▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Multiplicity spaces in classical symplectic branching

Oded Yacobi oyacobi@math.ucsd.edu

September 2, 2009

Some notation

• Let *n* be a positive integer.

Some notation

• Let *n* be a positive integer.

•
$$\Lambda_n^+ = \{(\lambda_1 \geq \cdots \geq \lambda_n) : \lambda_i \in \mathbb{Z}_{\geq 0}\}$$

Some notation

- Let *n* be a positive integer.
- $\Lambda_n^+ = \{(\lambda_1 \geq \cdots \geq \lambda_n) : \lambda_i \in \mathbb{Z}_{\geq 0}\}$
- Irreducible (polynomial) representations of $GL(n, \mathbb{C})$:

$$\lambda \in \Lambda_n^+ \leftrightarrow V_\lambda$$

Chain of groups

• $GL(n,\mathbb{C}) \supset GL(n-1,\mathbb{C}) \supset \cdots \supset GL(1,\mathbb{C})$

Chain of groups

- $GL(n,\mathbb{C}) \supset GL(n-1,\mathbb{C}) \supset \cdots \supset GL(1,\mathbb{C})$
- Let $\lambda \in \Lambda_n^+$. Then as a $GL(n-1,\mathbb{C})$ -module,

$$V_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^+} V_{\mu} \otimes \mathit{Hom}_{\mathit{GL}(n-1,\mathbb{C})}(V_{\mu},V_{\lambda})$$

Chain of groups

•
$$GL(n, \mathbb{C}) \supset GL(n-1, \mathbb{C}) \supset \cdots \supset GL(1, \mathbb{C})$$

• Let $\lambda \in \Lambda_n^+$. Then as a $GL(n-1, \mathbb{C})$ -module,
 $V_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^+} V_{\mu} \otimes Hom_{GL(n-1, \mathbb{C})}(V_{\mu}, V_{\lambda})$

•
$$\mathcal{N}^{\lambda}_{\mu} = Hom_{GL(n-1,\mathbb{C})}(V_{\mu}, V_{\lambda})$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Classical result

Theorem

Let
$$\mu\in \Lambda_{n-1}^+$$
 and $\lambda\in \Lambda_n^+.$ Then

• dim
$$\mathcal{N}^{\lambda}_{\mu} \leq 1$$
 (multiplicity-free)

Classical result

Theorem

Let
$$\mu \in \Lambda_{n-1}^+$$
 and $\lambda \in \Lambda_n^+$. Then

• dim
$$\mathcal{N}^{\lambda}_{\mu} \leq 1$$
 (multiplicity-free)

2
$$\mathcal{N}_{\mu}^{\lambda} \neq \{\mathbf{0}\} \Leftrightarrow \mu$$
 "interlaces" λ

Classical result

Theorem

Let
$$\mu \in \Lambda_{n-1}^+$$
 and $\lambda \in \Lambda_n^+$. Then

• dim
$$\mathcal{N}^{\lambda}_{\mu} \leq 1$$
 (multiplicity-free)

2
$$\mathcal{N}^{\lambda}_{\mu}
eq \{ 0 \} \Leftrightarrow \mu$$
 "interlaces" λ

• Let $\mu = (\mu_1, ..., \mu_{n-1}) \in \Lambda_{n-1}^+$ and $\lambda = (\lambda_1, ..., \lambda_n) \in \Lambda_n^+$. Then μ interlaces λ , written $\mu < \lambda$, if for i = 1, ..., n - 1,

$$\lambda_i \geq \mu_i \geq \lambda_{i+1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Gelfand-Zeitlin basis

•
$$\lambda \in \Lambda_n^+$$
.

$$V_{\lambda} \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^+ \\ \mu < \lambda}} V_{\mu} \otimes \mathcal{N}_{\mu}^{\lambda}$$

Gelfand-Zeitlin basis

• $\lambda \in \Lambda_n^+$.

$$\begin{split} V_{\lambda} &\cong & \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\ \mu < \lambda}} V_{\mu} \otimes \mathcal{N}_{\mu}^{\lambda} \\ &\cong & \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\ \mu < \lambda}} \left(\bigoplus_{\substack{\kappa \in \Lambda_{n-2}^{+} \\ \kappa < \mu}} V_{\kappa} \otimes \mathcal{N}_{\kappa}^{\mu} \right) \otimes \mathcal{N}_{\mu}^{\lambda} \end{split}$$

Gelfand-Zeitlin basis

•
$$\lambda \in \Lambda_n^+$$
.
 $V_{\lambda} \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^+ \\ \mu < \lambda}} V_{\mu} \otimes \mathcal{N}_{\mu}^{\lambda}$
 $\cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^+ \\ \mu < \lambda}} \left(\bigoplus_{\substack{\kappa \in \Lambda_{n-2}^+ \\ \kappa < \mu}} V_{\kappa} \otimes \mathcal{N}_{\kappa}^{\mu} \right) \otimes \mathcal{N}_{\mu}^{\lambda}$
 \vdots
 $\cong \bigoplus_{\substack{\lambda^{(i)} \in \Lambda_i^+ \\ \lambda^{(i)} < \lambda^{(i+1)}}} V_{\lambda^{(1)}} \otimes \mathcal{N}_{\lambda^{(1)}}^{\lambda^{(2)}} \otimes \cdots \otimes \mathcal{N}_{\lambda^{(n-1)}}^{\lambda^{(n)}}$

where the sum is over all $\lambda^{(i)} \in \Lambda_i^+$ such that $\lambda^{(i)} < \lambda^{(i+1)}$ for i = 1, ..., n-1 and $\lambda^{(n)} = \lambda$.

•
$$SO(n, \mathbb{C}) \supset SO(n-1, \mathbb{C}) \supset \cdots$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- $SO(n, \mathbb{C}) \supset SO(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.

- $SO(n, \mathbb{C}) \supset SO(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.
- What about $Sp(n, \mathbb{C})$?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $SO(n, \mathbb{C}) \supset SO(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.
- What about $Sp(n, \mathbb{C})$?
- $Sp(n, \mathbb{C}) \supset Sp(n-1, \mathbb{C}) \supset \cdots \supset Sp(1, \mathbb{C})$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $SO(n, \mathbb{C}) \supset SO(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.
- What about $Sp(n, \mathbb{C})$?
- $Sp(n, \mathbb{C}) \supset Sp(n-1, \mathbb{C}) \supset \cdots \supset Sp(1, \mathbb{C})$
- This branching is not multiplicity-free.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Problem

Is it possible to resolve the multiplicities and construct a Gelfand-Zeitlin type basis for the symplectic group?

Some history

• Shtepin ('93) - odd symplectic Lie algebras

Some history

- Shtepin ('93) odd symplectic Lie algebras
- Molev ('99) Yangians

(ロ)、(型)、(E)、(E)、 E) のQの

Some history

- Shtepin ('93) odd symplectic Lie algebras
- Molev ('99) Yangians
- Our approach to this problem is based on classical invariant theory.

More notation

• Irreducible representations of $Sp(n, \mathbb{C})$:

$$\lambda \in \Lambda_n^+ \leftrightarrow W_\lambda$$

More notation

• Irreducible representations of $Sp(n, \mathbb{C})$:

$$\lambda \in \Lambda_n^+ \leftrightarrow W_\lambda$$

• Let $\lambda \in \Lambda_n^+$.

$$W_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^+} W_{\mu} \otimes Hom_{Sp(n-1,\mathbb{C})}(W_{\mu}, W_{\lambda})$$

More notation

• Irreducible representations of $Sp(n, \mathbb{C})$:

$$\lambda \in \Lambda_n^+ \leftrightarrow W_\lambda$$

• Let $\lambda \in \Lambda_n^+$.

$$W_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^+} W_{\mu} \otimes Hom_{Sp(n-1,\mathbb{C})}(W_{\mu}, W_{\lambda})$$

•
$$\mathcal{M}^{\lambda}_{\mu} = Hom_{Sp(n-1,\mathbb{C})}(W_{\mu}, W_{\lambda})$$

More notation

• Irreducible representations of $Sp(n, \mathbb{C})$:

$$\lambda \in \Lambda_n^+ \leftrightarrow W_\lambda$$

• Let $\lambda \in \Lambda_n^+$.

$$W_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^+} W_{\mu} \otimes Hom_{Sp(n-1,\mathbb{C})}(W_{\mu}, W_{\lambda})$$

• $\mathcal{M}^{\lambda}_{\mu} = Hom_{Sp(n-1,\mathbb{C})}(W_{\mu}, W_{\lambda})$ • Generically dim $\mathcal{M}^{\lambda}_{\mu} > 1$.

We will show that there is a natural irreducible action of

$$L=\prod_{i=1}^n SL(2,\mathbb{C})$$

on $\mathcal{M}^{\lambda}_{\mu}$.

Starting point

• Let $\mu \in \Lambda_{n-1}^+$ and $\lambda \in \Lambda_n^+$. Then $\mathcal{M}_{\mu}^{\lambda}$ is an $SL(2, \mathbb{C})$ -module:

$$SL(2,\mathbb{C}) \subset Z_{Sp(n,\mathbb{C})}(Sp(n-1,\mathbb{C})).$$

Starting point

• Let $\mu \in \Lambda_{n-1}^+$ and $\lambda \in \Lambda_n^+$. Then $\mathcal{M}_{\mu}^{\lambda}$ is an $SL(2, \mathbb{C})$ -module:

$$SL(2,\mathbb{C}) \subset Z_{Sp(n,\mathbb{C})}(Sp(n-1,\mathbb{C})).$$

• What's the $SL(2, \mathbb{C})$ -module structure of $\mathcal{M}_{\mu}^{\lambda}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Double Interlacing

Theorem

Let
$$\mu \in \Lambda_{n-1}^+$$
 and $\lambda \in \Lambda_n^+$. Then $\mathcal{M}_\mu^\lambda
eq \{0\} \Leftrightarrow \mu$ "double interlaces" λ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Double Interlacing

Theorem

Let
$$\mu \in \Lambda_{n-1}^+$$
 and $\lambda \in \Lambda_n^+$. Then

 $\mathcal{M}_{\mu}^{\lambda} \neq \{0\} \Leftrightarrow \mu$ "double interlaces" λ .

• Let $\mu = (\mu_1, ..., \mu_{n-1}) \in \Lambda_{n-1}^+$ and $\lambda = (\lambda_1, ..., \lambda_n) \in \Lambda_n^+$. Then μ double interlaces λ , written $\mu \ll \lambda$, if for i = 1, ..., n-1, $\lambda_i \ge \mu_i \ge \lambda_{i+2}$.

Double Interlacing

Theorem

Let
$$\mu \in \Lambda_{n-1}^+$$
 and $\lambda \in \Lambda_n^+$. Then

 $\mathcal{M}_{\mu}^{\lambda} \neq \{0\} \Leftrightarrow \mu$ "double interlaces" λ .

• Let $\mu = (\mu_1, ..., \mu_{n-1}) \in \Lambda_{n-1}^+$ and $\lambda = (\lambda_1, ..., \lambda_n) \in \Lambda_n^+$. Then μ double interlaces λ , written $\mu \ll \lambda$, if for i = 1, ..., n-1, $\lambda_i \ge \mu_i \ge \lambda_{i+2}$.

• If $\mu \ll \lambda$ then we call (μ, λ) a double interlacing pair. Let

$$\mathfrak{D} = \{(\mu, \lambda) | \mu \ll \lambda\}$$

be the set of all double interlacing pairs.

The module structure of symplectic multiplicity spaces

For k ≥ 0, let F_k be the (k + 1)-dimensional irreducible representation of SL(2, C).

The module structure of symplectic multiplicity spaces

For k ≥ 0, let F_k be the (k + 1)-dimensional irreducible representation of SL(2, C).

Theorem (Molev '99, Wallach-Y '09)

Let $(\mu, \lambda) \in \mathfrak{D}$. Then

$$\mathcal{M}^{\lambda}_{\mu} \cong \bigotimes_{i=1}^{n} F_{r_i(\mu,\lambda)}$$

as $SL(2, \mathbb{C})$ -modules.

(ロ)、(型)、(E)、(E)、 E) の(の)

An example

•
$$\lambda = (6, 4, 3, 3, 1)$$
 and $\mu = (4, 3, 1, 1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example

- $\lambda = (6, 4, 3, 3, 1)$ and $\mu = (4, 3, 1, 1)$.
- Write the entries out in non-increasing order:

(6, 4, 4, 3, 3, 3, 1, 1, 1, 0)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example

- $\lambda = (6, 4, 3, 3, 1)$ and $\mu = (4, 3, 1, 1)$.
- Write the entries out in non-increasing order:

(6, 4, 4, 3, 3, 3, 1, 1, 1, 0)

• Take difference of consecutive pairs:

An example

- $\lambda = (6, 4, 3, 3, 1)$ and $\mu = (4, 3, 1, 1)$.
- Write the entries out in non-increasing order:

(6, 4, 4, 3, 3, 3, 1, 1, 1, 0)

• Take difference of consecutive pairs:

۲

 $\mathcal{M}_{\mu}^{\lambda} \cong F_2 \otimes F_1 \otimes F_0 \otimes F_0 \otimes F_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Another question

• For $(\mu, \lambda) \in \mathfrak{D}$ set

$$\mathcal{A}^{\lambda}_{\mu} = \bigotimes_{i=1}^{n} F_{r_i(\mu,\lambda)}$$

an irreducible
$$L = \prod_{i=1}^{n} SL(2, \mathbb{C})$$
-module.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Another question

• For $(\mu, \lambda) \in \mathfrak{D}$ set

$$\mathcal{A}^{\lambda}_{\mu} = \bigotimes_{i=1}^{n} F_{r_i(\mu,\lambda)}$$

an irreducible
$$L = \prod_{i=1}^{n} SL(2, \mathbb{C})$$
-module.

• The previous theorem can be reformulated as:

$$\mathcal{M}^{\lambda}_{\mu} \cong \mathcal{A}^{\lambda}_{\mu}|_{SL(2,\mathbb{C})}$$

where $SL(2, \mathbb{C}) \subset L$ is the diagonal subgroup.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Another question

• For $(\mu, \lambda) \in \mathfrak{D}$ set

$$\mathcal{A}^{\lambda}_{\mu} = \bigotimes_{i=1}^{n} F_{r_i(\mu,\lambda)}$$

an irreducible
$$L = \prod_{i=1}^{n} SL(2, \mathbb{C})$$
-module.

• The previous theorem can be reformulated as:

$$\mathcal{M}^{\lambda}_{\mu} \cong \mathcal{A}^{\lambda}_{\mu}|_{SL(2,\mathbb{C})}$$

where $SL(2, \mathbb{C}) \subset L$ is the diagonal subgroup.

• Does there exist a natural action of L on $\mathcal{M}^{\lambda}_{\mu}$ such that $\mathcal{M}^{\lambda}_{\mu} \cong \mathcal{A}^{\lambda}_{\mu}$?

Branching algebra

• $Sp(n,\mathbb{C}) \supset B_n = T_n N_n$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Branching algebra

- $Sp(n,\mathbb{C}) \supset B_n = T_n N_n$
- Consider the algebra

$$\mathcal{M} = \mathcal{O}(N_n \setminus Sp(n, \mathbb{C}))^{N_{n-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Branching algebra

- $Sp(n,\mathbb{C}) \supset B_n = T_n N_n$
- Consider the algebra

$$\mathcal{M} = \mathcal{O}(N_n \setminus Sp(n, \mathbb{C}))^{N_{n-1}}$$

• $\mathcal M$ is the sum over all multiplicity spaces:

$$\mathcal{M} = \bigoplus_{(\mu,\lambda)\in\mathfrak{D}} \mathcal{M}^{\lambda}_{\mu}$$

Branching algebra

- $Sp(n,\mathbb{C}) \supset B_n = T_n N_n$
- Consider the algebra

$$\mathcal{M} = \mathcal{O}(N_n \setminus Sp(n, \mathbb{C}))^{N_{n-1}}$$

 $\bullet \ \mathcal{M}$ is the sum over all multiplicity spaces:

$$\mathcal{M} = igoplus_{(\mu,\lambda)\in\mathfrak{D}} \mathcal{M}^\lambda_\mu$$

• \mathcal{M} is an $SL(2, \mathbb{C})$ -algebra.

Order types

• In what "ways" can $\mu \ll \lambda$?

Order types

۲

• In what "ways" can $\mu \ll \lambda$?

 $egin{array}{cccc} \lambda_i & \lambda_{i+1} & \lambda_{i+2} \ & \searrow & \swarrow \ & \mu_i \end{array}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Order types

• In what "ways" can
$$\mu \ll \lambda$$
?
• $\lambda_i \qquad \lambda_{i+1} \qquad \lambda_{i+2}$
 $\searrow \qquad \mu_i$

Definition

An order type σ is a word in the alphabet $\{\geq, \leq\}$ of length n-1. Let Σ be the set of order types.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Order types

• In what "ways" can
$$\mu \ll \lambda$$
?
• $\lambda_i \qquad \lambda_{i+1} \qquad \lambda_{i+2}$
 $\searrow \qquad \mu_i$

Definition

An order type σ is a word in the alphabet $\{\geq, \leq\}$ of length n-1. Let Σ be the set of order types.

• Suppose $(\mu, \lambda) \in \mathfrak{D}$ and $\sigma = \sigma_1 \cdots \sigma_{n-1} \in \Sigma$. Then (μ, λ) is of order type σ if for i = 1, ..., n-1

$$\sigma_i = " \ge " \Rightarrow \mu_i \ge \lambda_{i+1}$$

$$\sigma_i = " \le " \Rightarrow \mu_i \le \lambda_{i+1}$$

Order types

• In what "ways" can
$$\mu \ll \lambda$$
?
• $\lambda_i \qquad \lambda_{i+1} \qquad \lambda_{i+2}$
 $\searrow \qquad \mu_i$

Definition

An order type σ is a word in the alphabet $\{\geq, \leq\}$ of length n-1. Let Σ be the set of order types.

• Suppose $(\mu, \lambda) \in \mathfrak{D}$ and $\sigma = \sigma_1 \cdots \sigma_{n-1} \in \Sigma$. Then (μ, λ) is of order type σ if for i = 1, ..., n-1

$$\begin{aligned} \sigma_i &= " \geq " \Rightarrow \mu_i \geq \lambda_{i+1} \\ \sigma_i &= " \leq " \Rightarrow \mu_i \leq \lambda_{i+1} \end{aligned}$$

• E.g. $\lambda = (3, 2, 1)$ and $\mu = (3, 0)$. Then (μ, λ) is of order type $(\geq \leq)$.

A family of subalgebras

 $\bullet \ \mathfrak{D}$ is a semigroup.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A family of subalgebras

- $\bullet \ \mathfrak{D}$ is a semigroup.
- Let $\mathfrak{D}_{\sigma} = \{(\mu, \lambda) \in \mathfrak{D} : (\mu, \lambda) \text{ is of order type } \sigma\}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A family of subalgebras

- $\bullet \ \mathfrak{D}$ is a semigroup.
- Let $\mathfrak{D}_{\sigma} = \{(\mu, \lambda) \in \mathfrak{D} : (\mu, \lambda) \text{ is of order type } \sigma\}.$
- \mathfrak{D}_{σ} is a sub-semigroup of \mathfrak{D} .

A family of subalgebras

- $\bullet \ \mathfrak{D}$ is a semigroup.
- Let $\mathfrak{D}_{\sigma} = \{(\mu, \lambda) \in \mathfrak{D} : (\mu, \lambda) \text{ is of order type } \sigma\}.$
- \mathfrak{D}_{σ} is a sub-semigroup of \mathfrak{D} .
- Consider

$$\mathcal{M}_{\sigma} = igoplus_{(\mu,\lambda)\in\mathfrak{D}_{\sigma}} \mathcal{M}^{\lambda}_{\mu}$$

A family of subalgebras

- \mathfrak{D} is a semigroup.
- Let $\mathfrak{D}_{\sigma} = \{(\mu, \lambda) \in \mathfrak{D} : (\mu, \lambda) \text{ is of order type } \sigma\}.$
- \mathfrak{D}_{σ} is a sub-semigroup of \mathfrak{D} .

Consider

$$\mathcal{M}_{\sigma} = igoplus_{(\mu,\lambda)\in\mathfrak{D}_{\sigma}} \mathcal{M}^{\lambda}_{\mu}$$

• \mathcal{M}_{σ} is an $SL(2, \mathbb{C})$ -subalgebra of \mathcal{M} .

A canonical isomorphism

Let

$$V = \underbrace{\mathbb{C}^2 \oplus \cdots \oplus \mathbb{C}^2}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A canonical isomorphism

Let

$$V = \underbrace{\mathbb{C}^2 \oplus \cdots \oplus \mathbb{C}^2}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}$$

 L ∼ V by acting diagonally on the first n factors and trivially on the last n − 1 factors.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A canonical isomorphism

Let

$$V = \underbrace{\mathbb{C}^2 \oplus \cdots \oplus \mathbb{C}^2}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}$$

- L ∼ V by acting diagonally on the first n factors and trivially on the last n − 1 factors.
- $L \curvearrowright \mathcal{O}(V)$ by right translation, and $\mathcal{O}(V)$ is an $SL(2, \mathbb{C})$ -algebra by restriction.

A canonical isomorphism

Let

$$V = \underbrace{\mathbb{C}^2 \oplus \cdots \oplus \mathbb{C}^2}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}$$

- L ∼ V by acting diagonally on the first n factors and trivially on the last n − 1 factors.
- $L \curvearrowright \mathcal{O}(V)$ by right translation, and $\mathcal{O}(V)$ is an $SL(2, \mathbb{C})$ -algebra by restriction.

Theorem

Let $\sigma \in \Sigma$. Then \mathcal{M}_{σ} and $\mathcal{O}(V)$ are canonically isomorphic as $SL(2, \mathbb{C})$ -algebras. In particular, \mathcal{M}_{σ} is a polynomial algebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Glueing the actions

• The above theorem allows us to canonically transfer the *L*-action from $\mathcal{O}(V)$ to \mathcal{M}_{σ} . We have a family of *L*-algebras

 $\{\mathcal{M}_{\sigma}\}_{\sigma\in\Sigma}$

Glueing the actions

• The above theorem allows us to canonically transfer the *L*-action from $\mathcal{O}(V)$ to \mathcal{M}_{σ} . We have a family of *L*-algebras

 $\{\mathcal{M}_{\sigma}\}_{\sigma\in\Sigma}$

• The action of L is well-defined on the intersections of these subalgebras, allowing us to glue them together obtaining a representation of L on \mathcal{M} .

Main result

Theorem

There is a unique representation (Φ, M) of $L = \prod_{i=1}^{n} SL(2, \mathbb{C})$ such that,

• for all
$$(\mu, \lambda) \in \mathfrak{D}$$
, $\mathcal{M}^{\lambda}_{\mu} \cong \mathcal{A}^{\lambda}_{\mu} = \bigotimes_{i=1}^{n} F_{r_i(\mu, \lambda)}$, and

2 for all $\sigma \in \Sigma$, *L* acts as algebra automorphisms on \mathcal{M}_{σ} .

Moreover, $\Phi|_{SL(2,\mathbb{C})}$ is the natural action of $SL(2,\mathbb{C})$ on \mathcal{M} .

An application

•
$$T_L \subset L = \prod_{i=1}^n SL(2,\mathbb{C})$$
 maximal torus.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An application

•
$$T_L \subset L = \prod_{i=1}^n SL(2,\mathbb{C})$$
 maximal torus.

Since *M^λ_μ* is an irreducible *L*-module, its *T_L* weight spaces are one dimensional.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An application

•
$$T_L \subset L = \prod_{i=1}^n SL(2,\mathbb{C})$$
 maximal torus.

- Since *M^λ_μ* is an irreducible *L*-module, its *T_L* weight spaces are one dimensional.
- $\mathcal{M}^{\lambda}_{\mu}$ has a canonical \mathcal{T}_{L} weight basis (up to scalar) which is indexed by

$$\{\gamma \in \Lambda_n^+ : \mu < \gamma < \lambda^+\}.$$

An application

•
$$T_L \subset L = \prod_{i=1}^n SL(2,\mathbb{C})$$
 maximal torus.

- Since *M^λ_μ* is an irreducible *L*-module, its *T_L* weight spaces are one dimensional.
- $\mathcal{M}^{\lambda}_{\mu}$ has a canonical \mathcal{T}_{L} weight basis (up to scalar) which is indexed by

$$\{\gamma \in \Lambda_n^+ : \mu < \gamma < \lambda^+\}.$$

• Let $\mathcal{M}^{\lambda}_{\mu}(\gamma)$ be the \mathcal{T}_{L} -weight space indexed by γ .

An application continued...

•
$$\lambda \in \Lambda_n^+$$
.

$$W_{\lambda} \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^+ \\ \mu \ll \lambda}} W_{\mu} \otimes \mathcal{M}_{\mu}^{\lambda}$$

An application continued...

•
$$\lambda \in \Lambda_n^+$$
.

$$W_{\lambda} \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\ \mu \ll \lambda}} W_{\mu} \otimes \mathcal{M}_{\mu}^{\lambda}$$
$$\cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\ \mu \ll \lambda}} \bigoplus_{\substack{\gamma \in \Lambda_{n}^{+} \\ \mu < \gamma < \lambda^{+}}} W_{\mu} \otimes \mathcal{M}_{\mu}^{\lambda}(\gamma)$$

÷