, then

$$
\pi\left(r_{e}^{-1}\left(\Gamma_{L S}\left(\gamma_{\lambda}, \nu\right)\right)\right)=S_{\nu} \cap \mathcal{G}_{\lambda}
$$

Observation

Observation (Gaussent/Littelmann)

Let $\Gamma_{L S}\left(\gamma_{\lambda}, \nu\right)$ be the set of LS-galleries of type γ_{λ} ending in ν, then

$$
\pi\left(r_{e}^{-1}\left(\Gamma_{L S}\left(\gamma_{\lambda}, \nu\right)\right)\right)=S_{\nu} \cap \mathcal{G}_{\lambda}
$$

Hence taking the preimage of certain LS-galleries and mapping it to $\overline{\mathcal{G}_{\lambda}}$ is the same as intersecting \mathcal{G}_{λ} with a $U^{-}(\mathcal{K})$-orbits.

Observation

Observation (Gaussent/Littelmann)

Let $\Gamma_{L S}\left(\gamma_{\lambda}, \nu\right)$ be the set of LS-galleries of type γ_{λ} ending in ν, then

$$
\pi\left(r_{e}^{-1}\left(\Gamma_{L S}\left(\gamma_{\lambda}, \nu\right)\right)\right)=S_{\nu} \cap \mathcal{G}_{\lambda}
$$

Hence taking the preimage of certain LS-galleries and mapping it to $\overline{\mathcal{G}_{\lambda}}$ is the same as intersecting \mathcal{G}_{λ} with a $U^{-}(\mathcal{K})$-orbits.

Lemma

This observation holds for all Weyl group elements,

$$
\pi\left(r_{w}^{-1}\left(\Gamma_{L S}^{w}\left(\gamma_{\lambda}, \nu\right)\right)\right)=\left(U^{-}(\mathcal{K})^{w} \underline{t}_{\nu}\right) \cap \mathcal{G}_{\lambda} .
$$

First result

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that

First result

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that
(1) δ_{w}^{M} is an $L S$-gallery for $w \Phi^{+}$, for each $w \in W$,

First result

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that
(1) δ_{w}^{M} is an LS-gallery for $w \Phi^{+}$, for each $w \in W$,
(2) $M=\overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{w t}\left(\delta_{w}^{M}\right)}$,

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that
(1) δ_{w}^{M} is an LS-gallery for $w \Phi^{+}$, for each $w \in W$,
(2) $M=\overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{w t\left(\delta_{w}^{M}\right)}}$,
(3) and $P=\boldsymbol{\mu}(M)=\operatorname{conv}\left(\left\{w t\left(\delta_{w}^{M} \mid w \in W\right\}\right)\right.$.

First result

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that
(1) δ_{w}^{M} is an LS-gallery for $w \Phi^{+}$, for each $w \in W$,
(2) $M=\overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{w t\left(\delta_{w}^{M}\right)}}$,
(3) and $P=\boldsymbol{\mu}(M)=\operatorname{conv}\left(\left\{w t\left(\delta_{w}^{M} \mid w \in W\right\}\right)\right.$.

Remark

First result

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that
(1) δ_{w}^{M} is an $L S$-gallery for $w \Phi^{+}$, for each $w \in W$,
(2) $M=\overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{w t\left(\delta_{w}^{M}\right)}}$,
(3) and $P=\boldsymbol{\mu}(M)=\operatorname{conv}\left(\left\{w t\left(\delta_{w}^{M} \mid w \in W\right\}\right)\right.$.

Remark

- The gallery δ_{e}^{M}, where e is the unit of W, is the LS-gallery δ such that $M_{\delta}=M$.

First result

Proposition (E.)

Let M be an $M V$-cycle, then there exists a family of combinatorial galleries $\left(\delta_{w}^{M}\right)_{w \in W}$ such that
(1) δ_{w}^{M} is an $L S$-gallery for $w \Phi^{+}$, for each $w \in W$,
(2) $M=\overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{w t\left(\delta_{w}^{M}\right)}}$,
(3) and $P=\boldsymbol{\mu}(M)=\operatorname{conv}\left(\left\{w t\left(\delta_{w}^{M} \mid w \in W\right\}\right)\right.$.

Remark

- The gallery δ_{e}^{M}, where e is the unit of W, is the LS-gallery δ such that $M_{\delta}=M$.
- For all $w \in W$ it holds that $\delta_{w}^{M}=r_{w}(x)$ for a generic point $x \in r_{e}^{-1}\left(\delta_{e}^{M}\right)$.

Kashiwara operators

It remains to explicitly construct the galleries δ_{w}. This is done via the crystal structure on the set of LS-galleries, given by the root operators.

Kashiwara operators

It remains to explicitly construct the galleries δ_{w}. This is done via the crystal structure on the set of LS-galleries, given by the root operators.

Remark

For each simple root α, one can define Kashiwara operators

$$
\begin{gathered}
e_{\alpha}: \Gamma_{L S}\left(\gamma_{\lambda}\right) \rightarrow \Gamma_{L S}\left(\gamma_{\lambda}\right) \cup\{0\} \text { and } \\
f_{\alpha}: \Gamma_{L S}\left(\gamma_{\lambda}\right) \rightarrow \Gamma_{L S}\left(\gamma_{\lambda}\right) \cup\{0\},
\end{gathered}
$$

where 0 is an element that is not included in the set $\Gamma_{L S}\left(\gamma_{\lambda}\right)$.

Combinatorial construction of $\bar{\Xi}_{w}(\delta)$

Definition

Let $\delta \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$ and α a simple root, then we define

$$
\bar{\Xi}_{s_{\alpha}}(\delta)=s_{\alpha} \cdot\left(e_{\alpha}^{\max }(\delta)\right) .
$$

Combinatorial construction of $\bar{\Xi}_{w}(\delta)$

Definition

Let $\delta \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$ and α a simple root, then we define

$$
\bar{\Xi}_{s_{\alpha}}(\delta)=s_{\alpha} \cdot\left(e_{\alpha}^{\max }(\delta)\right) .
$$

Observation

Since $e_{\alpha}^{\max }(\delta) \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$ and the action of the Weyl group preserves the type, it is clear that $\bar{\Xi}_{s_{\alpha}}(\delta)$ is an LS-galleries with respect to $s_{\alpha} \Phi^{+}$.

Combinatorial construction of $\Xi_{w}(\delta)$

Definition

Let $\delta \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$ and α a simple root, then we define

$$
\bar{\Xi}_{s_{\alpha}}(\delta)=s_{\alpha} \cdot\left(e_{\alpha}^{\max }(\delta)\right) .
$$

Observation

Since $e_{\alpha}^{\max }(\delta) \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$ and the action of the Weyl group preserves the type, it is clear that $\bar{\Xi}_{s_{\alpha}}(\delta)$ is an LS-galleries with respect to $s_{\alpha} \Phi^{+}$.

Definition

Let $w \in W$ and $w=w^{\prime} s_{\alpha}$ with $I\left(w^{\prime}\right)<I(w)$, then we define $\bar{\Xi}_{w}(\delta)$ recursively by

$$
\bar{\Xi}_{w}(\delta)=\bar{\Xi}_{w^{\prime} s_{\alpha} w^{\prime-1}}\left(\bar{\Xi}_{w^{\prime}}(\delta)\right) .
$$

Properties of the $\Xi_{w}(\delta)$

Theorem (E.)

Let $\delta \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$. There exists a dense open subset $O \subset C_{e}(\delta)$ such that for all $x \in O$ and $w \in W$ it holds:

$$
r_{w}(x)=\Xi_{w}(\delta) .
$$

Properties of the $\Xi_{w}(\delta)$

Theorem (E.)

Let $\delta \in \Gamma_{L S}\left(\gamma_{\lambda}\right)$. There exists a dense open subset $O \subset C_{e}(\delta)$ such that for all $x \in O$ and $w \in W$ it holds:

$$
r_{w}(x)=\Xi_{w}(\delta) .
$$

Hence $\delta_{w}=\Xi_{w}(\delta)$ for all $w \in W$.

Properties of the $\Xi_{w}(\delta)$

Properties of the $\bar{\Xi}_{w}(\delta)$

Properties of the $\Xi_{w}(\delta)$

Properties of the $\bar{\Xi}_{w}(\delta)$

