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e Irreducible (polynomial) representations of GL(n, C):
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o Let A € A}, Thenasa GL(n—1,C)-module,

Ve @ V@ Homen-1.c) (Vi Vi)
HEAT

o N} = Homgy(h-1,¢)(Vii, Vi)
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Classical result

Letu € A and A € A}. Then
Q dim N’j\ < 1 (multiplicity-free)
@ N} # {0} & u "interlaces"” A

o Let = (py, i, 1) €A and A = (A1, .., Ap) € AS
Then u interlaces A, written u < A, iffori=1,...,n—1,

Ai > p; 2 Aiga.
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Gelfand-Zeitlin basis

e A e A}
Vi = P VuoN,
HEAT
u<A

Il

B | b voN |eN
HEA, 1 | KEA,,
U<A K<

A(2) A(n)
@ VA(I) ®N/\(1) ® e ®N/\<n,1)
ADent
A f)<A(f+1)

1

where the sum is over all A(") € AITL such that A() < AU+D)
fori=1,....n—1 and A = )
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Introduction
Other classical groups

SO0(n,€) >SO(n—1,C)D---

This branching is also multiplicity-free.
What about Sp(n, C)?

Sp(n,C) D Sp(n—1,C) D --- D Sp(1,C)
This branching is not multiplicity-free.
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A problem

Is it possible to resolve the multiplicities and construct a
Gelfand-Zeitlin type basis for the symplectic group?
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Introduction

Some history

@ Shtepin ('93) - odd symplectic Lie algebras
e Molev ('99) - Yangians

@ Our approach to this problem is based on classical invariant
theory.
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More notation

Irreducible representations of Sp(n, C):

AEA#HWA

Let A € A

Wy @ W, ® Homs,(,—1.c)(Wy, W)
HeAS )

Mﬁ = HomSp(nfl,C)(Wyv W/\)
Generically dim /\/l,)} > 1.
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Our goal

We will show that there is a natural irreducible action of

L=T]SL(2C)

i=1

on ./\/li}
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Starting point

o letpc At and A€ Af. Then Mj is an
SL(2,C)-module:

SL(2,C) C Zsy(nc)(Sp(n—1,C)).

® What's the SL(2, C)-module structure of M7
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Double Interlacing

Letu € An‘k_1 and A € A. Then

M; # {0} < u "double interlaces" A.

o Let u=(py, b, 1) €A and A = (A1, .., Ap) € Af.
Then u double interlaces A, written u < A, if for
i=1..,n—-1,

Ai > p; 2 Aigo.

o If u < A then we call (11, A) a double interlacing pair. Let
D ={(mA)n <A}

be the set of all double interlacing pairs.
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The module structure of symplectic multiplicity spaces

@ For k > 0, let Fi be the (k + 1)-dimensional irreducible
representation of SL(2,C).

Theorem (Molev '99, Wallach-Y '09)
Let (u,A) € ©. Then

as SL(2, C)-modules.
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Main results
An example

e A=1(6,4,3,3,1) and u = (4,3,1,1).

@ Write the entries out in non-increasing order:
(6,4,4,3,3,3,1,1,1,0)
@ Take difference of consecutive pairs:

(6.4,43,33,1,1,10)
Y YT Y

M;\gF2®F1®F0®F0®F1
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Main results
Another question

e For (u,A) € D set

A = Q Frun)

n
an irreducible L = | | SL(2, C)-module.

i=1
@ The previous theorem can be reformulated as:

M = Allsio.0)

where SL(2,C) C L is the diagonal subgroup.
@ Does there exist a natural action of L on Mﬁ such that

Ay pA?
M) = A
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Branching algebra

e Sp(n,C) D B, =T,N,

@ Consider the algebra
M = O(N,\Sp(n,C))Nn1
@ M is the sum over all multiplicity spaces:

M= @ M
(n,A)ED

e M is an SL(2,C)-algebra.



Main results

Order types

@ In what "ways" can y < A?



Main results
Order types

@ In what "ways" can y < A?
]

Aj Aig1 Aiv2
AN /
Hi



Main results
Order types

@ In what "ways" can y < A?
]

Aj Aiv1 Aiy2
AN /
Hi

Definition

An order type o is a word in the alphabet {>, <} of length n — 1.
Let X be the set of order types.




Main results
Order types

@ In what "ways" can y < A?
]

Aj Aiv1
AN /
Hi

Aig2

Definition

An order type o is a word in the alphabet {>, <} of length n — 1.
Let X be the set of order types.

@ Suppose (p,A) €D andoc=01---0,-1 €X. Then (p,A)
is of order type o iffori=1,..n—1

g = ">"=u >Aiu1
g = "<" =< Ay



Main results
Order types

@ In what "ways" can y < A?
]

Aj Aiv1 Aiy2
AN /
Hi

Definition

An order type o is a word in the alphabet {>, <} of length n — 1.
Let X be the set of order types.

@ Suppose (p,A) €D andoc=01---0,-1 €X. Then (p,A)
is of order type o iffori=1,..n—1

g = ">"=u >Aiu1
g = "<" =< Ay

e Eg. A=(3,21) and » = (3,0). Then (i, A) is of order
type (><).
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Main results
A family of subalgebras

® is a semigroup.
Let ©, = {(p, A) € D : (u, A) is of order type o}.
D, is a sub-semigroup of .

Consider
MU - @ MQ

(n.A)€Dqg
M, is an SL(2, C)-subalgebra of M.
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A canonical isomorphism

o Let
Vv=C’® - -oC’aCas---aC

n n—1

@ L ~ V by acting diagonally on the first n factors and trivially
on the last n — 1 factors.

e L~ O(V) by right translation, and O(V) is an
SL(2,C)-algebra by restriction.

Let o € X.. Then M, and O(V) are canonically isomorphic as
SL(2,C)-algebras. In particular, M is a polynomial algebra.
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Main results

Glueing the actions

@ The above theorem allows us to canonically transfer the
L-action from O(V) to M,. We have a family of L-algebras

{MU'}(TEZ

@ The action of L is well-defined on the intersections of these
subalgebras, allowing us to glue them together obtaining a
representation of L on M.
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Main result

Theorem

n

There is a unique representation (®, M) of L = [ [ SL(2,C) such
i=1
that,

@ forall (u,A) € D, My, = A} = 7y Fup), and
@ foralloc € ¥, L acts as algebra automorphisms on M.

Moreover, ®|s;(5,c) is the natural action of SL(2,C) on M.
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Application
An application

o T, CL= HSL(2,C) maximal torus.
i=1

@ Since ./\/lﬁ is an irreducible L-module, its T; weight spaces are
one dimensional.
° M;} has a canonical T, weight basis (up to scalar) which is
indexed by
{yeA ip<y<Ath

o Let Mi,‘(’y) be the T,-weight space indexed by 7.
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An application continued...

o A e A},
W, = P W, aM;
HEA,
<A

1%

D D WMy

HEAT | yeAS
HLA p<y<AT
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