The Solution of a Differential System Given by Lie Algebras

GHERSTEGA NATALIA,POPA MIHAIL

Institute of Mathematics and Computer Science
Academy of Science of Moldova
E-mail: gherstega@gmail.com,popam@math.md

REFERENCES

1．Popa M．N．Algebraic methods for differential systems．Seria Matematică Aplicată și Industrială，Nr．15，Flower Power Edit．， Pitesti Univers．，Romania， 2004 （in Romanian）．

击 2．Sibirsky K．S．Introduction to the Algebraic Theory of Invariants of Differential Equations．Kishinev，Shtiintsa， 1982 （In Russian， published in English in 1988）．

B
3．Ufnarovskij V．A．Combinatorial and Asymptotic Methods in Algebra．Encyclopaedia of Mathematical Sciences VI，Springer， 1995.

嘈 4．Springer T．A．Invariant theory．Springer－Verlag，Berlin， Heidelberg，New York， 1977.
（in 5．Franklin F．On the Calculation of the Generating Functions and Tables of Groundforms for Binary Quantics．American Journal of math．，1880，3，no．1．

固 6．Alekseev V．G．The theory of rational invariants of binary forms．luriev， 1899 （in Russian）．

Linear differential operators

Let us consider linear differential operators [1] of the following variables

$$
X_{1}=x^{1} \frac{\partial}{\partial x^{1}}-D_{1},
$$

where

$$
\begin{gathered}
D_{1}=\sum_{i=1}^{s} \sum_{k=0}^{m_{i}}\left[\left(m_{i}-k-1\right) a_{k}^{i_{1}} \frac{\partial}{\partial a_{k}^{i}}+\left(m_{i}-k\right) a_{k}^{i_{2}} \frac{\partial}{\partial a_{k}^{i}}\right], \\
X_{2}=x^{2} \frac{\partial}{\partial x^{1}}-D_{2},
\end{gathered}
$$

where

$$
D_{2}=\sum_{i=1}^{s} \sum_{k=0}^{m_{i}}\left[k\left(i_{1} a_{k-1} \frac{\partial}{\partial a_{k}^{i}}+i_{2}^{a_{k-1}} \frac{\partial}{\partial a_{k}^{i}{ }_{k}^{2}}\right)-i_{2} \frac{\partial}{\partial a_{k}^{i}}\right]
$$

Linear differential operators

$$
x_{3}=x^{1} \frac{\partial}{\partial x^{2}}-D_{3}
$$

where

$$
\begin{gathered}
D_{3}=\sum_{i=1}^{s} \sum_{k=0}^{m_{i}}\left[\left(m_{i}-k\right)\left(\stackrel{i}{a}_{k+1}^{1} \frac{\partial}{\partial a_{k}^{1}}+\stackrel{i}{a}_{k+1} \frac{\partial}{\partial i_{k}^{2}}\right)-i_{k}^{1} \frac{\partial}{a_{k}} \frac{\partial}{\partial a_{k}^{2}}\right] \\
X_{4}=x^{2} \frac{\partial}{\partial x^{2}}-D_{4}
\end{gathered}
$$

where

$$
D_{4}=\sum_{i=1}^{s} \sum_{k=0}^{m_{i}}\left[k a_{k}^{i} \frac{\partial}{\partial a_{k}^{i_{1}^{1}}}+(k-1) a_{k}^{i_{2}} \frac{\partial}{\partial a_{k}^{i_{2}^{2}}}\right],
$$

which form the reductive Lie algebra L_{4}. Denote by $\Gamma=\left\{m_{i}\right\}_{i=1}^{s}$ a finite set of different non-negative integers, and

$$
x=\left(x^{1}, x^{2}\right), \quad a=\left({ }_{a}^{i}, i_{l}^{i}, a_{l}^{2}\right)\left(i=\overline{1, s} ; l=\overline{0, m_{i}}\right) .
$$

The system of differential equations

Let us consider the following system of equations

$$
\left\{\begin{array}{l}
X_{1}(F)=X_{4}(F)=-g F, g \in \mathbb{Z} \tag{1}\\
X_{2}(F)=X_{3}(F)=0 .
\end{array}\right.
$$

The solutions of the system (1) are of great importance in the study of the invariants of the polynomial dynamic systems [1-2].

The system of differential equations

Adducing the system (1) to the form

$$
\left\{\begin{array}{rll}
\left(X_{1}-X_{4}\right)(F) & =X_{2}(F)=X_{3}(F)=0, \tag{2}\\
X_{4}(F) & =-g F, & g \in \mathbb{Z} .
\end{array}\right.
$$

we suppose the operators $X_{1}-X_{4}, X_{2}, X_{3}$ form a semi-simple Lie algebra L_{3}, which is an ideal in L_{4}.

The solutions $F(x, a)$ of the system (1) or (2)

In the following let us examine the solutions $F(x, a)$ of the system (1) or (2), when they are homogeneous polynomials of the type $(d)=\left(\delta, d_{1}, d_{2}, \ldots, d_{s}\right)$, where δ and d_{i} are degrees of homogeneity related to variables x^{1}, x^{2}, and
${ }^{i}{ }_{a}{ }_{l}\left(i=\overline{1, s} ; j=1,2 ; I=\overline{0, m_{i}}\right)$, respectively.

The space of solutions of the system (1) by $V_{\Gamma}^{(d)}$

One can observe that if g is fixed then the set of solutions of the system (1) or (2) form a linear space.
In case of homogeneous polynomials of the type (d) we denote the space of solutions of the system (1) by $V_{\Gamma}^{(d)}$ and the space of solutions of the first three equations of the system (2) by $S_{\Gamma}^{(d)}$.

The space of solutions of the system (1) by $V_{\Gamma}^{(d)}$

Following [1], when $V_{\Gamma}^{(d)} \cong S_{\Gamma}^{(d)}$ and $\operatorname{dim}_{\mathbb{R}} S_{\Gamma}^{(d)}<\infty$, the sum $S_{\Gamma}=\sum_{(d)} S_{\Gamma}^{(d)}$ forms finitely defined graded algebra, i.e.

$$
S_{\Gamma}^{(d)}=\left\langle F_{1}, F_{2}, \ldots F_{\sigma_{1}} \mid f_{1}^{1}, f_{2}^{1}, \ldots, f_{\sigma_{2}}^{1} ; f_{1}^{2}, f_{2}^{2}, \ldots, f_{\sigma_{3}}^{2} ; \ldots\right\rangle,
$$

where $\sigma_{i}(i=1,2,3, \ldots)$ are Betti numbers in series of Poincare of the algebra S_{Γ}.

The arising here sequence is $\left\{\operatorname{dim}_{\mathbb{R}} S_{\Gamma}^{(d)}\right\}_{(d)}$, and the corresponding generalized Hilbert series [3] is

$$
\begin{equation*}
H\left(S_{\Gamma}, u, z_{1}, z_{2}, \ldots, z_{s}\right)=\sum_{(d)} \operatorname{dim}_{\mathbb{R}} S_{\Gamma}^{(d)} u^{\delta} z_{1}^{d_{1}} z_{2}^{d_{2}} \ldots z_{s}^{d_{s}} \tag{3}
\end{equation*}
$$

where $\operatorname{dim}_{R} S_{\Gamma}^{(0)}=1$.
The common Hilbert series is obtain from the generalized one as follows:

$$
\begin{equation*}
H_{S_{\Gamma}}(u)=H\left(S_{\Gamma}, u, u, u, \ldots, u\right) \tag{4}
\end{equation*}
$$

Note 1. We remark that the transcendence degree over R of the field of quotients of algebra S_{Γ} is named its Krull dimension; this dimension is equal to the maximum number of algebraically independent homogeneous elements in S_{Γ}, and also to the order of the pole of common Hilbert series at the unit.

The generating function

It is known [1] that $\operatorname{dim}_{\mathbb{R}} S_{\Gamma}^{(d)}$ is equal to the coefficient of $u^{\delta} z_{1}^{d_{1}} z_{2}^{d_{2}} \ldots z_{s}^{d_{s}}$ in the expansion of the initial generating function

$$
\begin{equation*}
\varphi_{\Gamma}^{(0)}(u)=\left(1-u^{-2}\right) \psi_{m_{1}}^{(0)}(u) \psi_{m_{2}}^{(0)}(u) \ldots \psi_{m_{s}}^{(0)}(u), \tag{5}
\end{equation*}
$$

in non-negative powers of variables $u, z_{1}, z_{2}, \ldots, z_{s}$, where
$\psi_{m_{i}}^{(0)}(u)= \begin{cases}\frac{1}{\left(1-u z_{i}\right)\left(1-u^{-1} z_{i}\right)} & \text { for } m_{i}=0, \\ \frac{1}{\left(1-u^{m_{i}+1} z_{i}\right)\left(1-u^{-m_{i}-1} z_{i}\right) \prod_{k=1}^{m_{i}}\left(1-u^{m_{i}-2 k+1} z_{i}\right)^{2}} & \text { for } m_{i} \neq 0,\end{cases}$
for each $\Gamma=\left\{m_{i}\right\}_{i=1}^{s}$.
We remark for
$\Gamma=\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{0,1\},\{0,2\},\{0,3\}$,
$\{1,2\},\{1,3\},\{2,3\},\{0,1,2\}$ with the help of Hilbert series the homogeneous polynomial solutions for system (1)-(2) were found [1].

Hilbert series for algebras $S_{1,4}$

From (5) and (6) for $\Gamma=\{1,4\}$, by putting $s=2$ and $m_{1}=1, m_{2}=4$ and by introducing the designations $z_{1}=b, z_{2}=e$, we find the initial form of the generating function

$$
\varphi_{1,4}^{(0)}(u)=\left(1-u^{-2}\right) \psi_{1}^{(0)}(u) \psi_{4}^{(0)}(u),
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{array}{c}
\psi_{1}^{(0)}(u)=\frac{1}{\left(1-u^{2} b\right)(1-b)^{2}\left(1-u^{-2} b\right)} \\
\psi_{4}^{(0)}(u)=\frac{1}{\left(1-u^{5} e\right)\left(1-u^{3} e\right)^{2}(1-u e)^{2}\left(1-u^{-1} e\right)^{2}\left(1-u^{-3} e\right)^{2}\left(1-u^{-5} e\right)}
\end{array} .
\end{aligned}
$$

Following [1], we remark the generalized Hilbert series $H\left(S_{1,4}, u, b, e\right)$ is a solution of Cayley equation

$$
H\left(S_{1,4}, u, b, e\right)-u^{-2} H\left(S_{1,4}, u^{-1}, b, e\right)=\varphi_{1,4}^{(0)}(u)
$$

The generalized Hilbert series for the graded algebra $S_{1,4}$

Lemma

The generalized Hilbert series for the graded algebra $S_{1,4}$ of polynomial solutions of system (1)-(2) with $\Gamma=\{1,4\}$ is a rational function of u, b, e and has the form

$$
\begin{equation*}
H\left(S_{1,4}, u, b, e\right)=\frac{N_{1,4}(u)}{D_{1,4}(u)}, \tag{7}
\end{equation*}
$$

where

$$
\begin{gather*}
D_{1,4}(u)=(1-b)\left(1-b^{2}\right)\left(1-b u^{2}\right)\left(1-b e^{2}\right)^{2}\left(1-b^{3} e^{2}\right)^{2}\left(1-b^{5} e^{2}\right) \times \\
\times\left(1-e^{2}\right)\left(1-e^{4}\right)^{2}\left(1-e^{6}\right)^{2}\left(1-e^{8}\right)^{2}(1-e u)^{2}\left(1-e u^{3}\right)^{2}\left(1-e u^{5}\right) \tag{8}\\
N_{1,4}(u)=\sum_{k=0}^{13} R_{k}(b, e) u^{k} \tag{9}
\end{gather*}
$$

where $R(b, e)$ is a polynomial of b and e and $\operatorname{grad} R(b, e)=58$.

The common Hilbert series for the graded algebra $S_{1,4}$

Corollary

The common Hilbert series for the graded algebra $S_{1,4}$ of polynomial solutions for system (1)-(2) has the form

$$
H_{S_{1,4}}(u)=\frac{n_{1,4}(u)}{d_{1,4}(u)}
$$

where

$$
\begin{gathered}
n_{1,4}(u)=1+u+u^{2}+5 u^{3}+17 u^{4}+39 u^{5}+100 u^{6}+218 u^{7}+ \\
+467 u^{8}+865 u^{9}+1586 u^{10}+2685 u^{11}+4467 u^{12}+6889 u^{13}+ \\
+10423 u^{14}+14934 u^{15}+20921 u^{16}+27849 u^{17}+36293 u^{18}+ \\
+45278 u^{19}+55254 u^{20}+64697 u^{21}+74134 u^{22}+81782 u^{23}+ \\
+88328 u^{24}+91866 u^{25}+93539 u^{26}+91866 u^{27}+\ldots+u^{51}+u^{52} \\
d_{1,4}(u)=\left(1-u^{2}\right)\left(1-u^{3}\right)\left(1-u^{4}\right)^{3}\left(1-u^{5}\right)^{2}\left(1-u^{6}\right)^{3}\left(1-u^{7}\right)\left(1-u^{8}\right)^{2} .
\end{gathered}
$$

The Krull dimension for algebra $\varrho\left(S_{1,4}\right)$

Lemma
The Krull dimension for algebra $S_{1,4}$ is equal to 13, i.e. the maximum number of algebraically independent homogeneous polynomial solutions for system (1)-(2) in algebra $S_{1,4}$ is equal to 13.

Hilbert series for algebras $S_{1,4}$

Definition

We say that the linearity-independent polynomial solution of the system (1) of the type $(d)=\left(\delta, d_{1}, d_{2}, \ldots, d_{s}\right)$ is the irreducible polynomial of this system if it cannot be presented as a polynomial of lowest degrees $\delta, d_{i}(i=\overline{1, s})$ of this system.

According to Definition of Hilbert series in (3) we have that $\operatorname{dim}_{\mathbb{R}} S_{1,4}^{\left(\delta, d_{1}, d_{2}\right)}$ coincides with the coefficients of $u^{\delta} b^{d_{1}} e^{d_{2}}$ in the expansion $H\left(S_{1,4}, u, b, e\right)$ from (7)-(9) in u, b and e.

Hilbert series for algebras $S_{1,4}$

From [6] it is known that the equality

$$
\begin{equation*}
\bar{N}\left(\delta, d_{1}, d_{2}\right)=N\left(\delta, d_{1}, d_{2}\right)-N^{\prime}\left(\delta, d_{1}, d_{2}\right)+N^{\prime \prime}\left(\delta, d_{1}, d_{2}\right) \tag{10}
\end{equation*}
$$

takes place, where $N\left(\delta, d_{1}, d_{2}\right)=\operatorname{dim}_{\mathbb{R}} S_{1,4}^{\left(\delta, d_{1}, d_{2}\right)}, N^{\prime}\left(\delta, d_{1}, d_{2}\right)$ is the number of all polynomials of this type, which can be with the help of operations of multiplication from irreducible polynomials of lowest orders δ and lowest degrees $d_{1}, d_{2}, N^{\prime \prime}\left(\delta, d_{1}, d_{2}\right)$ is the number of linearly-dependent between composite $N^{\prime}\left(\delta, d_{1}, d_{2}\right)$ polynomials (i.e. $N^{\prime \prime}\left(\delta, d_{1}, d_{2}\right)$ is the number of linearly-independent polynomial relations (syzygies) of given type), and $\bar{N}\left(\delta, d_{1}, d_{2}\right)$ is the number of polynomial solutions of this type under investigation which are included in generators of algebra $S_{1,4}$.

The representative form of the generating function for

 algebra of polynomials $S_{1,4}$
Definition

Following [5], the representative form of generating functions
(RFGF) for algebra of polynomials $S_{1,4}$ of system (1)-(2) will be defined as such function $\bar{\varphi}_{1,4}(u)$ which is received from generalized Hilbert series (7)-(9) for this algebra by the multiplication of the numerator and denominator by some polynomial $M(u, b, e)$, where in the obtained result each factor of the new denominator has already the form $1-u^{\delta} b^{d_{1}} e^{d_{2}}$, in which the monomial $u^{\delta} b^{d_{1}} e^{d_{2}}$ corresponds to an irreducible polynomial of the type (δ, d_{1}, d_{2}).

The representative form of the generating function for algebra of polynomials $S_{1,4}$

The representative form of the generating functions for algebra of polynomials $S_{1,4}$ of the system (1)-(2) takes the form

$$
\begin{equation*}
\bar{\varphi}_{1,4}(u)=\frac{\bar{N}_{1,4}(u)}{\bar{D}_{1,4}(u)} \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \bar{N}_{1,4}(u)=N_{1,4}(u) M(u, b, e), \bar{D}_{1,4}(u)=D_{1,4}(u) M(u, b, e) \text {, } \\
& \text { and } M(u, b, e)=(1+u e)^{2}\left(1+u^{3} e\right) \mid\left(1+e^{2}\right) .
\end{aligned}
$$

Screening rule for polynomials

Following [5], we define screening rule for polynomials when the RFGF of the system (1)-(2) is known. Let us designate by $\eta\left(\delta, d_{1}, d_{2}\right)$ the positive factor of $u^{\delta} b^{d_{1}} e^{d_{2}}$ in the numerator $\bar{N}_{1,4}(u)$ of RFGF which corresponds to the number of linearly independent polynomials of the type (δ, d_{1}, d_{2}), not containing as factors the polynomials, whose types are represented by every factor of the denominator of RFGF.
Let $\eta^{\prime}\left(\delta, d_{1}, d_{2}\right)$ be the number of all polynomials of the type (δ, d_{1}, d_{2}), obtained with the help of multiplication from irreducible polynomials of the lowest degrees, whose types are represented only in the numerator $\bar{N}_{1,4}(u)$. Then, $\eta\left(\delta, d_{1}, d_{2}\right)>\eta^{\prime}\left(\delta, d_{1}, d_{2}\right)$, the number of irreducible polynomials of the type $\left(\delta, d_{1}, d_{2}\right)$ is not less than the difference $\eta\left(\delta, d_{1}, d_{2}\right)-\eta^{\prime}\left(\delta, \boldsymbol{d}_{1}, d_{2}\right)$, and for $\eta\left(\delta, d_{1}, d_{2}\right) \leq \eta^{\prime}\left(\delta, d_{1}, d_{2}\right)$ is not less than the difference $\eta\left(\delta, d_{1}, d_{2}\right)-\eta^{\prime}\left(\delta, d_{1}, d_{2}\right)$ of syzygies.

The main theorem

With the help of Franklin's theorem and screening rule we obtain

Theorem

The lower bound of the number of generators for the algebra $S_{1,4}$ is not less than 311 irreducible polynomials distributed in 58 types as follows:

$$
\begin{aligned}
& (0,1,0),(0,2,0), 6(0,0,4), 7(0,0,6), 15(0,0,8), 14(0,0,10), \\
& 3(0,1,2), 6(0,1,4), 15(0,1,6), 16(0,1,8),(0,2,2), 8(0,2,4), \\
& 15(0,2,6), 3(0,3,2), 10(0,3,4), 7(0,3,6),(0,4,2), 5(0,4,4), \\
& (0,5,2), 3(0,5,4), 2(1,0,3), 11(1,0,5), 20(1,0,7), 2(1,0,9), \\
& (1,1,1), 8(1,1,3), 20(1,1,5), 2(1,2,1), 9(1,2,3), 4(1,2,5), \\
& (1,3,1), 3(1,3,3), 3(1,4,3),(2,1,0), 3(2,0,2), 6(2,0,4), \\
& 4(2,1,2), 9(2,1,4), 3(2,2,2), 2(2,3,2),(3,0,1), 6(3,0,3), \\
& 9(3,0,5), 2(3,1,1), 6(3,1,3),(3,2,1),(4,0,2), 6(4,0,4), \\
& 3(4,1,2),(5,0,1), 3(5,0,3),(5,1,1), 2(6,0,2), 2(6,0,4), \\
& (6.1 .2) .(7.0 .3) .(9.0 .3) .
\end{aligned}
$$

Results: Summary

- The lower bounds of types of polynomial solutions for the system (1)-(2) can be arranged in a parallelepiped with dimensions $(9,5,10)$.
- The first two Betti numbers from Poincare series were determined ($\sigma_{1} \geq 311, \sigma_{2} \geq 298$).

