MV-polytopes/cycles and affine buildings

Michael Ehrig

Mathematical Institute, University of Bonn

Ascona, August 31, 2009

Let

• G a complex, simply-connected, semi-simple algebraic group,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^- \subset B^-$ the unipotent radical of the opposite Borel B^- ,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^- \subset B^-$ the unipotent radical of the opposite Borel B^- ,
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^- \subset B^-$ the unipotent radical of the opposite Borel B^- ,
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^- \subset B^-$ the unipotent radical of the opposite Borel B^- ,
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,
- Φ the roots and $\Phi^+ \subset \Phi$ the positive roots,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^- \subset B^-$ the unipotent radical of the opposite Borel B^- ,
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,
- Φ the roots and $\Phi^+ \subset \Phi$ the positive roots,
- G^{\vee} the Langlands dual group of G,

- G a complex, simply-connected, semi-simple algebraic group,
- $B \subset G$ a Borel, $T \subset B$ a maximal Torus,
- $U^- \subset B^-$ the unipotent radical of the opposite Borel B^- ,
- X^{\vee} the coweight lattice and X_{+}^{\vee} the dominant coweights,
- W the Weyl group,
- Φ the roots and $\Phi^+ \subset \Phi$ the positive roots,
- G^{\vee} the Langlands dual group of G,
- ullet \mathcal{G} the affine Grassmannian of G.

Geometric Framework

Framework

Geometric Framework

Framework

• Cartan-decomposition: $\mathcal{G} = \coprod_{\lambda \in X_+^{\vee}} \underbrace{\mathcal{G}(\mathcal{O})\underline{t}_{\lambda}}_{=:\mathcal{G}_{\lambda}}$, for $\mathcal{O} = \mathbb{C}[[t]]$.

Geometric Framework

Framework

- Cartan-decomposition: $\mathcal{G} = \coprod_{\lambda \in X_+^{\vee}} \underbrace{\mathcal{G}(\mathcal{O})\underline{t}_{\lambda}}_{=:\mathcal{G}_{\lambda}}$, for $\mathcal{O} = \mathbb{C}[[t]]$.
- $\bullet \ \ \text{lwasawa-decomposition:} \ \mathcal{G} = \coprod_{\nu \in X^{\vee}} \underbrace{U^{-}(\mathcal{K})\underline{t}_{\nu}}_{=:S_{\nu}}, \ \text{for} \ \mathcal{K} = \text{Frac} \ \mathcal{O}.$

MV-Cycles/Polytopes

Definition

Let $\lambda \in X_+^{\vee}$ and $\nu \in X^{\vee}$. If $\mathcal{G}_{\lambda} \cap \mathcal{S}_{\nu} \neq \emptyset$, then the irreducible components $\operatorname{Irr}(\overline{\mathcal{G}_{\lambda} \cap \mathcal{S}_{\nu}})$ are called **Mirković-Vilonen cycles** (MV-cycles for short) of coweight (λ, ν) .

MV-Cycles/Polytopes

Definition

Let $\lambda \in X_+^{\vee}$ and $\nu \in X^{\vee}$. If $\mathcal{G}_{\lambda} \cap \mathcal{S}_{\nu} \neq \emptyset$, then the irreducible components $\operatorname{Irr}(\overline{\mathcal{G}_{\lambda} \cap \mathcal{S}_{\nu}})$ are called **Mirković-Vilonen cycles** (MV-cycles for short) of coweight (λ, ν) .

Definition

A convex polytope P in $X^{\vee} \otimes_{\mathbb{Z}} \mathbb{R}$ is called **MV-polytope** of coweight (λ, ν) if there exists an MV-cycle Z of coweight (λ, ν) , such that $\mu(Z) = P$.

Remark

• Gaussent/Littelmann:

Remark

- Gaussent/Littelmann:
 - Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta} = \overline{D_{\delta}}$ is an MV-cycle.

Remark

- Gaussent/Littelmann:
 - Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta} = \overline{D_{\delta}}$ is an MV-cycle.
- Kamnitzer:

Remark

- Gaussent/Littelmann:
 - Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta} = \overline{D_{\delta}}$ is an MV-cycle.
- Kamnitzer:
 - Description of MV-polytopes as solutions of tropical equations.

Remark

- Gaussent/Littelmann:
 - Description of MV-cycles via LS-galleries. To each LS-gallery δ they assign a subset D_{δ} of the affine Grassmannian such that $M_{\delta} = \overline{D_{\delta}}$ is an MV-cycle.
- Kamnitzer:
 - Description of MV-polytopes as solutions of tropical equations.
 - Gave a construction of MV-cycles starting with MV-polytopes: Let P be an MV-polytope, such that $P = \operatorname{conv}(\mu_w \mid w \in W)$, and

$$M := \overbrace{\bigcap_{w \in W} U^-(\mathcal{K})^w \underline{t}_{\mu_w}}^{},$$

then M is an MV-cycle with $\mu(M) = P$.

Problem

Problem

 Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.
- Description via tropical equations is not very explicit.

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.
- Description via tropical equations is not very explicit.

Question

Is it possible to give an explicit combinatorial description of MV-polytopes/cycles?

Problem

- Description of Gaussent/Littelmann gives a dense subset of an MV-cycle that contains only one fixed point.
- Description via tropical equations is not very explicit.

Question

Is it possible to give an explicit combinatorial description of MV-polytopes/cycles?

Idea

We want to modify the approach of Gaussent and Littelmann to obtain more fixed points.

Example: LS-gallery for $SL_3(\mathbb{C})$

LS-gallery δ of type $[s_0, s_2, s_1, s_2, s_0, s_2, s_1, s_2, s_0]$.

From combinatorics to geometry

Remark

We have the following diagram:

$$\Gamma(\gamma_{\lambda}) \xrightarrow{i} \Sigma(\gamma_{\lambda}) \xrightarrow{r_{w}} \Gamma(\gamma_{\lambda})$$

$$\downarrow^{\pi}$$

$$\overline{\mathcal{G}_{\lambda}}$$

 $\Sigma(\gamma_{\lambda})$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ} . $\Gamma(\gamma_{\lambda})$ denotes the set of all combinatorial galleries of type γ_{λ} .

From combinatorics to geometry

Remark

We have the following diagram:

$$\Gamma(\gamma_{\lambda}) \xrightarrow{i} \Sigma(\gamma_{\lambda}) \xrightarrow{r_{w}} \Gamma(\gamma_{\lambda})$$

$$\downarrow^{\pi}$$

$$\overline{\mathcal{G}_{\lambda}}$$

 $\Sigma(\gamma_{\lambda})$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ} . $\Gamma(\gamma_{\lambda})$ denotes the set of all combinatorial galleries of type γ_{λ} .

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ} . Then

$$M_{\delta} = \overline{\pi(C_e(\delta))}$$
, for $C_e(\delta) = r_e^{-1}(\delta)$,

is an MV-cycle. Here e denotes the unit of W.

From combinatorics to geometry

Remark

We have the following diagram:

$$\Gamma(\gamma_{\lambda}) \xrightarrow[]{i} \Sigma(\gamma_{\lambda}) \xrightarrow[r_{w}]{r_{w}} \Gamma(\gamma_{\lambda})$$

$$\downarrow^{\pi}$$

$$\frac{1}{\mathcal{G}_{\lambda}}$$

$$\pi$$
: "multiplication" map

 $\Sigma(\gamma_{\lambda})$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ} . $\Gamma(\gamma_{\lambda})$ denotes the set of all combinatorial galleries of type γ_{λ} .

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ} . Then

$$M_{\delta} = \overline{\pi(C_e(\delta))}$$
, for $C_e(\delta) = r_e^{-1}(\delta)$,

is an MV-cycle. Here e denotes the unit of W.

From combinatorics to geometry

Remark

We have the following diagram:

$$\Gamma(\gamma_{\lambda}) \xrightarrow{i} \Sigma(\gamma_{\lambda}) \xrightarrow{r_{w}} \Gamma(\gamma_{\lambda}) \qquad \pi: ,$$

$$\downarrow^{\pi} \qquad i: \text{ in}$$

$$\overline{\mathcal{G}_{\lambda}}$$

 π : "multiplication" map i: inclusion as T-fixed points

 $\Sigma(\gamma_{\lambda})$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ} . $\Gamma(\gamma_{\lambda})$ denotes the set of all combinatorial galleries of type γ_{λ} .

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ} . Then

$$M_{\delta} = \overline{\pi(C_e(\delta))}$$
, for $C_e(\delta) = r_e^{-1}(\delta)$,

is an MV-cycle. Here e denotes the unit of W.

From combinatorics to geometry

Remark

We have the following diagram:

$$\Gamma(\gamma_{\lambda}) \xrightarrow{i} \Sigma(\gamma_{\lambda}) \xrightarrow{r_{w}} \Gamma(\gamma_{\lambda})$$

$$\downarrow^{\pi}$$

$$\overline{\mathcal{G}_{\lambda}}$$

 π : "multiplication" map i: inclusion as T-fixed points r_w : retraction at infinity with direction w.

 $\Sigma(\gamma_{\lambda})$ denotes the Bott-Samelson resolution of $\overline{\mathcal{G}_{\lambda}}$ of type γ_{λ} . $\Gamma(\gamma_{\lambda})$ denotes the set of all combinatorial galleries of type γ_{λ} .

Remark (Bijection of Gaussent/Littelmann)

Let δ be an LS-gallery of type γ_{λ} . Then

$$M_{\delta} = \overline{\pi(C_e(\delta))}$$
, for $C_e(\delta) = r_e^{-1}(\delta)$,

is an MV-cycle. Here e denotes the unit of W.

Observation

Observation (Gaussent/Littelmann)

Let $\Gamma_{LS}(\gamma_{\lambda}, \nu)$ be the set of LS-galleries of type γ_{λ} ending in ν , then

$$\pi(r_e^{-1}(\Gamma_{LS}(\gamma_\lambda,\nu))) = S_\nu \cap \mathcal{G}_\lambda.$$

Observation

Observation (Gaussent/Littelmann)

Let $\Gamma_{LS}(\gamma_{\lambda}, \nu)$ be the set of LS-galleries of type γ_{λ} ending in ν , then

$$\pi(r_e^{-1}(\Gamma_{LS}(\gamma_\lambda,\nu))) = S_\nu \cap \mathcal{G}_\lambda.$$

Hence taking the preimage of certain LS-galleries and mapping it to $\overline{\mathcal{G}_{\lambda}}$ is the same as intersecting \mathcal{G}_{λ} with a $U^{-}(\mathcal{K})$ -orbits.

Observation

Observation (Gaussent/Littelmann)

Let $\Gamma_{LS}(\gamma_{\lambda}, \nu)$ be the set of LS-galleries of type γ_{λ} ending in ν , then

$$\pi(r_e^{-1}(\Gamma_{LS}(\gamma_\lambda,\nu))) = S_\nu \cap \mathcal{G}_\lambda.$$

Hence taking the preimage of certain LS-galleries and mapping it to $\overline{\mathcal{G}_{\lambda}}$ is the same as intersecting \mathcal{G}_{λ} with a $U^{-}(\mathcal{K})$ -orbits.

Lemma

This observation holds for all Weyl group elements,

$$\pi(r_w^{-1}(\Gamma_{LS}^w(\gamma_\lambda,\nu))) = (U^-(\mathcal{K})^w \underline{t}_\nu) \cap \mathcal{G}_\lambda.$$

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

 $\textbf{0} \ \ \delta^M_w \ \text{is an LS-gallery for } w\Phi^+ \text{, for each } w \in W,$

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

- **1** δ_w^M is an LS-gallery for $w\Phi^+$, for each $w \in W$,
- $M = \overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w}} \underline{t}_{wt(\delta_{w}^{M})},$

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

- $\textbf{0} \ \ \delta^M_w \ \text{is an LS-gallery for } w\Phi^+ \text{, for each } w \in W,$
- $M = \overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{wt(\delta_{w}^{M})}},$
- **3** and $P = \mu(M) = \text{conv}(\{wt(\delta_w^M \mid w \in W\}).$

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

- $\textbf{0} \ \ \delta^M_w \ \text{is an LS-gallery for } w\Phi^+ \text{, for each } w \in W,$
- $M = \overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{wt(\delta_{w}^{M})}},$

Remark

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

- $\textbf{0} \ \ \delta^M_w \ \text{is an LS-gallery for } w\Phi^+ \text{, for each } w \in W,$
- $M = \overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{wt(\delta_{w}^{M})}},$

Remark

• The gallery δ_e^M , where e is the unit of W, is the LS-gallery δ such that $M_\delta = M$.

Proposition (E.)

Let M be an MV-cycle, then there exists a family of combinatorial galleries $(\delta_w^M)_{w \in W}$ such that

- $\textbf{0} \ \ \delta^M_w \ \text{is an LS-gallery for } w\Phi^+ \text{, for each } w \in W,$
- $M = \overline{\bigcap_{w \in W} U^{-}(\mathcal{K})^{w} \underline{t}_{wt(\delta_{w}^{M})}},$
- **3** and $P = \mu(M) = \text{conv}(\{wt(\delta_w^M \mid w \in W\}).$

Remark

- The gallery δ_e^M , where e is the unit of W, is the LS-gallery δ such that $M_{\delta}=M$.
- For all $w \in W$ it holds that $\delta_w^M = r_w(x)$ for a generic point $x \in r_e^{-1}(\delta_e^M)$.

Kashiwara operators

It remains to explicitly construct the galleries δ_w . This is done via the crystal structure on the set of LS-galleries, given by the root operators.

Kashiwara operators

It remains to explicitly construct the galleries δ_w . This is done via the crystal structure on the set of LS-galleries, given by the root operators.

Remark

For each simple root α , one can define **Kashiwara operators**

$$e_{\alpha}: \Gamma_{LS}(\gamma_{\lambda}) \to \Gamma_{LS}(\gamma_{\lambda}) \cup \{0\}$$
 and

$$f_{\alpha}: \Gamma_{LS}(\gamma_{\lambda}) \to \Gamma_{LS}(\gamma_{\lambda}) \cup \{0\},$$

where 0 is an element that is not included in the set $\Gamma_{LS}(\gamma_{\lambda})$.

Combinatorial construction of $\Xi_w(\delta)$

Definition

Let $\delta \in \Gamma_{LS}(\gamma_{\lambda})$ and α a simple root, then we define

$$\Xi_{s_{\alpha}}(\delta) = s_{\alpha}.\left(e_{\alpha}^{\mathsf{max}}(\delta)\right).$$

Combinatorial construction of $\Xi_w(\delta)$

Definition

Let $\delta \in \Gamma_{LS}(\gamma_{\lambda})$ and α a simple root, then we define

$$\Xi_{s_{\alpha}}(\delta) = s_{\alpha}. (e_{\alpha}^{\mathsf{max}}(\delta)).$$

Observation |

Since $e_{\alpha}^{\max}(\delta) \in \Gamma_{LS}(\gamma_{\lambda})$ and the action of the Weyl group preserves the type, it is clear that $\Xi_{s_{\alpha}}(\delta)$ is an LS-galleries with respect to $s_{\alpha}\Phi^{+}$.

Combinatorial construction of $\Xi_w(\delta)$

Definition

Let $\delta \in \Gamma_{LS}(\gamma_{\lambda})$ and α a simple root, then we define

$$\Xi_{s_{\alpha}}(\delta) = s_{\alpha}. (e_{\alpha}^{\mathsf{max}}(\delta)).$$

Observation

Since $e_{\alpha}^{\max}(\delta) \in \Gamma_{LS}(\gamma_{\lambda})$ and the action of the Weyl group preserves the type, it is clear that $\Xi_{s_{\alpha}}(\delta)$ is an LS-galleries with respect to $s_{\alpha}\Phi^{+}$.

Definition

Let $w \in W$ and $w = w's_{\alpha}$ with I(w') < I(w), then we define $\Xi_w(\delta)$ recursively by

$$\Xi_{w}(\delta) = \Xi_{w's_{\alpha}w'^{-1}}(\Xi_{w'}(\delta)).$$

Theorem (E.)

Let $\delta \in \Gamma_{LS}(\gamma_{\lambda})$. There exists a dense open subset $O \subset C_e(\delta)$ such that for all $x \in O$ and $w \in W$ it holds:

$$r_w(x) = \Xi_w(\delta).$$

Theorem (E.)

Let $\delta \in \Gamma_{LS}(\gamma_{\lambda})$. There exists a dense open subset $O \subset C_e(\delta)$ such that for all $x \in O$ and $w \in W$ it holds:

$$r_w(x) = \Xi_w(\delta).$$

Hence $\delta_w = \Xi_w(\delta)$ for all $w \in W$.

Properties of the $\overline{\Xi_w(\delta)}$

Properties of the $\overline{\Xi_w(\delta)}$

Properties of the $\overline{\Xi_w(\delta)}$

