Multiplicity spaces in classical symplectic branching

Oded Yacobi
oyacobi@math.ucsd.edu

September 2, 2009

Some notation

- Let n be a positive integer.

Some notation

- Let n be a positive integer.
- $\Lambda_{n}^{+}=\left\{\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right): \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}$

Some notation

- Let n be a positive integer.
- $\Lambda_{n}^{+}=\left\{\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right): \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}$
- Irreducible (polynomial) representations of $G L(n, \mathbb{C})$:

$$
\lambda \in \Lambda_{n}^{+} \leftrightarrow V_{\lambda}
$$

Chain of groups

- $G L(n, \mathbb{C}) \supset G L(n-1, \mathbb{C}) \supset \cdots \supset G L(1, \mathbb{C})$

Chain of groups

- $G L(n, \mathbb{C}) \supset G L(n-1, \mathbb{C}) \supset \cdots \supset G L(1, \mathbb{C})$
- Let $\lambda \in \Lambda_{n}^{+}$. Then as a $G L(n-1, \mathbb{C})$-module,

$$
V_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^{+}} V_{\mu} \otimes \operatorname{Hom}_{G L(n-1, \mathbb{C})}\left(V_{\mu}, V_{\lambda}\right)
$$

Chain of groups

- $G L(n, \mathbb{C}) \supset G L(n-1, \mathbb{C}) \supset \cdots \supset G L(1, \mathbb{C})$
- Let $\lambda \in \Lambda_{n}^{+}$. Then as a $G L(n-1, \mathbb{C})$-module,

$$
V_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^{+}} V_{\mu} \otimes \operatorname{Hom}_{G L(n-1, \mathrm{C})}\left(V_{\mu}, V_{\lambda}\right)
$$

- $\mathcal{N}_{\mu}^{\lambda}=\operatorname{Hom}_{G L(n-1, \mathrm{C})}\left(V_{\mu}, V_{\lambda}\right)$

Classical result

Theorem

Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then
(1) $\operatorname{dim} \mathcal{N}_{\mu}^{\lambda} \leq 1$ (multiplicity-free)

Classical result

Theorem

Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then
(1) $\operatorname{dim} \mathcal{N}_{\mu}^{\lambda} \leq 1$ (multiplicity-free)
(2) $\mathcal{N}_{\mu}^{\lambda} \neq\{0\} \Leftrightarrow \mu$ "interlaces" λ

Classical result

Theorem

Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then
(1) $\operatorname{dim} \mathcal{N}_{\mu}^{\lambda} \leq 1$ (multiplicity-free)
(2) $\mathcal{N}_{\mu}^{\lambda} \neq\{0\} \Leftrightarrow \mu$ "interlaces" λ

- Let $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right) \in \Lambda_{n-1}^{+}$and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda_{n}^{+}$. Then μ interlaces λ, written $\mu<\lambda$, if for $i=1, \ldots, n-1$,

$$
\lambda_{i} \geq \mu_{i} \geq \lambda_{i+1}
$$

Gelfand-Zeitlin basis

- $\lambda \in \Lambda_{n}^{+}$.

$$
V_{\lambda} \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\ \mu<\lambda}} V_{\mu} \otimes \mathcal{N}_{\mu}^{\lambda}
$$

Gelfand-Zeitlin basis

- $\lambda \in \Lambda_{n}^{+}$.

$$
\begin{aligned}
V_{\lambda} & \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\
\mu<\lambda}} V_{\mu} \otimes \mathcal{N}_{\mu}^{\lambda} \\
& \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\
\mu<\lambda}}\left(\bigoplus_{\substack{\kappa \in \Lambda_{n-2}^{+} \\
\kappa<\mu}} V_{\kappa} \otimes \mathcal{N}_{\kappa}^{\mu}\right) \otimes \mathcal{N}_{\mu}^{\lambda}
\end{aligned}
$$

Gelfand-Zeitlin basis

- $\lambda \in \Lambda_{n}^{+}$.

$$
\begin{aligned}
V_{\lambda} & \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\
\mu<\lambda}} V_{\mu} \otimes \mathcal{N}_{\mu}^{\lambda} \\
& \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\
\mu<\lambda}}\left(\bigoplus_{\substack{\kappa \in \Lambda_{n-2}^{+} \\
\kappa<\mu}} V_{\kappa} \otimes \mathcal{N}_{\kappa}^{\mu}\right) \otimes \mathcal{N}_{\mu}^{\lambda} \\
& \vdots \\
& \cong \bigoplus_{\substack{\lambda^{(i)} \in \Lambda_{i}^{+} \\
\lambda^{(i)}<\lambda^{(i+1)}}} V_{\lambda^{(1)}} \otimes \mathcal{N}_{\lambda^{(1)}}^{\lambda^{(2)}} \otimes \cdots \otimes \mathcal{N}_{\lambda^{(n-1)}}^{\lambda^{(n)}}
\end{aligned}
$$

where the sum is over all $\lambda^{(i)} \in \Lambda_{i}^{+}$such that $\lambda^{(i)}<\lambda^{(i+1)}$ for $i=1, \ldots, n-1$ and $\lambda^{(n)}=\lambda$.

Other classical groups

- $S O(n, \mathbb{C}) \supset S O(n-1, \mathbb{C}) \supset \cdots$

Other classical groups

- $S O(n, \mathbb{C}) \supset S O(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.

Other classical groups

- $S O(n, \mathbb{C}) \supset S O(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.
- What about $\operatorname{Sp}(n, \mathbb{C})$?

Other classical groups

- $S O(n, \mathbb{C}) \supset S O(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.
- What about $\operatorname{Sp}(n, \mathbb{C})$?
- $\operatorname{Sp}(n, \mathbb{C}) \supset \operatorname{Sp}(n-1, \mathbb{C}) \supset \cdots \supset \operatorname{Sp}(1, \mathbb{C})$

Other classical groups

- $S O(n, \mathbb{C}) \supset S O(n-1, \mathbb{C}) \supset \cdots$
- This branching is also multiplicity-free.
- What about $\operatorname{Sp}(n, \mathbb{C})$?
- $\operatorname{Sp}(n, \mathbb{C}) \supset \operatorname{Sp}(n-1, \mathbb{C}) \supset \cdots \supset \operatorname{Sp}(1, \mathbb{C})$
- This branching is not multiplicity-free.

A problem

Problem

Is it possible to resolve the multiplicities and construct a Gelfand-Zeitlin type basis for the symplectic group?

Some history

- Shtepin ('93) - odd symplectic Lie algebras

Some history

- Shtepin ('93) - odd symplectic Lie algebras
- Molev ('99) - Yangians

Some history

- Shtepin ('93) - odd symplectic Lie algebras
- Molev ('99) - Yangians
- Our approach to this problem is based on classical invariant theory.

More notation

- Irreducible representations of $\operatorname{Sp}(n, \mathbb{C})$:

$$
\lambda \in \Lambda_{n}^{+} \leftrightarrow W_{\lambda}
$$

More notation

- Irreducible representations of $\operatorname{Sp}(n, \mathbb{C})$:

$$
\lambda \in \Lambda_{n}^{+} \leftrightarrow W_{\lambda}
$$

- Let $\lambda \in \Lambda_{n}^{+}$.

$$
W_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^{+}} W_{\mu} \otimes \operatorname{Hom}_{S p(n-1, \mathrm{C})}\left(W_{\mu}, W_{\lambda}\right)
$$

More notation

- Irreducible representations of $\operatorname{Sp}(n, \mathbb{C})$:

$$
\lambda \in \Lambda_{n}^{+} \leftrightarrow W_{\lambda}
$$

- Let $\lambda \in \Lambda_{n}^{+}$.

$$
W_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^{+}} W_{\mu} \otimes \operatorname{Hom}_{S p(n-1, \mathrm{C})}\left(W_{\mu}, W_{\lambda}\right)
$$

- $\mathcal{M}_{\mu}^{\lambda}=\operatorname{Hom}_{S p(n-1, \mathrm{C})}\left(W_{\mu}, W_{\lambda}\right)$

More notation

- Irreducible representations of $\operatorname{Sp}(n, \mathbb{C})$:

$$
\lambda \in \Lambda_{n}^{+} \leftrightarrow W_{\lambda}
$$

- Let $\lambda \in \Lambda_{n}^{+}$.

$$
W_{\lambda} \cong \bigoplus_{\mu \in \Lambda_{n-1}^{+}} W_{\mu} \otimes \operatorname{Hom}_{S p(n-1, \mathrm{C})}\left(W_{\mu}, W_{\lambda}\right)
$$

- $\mathcal{M}_{\mu}^{\lambda}=\operatorname{Hom}_{S p(n-1, \mathrm{C})}\left(W_{\mu}, W_{\lambda}\right)$
- Generically $\operatorname{dim} \mathcal{M}_{\mu}^{\lambda}>1$.

Our goal

We will show that there is a natural irreducible action of

$$
L=\prod_{i=1}^{n} S L(2, \mathbb{C})
$$

on $\mathcal{M}_{\mu}^{\lambda}$.

Starting point

- Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then $\mathcal{M}_{\mu}^{\lambda}$ is an SL(2, C)-module:

$$
S L(2, \mathbb{C}) \subset Z_{S p(n, \mathrm{C})}(S p(n-1, \mathbb{C}))
$$

Starting point

- Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then $\mathcal{M}_{\mu}^{\lambda}$ is an $S L(2, \mathbb{C})$-module:

$$
S L(2, \mathbb{C}) \subset Z_{S p(n, \mathrm{C})}(S p(n-1, \mathbb{C}))
$$

- What's the $S L(2, \mathbb{C})$-module structure of $\mathcal{M}_{\mu}^{\lambda}$?

Double Interlacing

Theorem

Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then

$$
\mathcal{M}_{\mu}^{\lambda} \neq\{0\} \Leftrightarrow \mu \text { "double interlaces" } \lambda .
$$

Double Interlacing

Theorem

Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then

$$
\mathcal{M}_{\mu}^{\lambda} \neq\{0\} \Leftrightarrow \mu \text { "double interlaces" } \lambda .
$$

- Let $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right) \in \Lambda_{n-1}^{+}$and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda_{n}^{+}$. Then μ double interlaces λ, written $\mu \ll \lambda$, if for $i=1, \ldots, n-1$,

$$
\lambda_{i} \geq \mu_{i} \geq \lambda_{i+2}
$$

Double Interlacing

Theorem

Let $\mu \in \Lambda_{n-1}^{+}$and $\lambda \in \Lambda_{n}^{+}$. Then

$$
\mathcal{M}_{\mu}^{\lambda} \neq\{0\} \Leftrightarrow \mu \text { "double interlaces" } \lambda
$$

- Let $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right) \in \Lambda_{n-1}^{+}$and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda_{n}^{+}$. Then μ double interlaces λ, written $\mu \ll \lambda$, if for $i=1, \ldots, n-1$,

$$
\lambda_{i} \geq \mu_{i} \geq \lambda_{i+2}
$$

- If $\mu \ll \lambda$ then we call (μ, λ) a double interlacing pair. Let

$$
\mathfrak{D}=\{(\mu, \lambda) \mid \mu \ll \lambda\}
$$

be the set of all double interlacing pairs.

The module structure of symplectic multiplicity spaces

- For $k \geq 0$, let F_{k} be the $(k+1)$-dimensional irreducible representation of $S L(2, \mathbb{C})$.

The module structure of symplectic multiplicity spaces

- For $k \geq 0$, let F_{k} be the $(k+1)$-dimensional irreducible representation of $S L(2, \mathbb{C})$.

Theorem (Molev '99, Wallach-Y '09)
Let $(\mu, \lambda) \in \mathfrak{D}$. Then

$$
\mathcal{M}_{\mu}^{\lambda} \cong \bigotimes_{i=1}^{n} F_{r_{i}(\mu, \lambda)}
$$

as $S L(2, \mathbb{C})$-modules.

An example

$$
\text { - } \lambda=(6,4,3,3,1) \text { and } \mu=(4,3,1,1) \text {. }
$$

An example

- $\lambda=(6,4,3,3,1)$ and $\mu=(4,3,1,1)$.
- Write the entries out in non-increasing order:

$$
(6,4,4,3,3,3,1,1,1,0)
$$

An example

- $\lambda=(6,4,3,3,1)$ and $\mu=(4,3,1,1)$.
- Write the entries out in non-increasing order:

$$
(6,4,4,3,3,3,1,1,1,0)
$$

- Take difference of consecutive pairs:

$$
(\underbrace{6,4}_{2}, \underbrace{4,3}_{1}, \underbrace{3,3}_{0}, \underbrace{1,1}_{0}, \underbrace{1,0}_{1})
$$

An example

- $\lambda=(6,4,3,3,1)$ and $\mu=(4,3,1,1)$.
- Write the entries out in non-increasing order:

$$
(6,4,4,3,3,3,1,1,1,0)
$$

- Take difference of consecutive pairs:

$$
(\underbrace{6,4}_{2}, \underbrace{4,3}_{1}, \underbrace{3,3}_{0}, \underbrace{1,1}_{0}, \underbrace{1,0}_{1})
$$

$$
\mathcal{M}_{\mu}^{\lambda} \cong F_{2} \otimes F_{1} \otimes F_{0} \otimes F_{0} \otimes F_{1}
$$

Another question

- For $(\mu, \lambda) \in \mathfrak{D}$ set

$$
\mathcal{A}_{\mu}^{\lambda}=\bigotimes_{i=1}^{n} F_{r_{i}(\mu, \lambda)}
$$

an irreducible $L=\prod_{i=1}^{n} S L(2, \mathbb{C})$-module.

Another question

- For $(\mu, \lambda) \in \mathfrak{D}$ set

$$
\mathcal{A}_{\mu}^{\lambda}=\bigotimes_{i=1}^{n} F_{r_{i}(\mu, \lambda)}
$$

an irreducible $L=\prod_{i=1}^{n} S L(2, \mathbb{C})$-module.

- The previous theorem can be reformulated as:

$$
\left.\mathcal{M}_{\mu}^{\lambda} \cong \mathcal{A}_{\mu}^{\lambda}\right|_{S L(2, \mathrm{C})}
$$

where $S L(2, \mathbb{C}) \subset L$ is the diagonal subgroup.

Another question

- For $(\mu, \lambda) \in \mathfrak{D}$ set

$$
\mathcal{A}_{\mu}^{\lambda}=\bigotimes_{i=1}^{n} F_{r_{i}(\mu, \lambda)}
$$

an irreducible $L=\prod_{i=1}^{n} S L(2, \mathbb{C})$-module.

- The previous theorem can be reformulated as:

$$
\left.\mathcal{M}_{\mu}^{\lambda} \cong \mathcal{A}_{\mu}^{\lambda}\right|_{S L(2, \mathrm{C})}
$$

where $S L(2, \mathbb{C}) \subset L$ is the diagonal subgroup.

- Does there exist a natural action of L on $\mathcal{M}_{\mu}^{\lambda}$ such that $\mathcal{M}_{\mu}^{\lambda} \cong \mathcal{A}_{\mu}^{\lambda}$?

Branching algebra

- $\operatorname{Sp}(n, \mathbb{C}) \supset B_{n}=T_{n} N_{n}$

Branching algebra

- $\operatorname{Sp}(n, \mathbb{C}) \supset B_{n}=T_{n} N_{n}$
- Consider the algebra

$$
\mathcal{M}=\mathcal{O}\left(N_{n} \backslash S p(n, \mathbb{C})\right)^{N_{n-1}}
$$

Branching algebra

- $\operatorname{Sp}(n, \mathbb{C}) \supset B_{n}=T_{n} N_{n}$
- Consider the algebra

$$
\mathcal{M}=\mathcal{O}\left(N_{n} \backslash S p(n, \mathbb{C})\right)^{N_{n-1}}
$$

- \mathcal{M} is the sum over all multiplicity spaces:

$$
\mathcal{M}=\bigoplus_{(\mu, \lambda) \in \mathfrak{D}} \mathcal{M}_{\mu}^{\lambda}
$$

Branching algebra

- $\operatorname{Sp}(n, \mathbb{C}) \supset B_{n}=T_{n} N_{n}$
- Consider the algebra

$$
\mathcal{M}=\mathcal{O}\left(N_{n} \backslash S p(n, \mathbb{C})\right)^{N_{n-1}}
$$

- \mathcal{M} is the sum over all multiplicity spaces:

$$
\mathcal{M}=\bigoplus_{(\mu, \lambda) \in \mathfrak{D}} \mathcal{M}_{\mu}^{\lambda}
$$

- \mathcal{M} is an $S L(2, \mathbb{C})$-algebra.

Order types

- In what "ways" can $\mu \ll \lambda$?

Order types

- In what "ways" can $\mu \ll \lambda$?
-

Order types

- In what "ways" can $\mu \ll \lambda$?
-

Definition

An order type σ is a word in the alphabet $\{\geq, \leq\}$ of length $n-1$. Let Σ be the set of order types.

Order types

- In what "ways" can $\mu \ll \lambda$?
-

$$
\lambda_{i}>\lambda_{i+1}^{\lambda_{i}}<{ }^{\lambda_{i+2}}
$$

Definition

An order type σ is a word in the alphabet $\{\geq, \leq\}$ of length $n-1$. Let Σ be the set of order types.

- Suppose $(\mu, \lambda) \in \mathfrak{D}$ and $\sigma=\sigma_{1} \cdots \sigma_{n-1} \in \Sigma$. Then (μ, λ) is of order type σ if for $i=1, \ldots n-1$

$$
\begin{aligned}
& \sigma_{i}=" \geq " \Rightarrow \mu_{i} \geq \lambda_{i+1} \\
& \sigma_{i}=" \leq " \Rightarrow \mu_{i} \leq \lambda_{i+1}
\end{aligned}
$$

Order types

- In what "ways" can $\mu \ll \lambda$?
-

$$
\lambda_{i}>\lambda_{i+1}^{\lambda_{i}}<{ }^{\lambda_{i+2}}
$$

Definition

An order type σ is a word in the alphabet $\{\geq, \leq\}$ of length $n-1$. Let Σ be the set of order types.

- Suppose $(\mu, \lambda) \in \mathfrak{D}$ and $\sigma=\sigma_{1} \cdots \sigma_{n-1} \in \Sigma$. Then (μ, λ) is of order type σ if for $i=1, \ldots n-1$

$$
\begin{aligned}
\sigma_{i} & =" \geq " \Rightarrow \mu_{i} \geq \lambda_{i+1} \\
\sigma_{i} & =" \leq " \Rightarrow \mu_{i} \leq \lambda_{i+1}
\end{aligned}
$$

- E.g. $\lambda=(3,2,1)$ and $\mu=(3,0)$. Then (μ, λ) is of order type $(\geq \leq)$.

A family of subalgebras

- \mathfrak{D} is a semigroup.

A family of subalgebras

- \mathfrak{D} is a semigroup.
- Let $\mathfrak{D}_{\sigma}=\{(\mu, \lambda) \in \mathfrak{D}:(\mu, \lambda)$ is of order type $\sigma\}$.

A family of subalgebras

- \mathfrak{D} is a semigroup.
- Let $\mathfrak{D}_{\sigma}=\{(\mu, \lambda) \in \mathfrak{D}:(\mu, \lambda)$ is of order type $\sigma\}$.
- \mathfrak{D}_{σ} is a sub-semigroup of \mathfrak{D}.

A family of subalgebras

- \mathfrak{D} is a semigroup.
- Let $\mathfrak{D}_{\sigma}=\{(\mu, \lambda) \in \mathfrak{D}:(\mu, \lambda)$ is of order type $\sigma\}$.
- \mathfrak{D}_{σ} is a sub-semigroup of \mathfrak{D}.
- Consider

$$
\mathcal{M}_{\sigma}=\bigoplus_{(\mu, \lambda) \in \mathfrak{D}_{\sigma}} \mathcal{M}_{\mu}^{\lambda}
$$

A family of subalgebras

- \mathfrak{D} is a semigroup.
- Let $\mathfrak{D}_{\sigma}=\{(\mu, \lambda) \in \mathfrak{D}:(\mu, \lambda)$ is of order type $\sigma\}$.
- \mathfrak{D}_{σ} is a sub-semigroup of \mathfrak{D}.
- Consider

$$
\mathcal{M}_{\sigma}=\bigoplus_{(\mu, \lambda) \in \mathfrak{D}_{\sigma}} \mathcal{M}_{\mu}^{\lambda}
$$

- \mathcal{M}_{σ} is an $S L(2, \mathbb{C})$-subalgebra of \mathcal{M}.

A canonical isomorphism

- Let

$$
V=\underbrace{\mathbb{C}^{2} \oplus \cdots \oplus \mathbb{C}^{2}}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}
$$

A canonical isomorphism

- Let

$$
V=\underbrace{\mathbb{C}^{2} \oplus \cdots \oplus \mathbb{C}^{2}}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}
$$

- $L \curvearrowright V$ by acting diagonally on the first n factors and trivially on the last $n-1$ factors.

A canonical isomorphism

- Let

$$
V=\underbrace{\mathbb{C}^{2} \oplus \cdots \oplus \mathbb{C}^{2}}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}
$$

- $L \curvearrowright V$ by acting diagonally on the first n factors and trivially on the last $n-1$ factors.
- $L \curvearrowright \mathcal{O}(V)$ by right translation, and $\mathcal{O}(V)$ is an $S L(2, \mathbb{C})$-algebra by restriction.

A canonical isomorphism

- Let

$$
V=\underbrace{\mathbb{C}^{2} \oplus \cdots \oplus \mathbb{C}^{2}}_{n} \oplus \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n-1}
$$

- $L \curvearrowright V$ by acting diagonally on the first n factors and trivially on the last $n-1$ factors.
- $L \curvearrowright \mathcal{O}(V)$ by right translation, and $\mathcal{O}(V)$ is an $S L(2, \mathbb{C})$-algebra by restriction.

Theorem

Let $\sigma \in \Sigma$. Then \mathcal{M}_{σ} and $\mathcal{O}(V)$ are canonically isomorphic as $S L(2, \mathbb{C})$-algebras. In particular, \mathcal{M}_{σ} is a polynomial algebra.

Glueing the actions

- The above theorem allows us to canonically transfer the L-action from $\mathcal{O}(V)$ to \mathcal{M}_{σ}. We have a family of L-algebras

$$
\left\{\mathcal{M}_{\sigma}\right\}_{\sigma \in \Sigma}
$$

Glueing the actions

- The above theorem allows us to canonically transfer the L-action from $\mathcal{O}(V)$ to \mathcal{M}_{σ}. We have a family of L-algebras

$$
\left\{\mathcal{M}_{\sigma}\right\}_{\sigma \in \Sigma}
$$

- The action of L is well-defined on the intersections of these subalgebras, allowing us to glue them together obtaining a representation of L on \mathcal{M}.

Main result

Theorem

There is a unique representation (Φ, \mathcal{M}) of $L=\prod_{i=1}^{n} S L(2, \mathbb{C})$ such that,
(1) for all $(\mu, \lambda) \in \mathfrak{D}, \mathcal{M}_{\mu}^{\lambda} \cong \mathcal{A}_{\mu}^{\lambda}=\bigotimes_{i=1}^{n} F_{r_{i}(\mu, \lambda)}$, and
(2) for all $\sigma \in \Sigma, L$ acts as algebra automorphisms on \mathcal{M}_{σ}.

Moreover, $\left.\Phi\right|_{S L(2, \mathrm{C})}$ is the natural action of $S L(2, \mathbb{C})$ on \mathcal{M}.

An application

- $T_{L} \subset L=\prod_{i=1}^{n} S L(2, \mathbb{C})$ maximal torus.

An application

- $T_{L} \subset L=\prod_{i=1}^{n} S L(2, \mathbb{C})$ maximal torus.
- Since $\mathcal{M}_{\mu}^{\lambda}$ is an irreducible L-module, its T_{L} weight spaces are one dimensional.

An application

- $T_{L} \subset L=\prod_{i=1}^{n} S L(2, \mathbb{C})$ maximal torus.
- Since $\mathcal{M}_{\mu}^{\lambda}$ is an irreducible L-module, its T_{L} weight spaces are one dimensional.
- $\mathcal{M}_{\mu}^{\lambda}$ has a canonical T_{L} weight basis (up to scalar) which is indexed by

$$
\left\{\gamma \in \Lambda_{n}^{+}: \mu<\gamma<\lambda^{+}\right\}
$$

An application

- $T_{L} \subset L=\prod_{i=1}^{n} S L(2, \mathbb{C})$ maximal torus.
- Since $\mathcal{M}_{\mu}^{\lambda}$ is an irreducible L-module, its T_{L} weight spaces are one dimensional.
- $\mathcal{M}_{\mu}^{\lambda}$ has a canonical T_{L} weight basis (up to scalar) which is indexed by

$$
\left\{\gamma \in \Lambda_{n}^{+}: \mu<\gamma<\lambda^{+}\right\}
$$

- Let $\mathcal{M}_{\mu}^{\lambda}(\gamma)$ be the T_{L}-weight space indexed by γ.

An application continued...

- $\lambda \in \Lambda_{n}^{+}$.

$$
W_{\lambda} \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\ \mu \ll \lambda}} W_{\mu} \otimes \mathcal{M}_{\mu}^{\lambda}
$$

An application continued...

- $\lambda \in \Lambda_{n}^{+}$.

$$
\begin{aligned}
W_{\lambda} & \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\
\mu \ll \lambda}} W_{\mu} \otimes \mathcal{M}_{\mu}^{\lambda} \\
& \cong \bigoplus_{\substack{\mu \in \Lambda_{n-1}^{+} \\
\mu \ll \lambda}} \bigoplus_{\substack{\gamma \in \Lambda_{n}^{+} \\
\mu<\gamma<\lambda^{+}}} W_{\mu} \otimes \mathcal{M}_{\mu}^{\lambda}(\gamma)
\end{aligned}
$$

