
Introduction Main results Application

Multiplicity spaces in classical symplectic branching

Oded Yacobi
oyacobi@math.ucsd.edu

September 2, 2009



Introduction Main results Application

Some notation

Let n be a positive integer.

Λ+
n = f(λ1 � � � � � λn) : λi 2 Z�0g

Irreducible (polynomial) representations of GL(n,C):

λ 2 Λ+
n $ Vλ



Introduction Main results Application

Some notation

Let n be a positive integer.

Λ+
n = f(λ1 � � � � � λn) : λi 2 Z�0g

Irreducible (polynomial) representations of GL(n,C):

λ 2 Λ+
n $ Vλ



Introduction Main results Application

Some notation

Let n be a positive integer.

Λ+
n = f(λ1 � � � � � λn) : λi 2 Z�0g

Irreducible (polynomial) representations of GL(n,C):

λ 2 Λ+
n $ Vλ



Introduction Main results Application

Chain of groups

GL(n,C) � GL(n� 1,C) � � � � � GL(1,C)

Let λ 2 Λ+
n . Then as a GL(n� 1,C)-module,

Vλ
�=

M
µ2Λ+

n�1

Vµ 
HomGL(n�1,C)(Vµ,Vλ)

N λ
µ = HomGL(n�1,C)(Vµ,Vλ)



Introduction Main results Application

Chain of groups

GL(n,C) � GL(n� 1,C) � � � � � GL(1,C)
Let λ 2 Λ+

n . Then as a GL(n� 1,C)-module,

Vλ
�=

M
µ2Λ+

n�1

Vµ 
HomGL(n�1,C)(Vµ,Vλ)

N λ
µ = HomGL(n�1,C)(Vµ,Vλ)



Introduction Main results Application

Chain of groups

GL(n,C) � GL(n� 1,C) � � � � � GL(1,C)
Let λ 2 Λ+

n . Then as a GL(n� 1,C)-module,

Vλ
�=

M
µ2Λ+

n�1

Vµ 
HomGL(n�1,C)(Vµ,Vλ)

N λ
µ = HomGL(n�1,C)(Vµ,Vλ)



Introduction Main results Application

Classical result

Theorem

Let µ 2 Λ+
n�1 and λ 2 Λ+

n . Then

1 dimN λ
µ � 1 (multiplicity-free)

2 N λ
µ 6= f0g , µ "interlaces" λ

Let µ = (µ1, ..., µn�1) 2 Λ+
n�1 and λ = (λ1, ...,λn) 2 Λ+

n .
Then µ interlaces λ, written µ < λ, if for i = 1, ..., n� 1,

λi � µi � λi+1.
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µ

...
�=

M
λ(i )2Λ+

i

λ(i )<λ(i+1)

V
λ(1)

N λ(2)

λ(1)

 � � � 
 N λ(n)

λ(n�1)

where the sum is over all λ(i ) 2 Λ+
i such that λ(i ) < λ(i+1)

for i = 1, ..., n� 1 and λ(n) = λ.



Introduction Main results Application

Other classical groups

SO(n,C) � SO(n� 1,C) � � � �

This branching is also multiplicity-free.

What about Sp(n,C)?

Sp(n,C) � Sp(n� 1,C) � � � � � Sp(1,C)
This branching is not multiplicity-free.
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A problem

Problem
Is it possible to resolve the multiplicities and construct a
Gelfand-Zeitlin type basis for the symplectic group?
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Some history

Shtepin (�93) - odd symplectic Lie algebras

Molev (�99) - Yangians

Our approach to this problem is based on classical invariant
theory.
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Our goal

We will show that there is a natural irreducible action of

L =
n

∏
i=1
SL(2,C)

onMλ
µ.
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Starting point

Let µ 2 Λ+
n�1 and λ 2 Λ+

n . ThenMλ
µ is an

SL(2,C)-module:

SL(2,C) � ZSp(n,C)(Sp(n� 1,C)).

What�s the SL(2,C)-module structure ofMλ
µ?
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Double Interlacing

Theorem

Let µ 2 Λ+
n�1 and λ 2 Λ+

n . Then

Mλ
µ 6= f0g , µ "double interlaces" λ.

Let µ = (µ1, ..., µn�1) 2 Λ+
n�1 and λ = (λ1, ...,λn) 2 Λ+

n .
Then µ double interlaces λ, written µ � λ, if for
i = 1, ..., n� 1,

λi � µi � λi+2.

If µ � λ then we call (µ,λ) a double interlacing pair. Let

D = f(µ,λ)jµ � λg

be the set of all double interlacing pairs.
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The module structure of symplectic multiplicity spaces

For k � 0, let Fk be the (k + 1)-dimensional irreducible
representation of SL(2,C).

Theorem (Molev �99, Wallach-Y �09)

Let (µ,λ) 2 D. Then

Mλ
µ
�=

nO
i=1

Fri (µ,λ)

as SL(2,C)-modules.
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An example

λ = (6, 4, 3, 3, 1) and µ = (4, 3, 1, 1).

Write the entries out in non-increasing order:

(6, 4, 4, 3, 3, 3, 1, 1, 1, 0)

Take di¤erence of consecutive pairs:

( 6, 4|{z}
2

, 4, 3|{z}
1

, 3, 3|{z}
0

, 1, 1|{z}
0

, 1, 0|{z}
1

)

Mλ
µ
�= F2 
 F1 
 F0 
 F0 
 F1
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Another question

For (µ,λ) 2 D set

Aλ
µ =

nO
i=1

Fri (µ,λ)

an irreducible L =
n

∏
i=1
SL(2,C)-module.

The previous theorem can be reformulated as:

Mλ
µ
�= Aλ

µjSL(2,C)

where SL(2,C) � L is the diagonal subgroup.
Does there exist a natural action of L onMλ

µ such that
Mλ

µ
�= Aλ

µ?
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Branching algebra

Sp(n,C) � Bn = TnNn

Consider the algebra

M = O(NnnSp(n,C))Nn�1

M is the sum over all multiplicity spaces:

M =
M

(µ,λ)2D
Mλ

µ

M is an SL(2,C)-algebra.
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Order types

In what "ways" can µ � λ?

λi λi+1 λi+2
� �

µi

De�nition

An order type σ is a word in the alphabet f�,�g of length n� 1.
Let Σ be the set of order types.

Suppose (µ,λ) 2 D and σ = σ1 � � � σn�1 2 Σ. Then (µ,λ)
is of order type σ if for i = 1, ...n� 1

σi = " � ") µi � λi+1

σi = " � ") µi � λi+1.

E.g. λ = (3, 2, 1) and µ = (3, 0). Then (µ,λ) is of order
type (��).
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A family of subalgebras

D is a semigroup.

Let Dσ = f(µ,λ) 2 D : (µ,λ) is of order type σg.
Dσ is a sub-semigroup of D.

Consider
Mσ =

M
(µ,λ)2Dσ

Mλ
µ

Mσ is an SL(2,C)-subalgebra ofM.
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A canonical isomorphism

Let
V = C2 � � � � �C2| {z }

n

�C� � � � �C| {z }
n�1

Ly V by acting diagonally on the �rst n factors and trivially
on the last n� 1 factors.
Ly O(V ) by right translation, and O(V ) is an
SL(2,C)-algebra by restriction.

Theorem

Let σ 2 Σ. ThenMσ and O(V ) are canonically isomorphic as
SL(2,C)-algebras. In particular,Mσ is a polynomial algebra.
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Glueing the actions

The above theorem allows us to canonically transfer the
L-action from O(V ) toMσ. We have a family of L-algebras

fMσgσ2Σ

The action of L is well-de�ned on the intersections of these
subalgebras, allowing us to glue them together obtaining a
representation of L onM.
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Main result

Theorem

There is a unique representation (Φ,M) of L =
n

∏
i=1
SL(2,C) such

that,

1 for all (µ,λ) 2 D,Mλ
µ
�= Aλ

µ =
Nn
i=1 Fri (µ,λ), and

2 for all σ 2 Σ, L acts as algebra automorphisms onMσ.

Moreover, ΦjSL(2,C) is the natural action of SL(2,C) onM.
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An application

TL � L =
n

∏
i=1
SL(2,C) maximal torus.

SinceMλ
µ is an irreducible L-module, its TL weight spaces are

one dimensional.

Mλ
µ has a canonical TL weight basis (up to scalar) which is

indexed by
fγ 2 Λ+

n : µ < γ < λ+g.
LetMλ

µ(γ) be the TL-weight space indexed by γ.
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An application continued...
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