Ascona Conference "Algebraic Groups and Invariant Theory"

Springer fibers admitting singular components

Lucas Fresse, joint work with Anna Melnikov

Definition of Springer fibers

- Let $V = \mathbb{C}^n$, let $u \in \text{End}(V)$ nilpotent.
- ► A complete flag is a maximal chain of vector subspaces: $F = (0 = V_0 \subset V_1 \subset \ldots \subset V_n = V)$, dim $V_i = i$ ($\forall i$).
- ▶ B = {complete flags} is an algebraic projective variety.

Define:

$$\mathcal{B}_u = \{ F \in \mathcal{B} : u(V_i) \subset V_i \ \forall i \}.$$

This is a projective subvariety of \mathcal{B} , called *Springer fiber*.

• \mathcal{B}_u is connected, in general reducible.

\mathcal{B}_u in geometric representation theory

Jordan form of u represented by a Young diagram:

$$(\lambda_1 \geq \ldots \geq \lambda_r) \rightarrow Y(u) =$$
 $(\lambda_i \text{ boxes in the } i\text{-th row})$ (sizes of the Jordan blocks of u)

- ► T.A. Springer (1976): link between B_u and the representation theory of S_n:
 - ▶ structure of \mathbf{S}_n -module on $H^*(\mathcal{B}_u, \mathbb{Q})$, such that

 $H^{\max}(\mathcal{B}_u,\mathbb{Q})\cong M(Y(u))\in Irr(\mathbf{S}_n)$

(M(Y): Specht module).

Particular cases

Two simple cases:

• If
$$Y(u) =$$
, then u is regular and $\mathcal{B}_u = \{pt\}$.
• If $Y(u) =$, then $u = 0$ and $\mathcal{B}_u = \mathcal{B}$.

In any other case, \mathcal{B}_u is reducible.

• It may happen that every component of \mathcal{B}_u is nonsingular:

▶ in the hook case, i.e.
$$Y(u) = \boxed{ \vdots }$$
 (J.A. Vargas, 1979)

• in the 2-row case, i.e. Y(u) = (F. Fung, 2003).

• However, for $Y(u) = \bigcup_{u \in U} \mathcal{B}_u$ has a singular component (J.A. Vargas, 1979).

Main result

Theorem. Every irreducible component of \mathcal{B}_u is nonsingular exactly in four cases:

Preliminaries: \mathcal{B}_u and the combinatorics of Young

▶ Jordan form of *u* represented by a Young diagram:

- (N. Spaltenstein): dim B_u = ∑_{j=1}^s ½λ_j^{*}(λ_j^{*} − 1) where λ₁^{*}, ..., λ_s^{*} are the sizes of the columns of Y(u).
- Standard tableau = numbering of Y(u) by 1,..., n, increasing along the rows and the columns.

Example:
$$T = \frac{136}{25}$$
.

► (N. Spaltenstein): the irreducible components of B_u are parameterized by the standard tableaux of shape Y(u).

 \mathcal{B}_{μ} and the combinatorics of Young (continue)

- Spaltenstein's construction of the components:
 - T standard gives rise to

D

$$Y_{1}(T) \subset ... \subset Y_{i}(T) \subset ... \subset Y_{n}(T) = Y(u),$$

where $Y_{i}(T) =$ shape of the subtableau $T[1, ..., i].$
• $F = (V_{0}, ..., V_{n}) \in \mathcal{B}_{u}$ gives rise to
 $Y(u_{|V_{1}}) \subset ... \subset Y(u_{|V_{i}}) \subset ... \subset Y(u_{|V_{n}}) = Y(u).$
Define $\mathcal{B}_{u}^{T} = \{F \in \mathcal{B}_{u} : Y(u_{|V_{i}}) = Y_{i}(T) \quad (\forall i)\},$
we get $\mathcal{B}_{u} = \bigsqcup_{T} \mathcal{B}_{u}^{T}.$
 \mathcal{B}_{u}^{T} is locally closed, irreducible, dim $\mathcal{B}_{u}^{T} = \dim \mathcal{B}_{u} \ (\forall T).$

 $\Rightarrow \mathcal{K}^{\mathsf{T}} := \overline{\mathcal{B}_{\mu}^{\mathsf{T}}}$ are the irreducible components of \mathcal{B}_{μ} , and $\dim \mathcal{K}^{\mathcal{T}} = \dim \mathcal{B}_{\mu} \ (\forall \mathcal{T}).$

1st step: inductive criterion of singularity

Let T be standard, K^T ⊂ B_u the associated component.
 Let T' = T[1,..., n − 1], it gives K^{T'} ⊂ B_{u'} component.

Theorem. (a) $\mathcal{K}^{T'}$ is singular $\Rightarrow \mathcal{K}^{T}$ is singular. (b) Moreover, if n lies in the last column of T, then: $\mathcal{K}^{T'}$ is singular $\Leftrightarrow \mathcal{K}^{T}$ is singular.

Skip of the proof.

- Let U = {F = (V₀,..., V_n) ∈ K^T : Y(u_{|V_{n-1}}) = Y_{n-1}(T)}.
 We have B^T_u ⊂ U ⊂ K^T, and U is open in K^T.
 In case (b), U is closed, hence U = K^T.
- Thus, it suffices to show: $\mathcal{K}^{\mathcal{T}'}$ singular $\Leftrightarrow \mathcal{U}$ singular.
- To do this, we show that Φ : U → H, (V₀,..., V_n) → V_{n-1} is a fibre bundle over its image, of base nonsingular, of fiber K^{T'}.

2nd step: construction of singular components

Two basic singular components:

Proposition. (a) If
$$T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 4 \\ 6 \end{bmatrix}$$
, then \mathcal{K}^T is singular. (Vargas)
(b) If $T = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \\ 6 & 7 \end{bmatrix}$, then \mathcal{K}^T is singular.

• Combining with the previous criterion, we get:

Corollary. Whenever Y(u) contains \Box or \Box as a subdiagram, \mathcal{B}_u admits a singular component.

3nd step: the (r, s, 1)-case

It remains to show that, in the following cases:

every component of \mathcal{B}_u is nonsingular.

- ▶ In cases (i), (ii), (iv), all the components are nonsingular.
- Thus, it remains to show:

If Y(u) has three rows of sizes r, s, 1, then every component of \mathcal{B}_u is nonsingular.

3nd step: the (r, s, 1)-case (continue)

- We may assume r = s.
- We show that $\mathcal{K}^{T(r)}$ is nonsingular for $T(r) = \frac{\begin{vmatrix} 1 & 2 & \cdots & r \\ r+1 & r+2 & \cdots & 2r \end{vmatrix}}{\begin{vmatrix} r+1 & r+2 & \cdots & 2r \\ 2r+1 \end{vmatrix}}$.
- Say T ∼ T' if K^T, K^{T'} are either both singular or both nonsingular.

We have $T' \sim T$ if T' is obtained from T by:

- adding/deleting n in the last column,
- the Schützenberger involution $T \mapsto Sch(T)$.

For T of (r, r, 1)-type, we show $T \sim T(r')$ for some $r' \leq r$. Therefore \mathcal{K}^T is nonsingular.

1st step: inductive criterion of singularity

Let T be standard, K^T ⊂ B_u component.
 Let T' = T[1,..., n − 1], it gives K^{T'} ⊂ B_{u'} component.
 Theorem. (a) K^{T'} is singular ⇒ K^T is singular.

(b) Moreover, if n lies in the last column of T, then: $\mathcal{K}^{T'}$ is singular $\Leftrightarrow \mathcal{K}^{T}$ is singular.

In particular, adding one box to a tableau preserves the singularity of the component.