Ascona Conference

"Algebraic Groups and Invariant Theory"

Springer fibers admitting singular components
Lucas Fresse, joint work with Anna Melnikov

Definition of Springer fibers

- Let $V=\mathbb{C}^{n}$, let $u \in \operatorname{End}(V)$ nilpotent.
- A complete flag is a maximal chain of vector subspaces: $F=\left(0=V_{0} \subset V_{1} \subset \ldots \subset V_{n}=V\right), \operatorname{dim} V_{i}=i(\forall i)$.
- $\mathcal{B}=\{$ complete flags $\}$ is an algebraic projective variety.
- Define:

$$
\mathcal{B}_{u}=\left\{F \in \mathcal{B}: u\left(V_{i}\right) \subset V_{i} \forall i\right\} .
$$

This is a projective subvariety of \mathcal{B}, called Springer fiber.

- \mathcal{B}_{u} is connected, in general reducible.

\mathcal{B}_{u} in geometric representation theory

- Jordan form of u represented by a Young diagram:

$$
\underset{\left.\left.(\text { Sizes of the Jordan blocks of } u)_{\left(\lambda_{1} \geq \ldots\right.}\right) \rightarrow \quad Y(u)=\square \lambda_{r}\right) \quad\left(\lambda_{;} \text {bexes in the } e \text { ith row) }\right)}{ }
$$

- T.A. Springer (1976): link between \mathcal{B}_{u} and the representation theory of \mathbf{S}_{n} :
- structure of \mathbf{S}_{n}-module on $H^{*}\left(\mathcal{B}_{u}, \mathbb{Q}\right)$, such that

$$
H^{\max }\left(\mathcal{B}_{u}, \mathbb{Q}\right) \cong M(Y(u)) \in \operatorname{Irr}\left(\mathbf{S}_{n}\right)
$$

($M(Y)$: Specht module).

Particular cases

- Two simple cases:
- If $Y(u)=\square \cdot . \square$, then u is regular and $\mathcal{B}_{u}=\{\mathrm{pt}\}$.
- If $Y(u)=\square$, then $u=0$ and $\mathcal{B}_{u}=\mathcal{B}$.

In any other case, \mathcal{B}_{u} is reducible.

- It may happen that every component of \mathcal{B}_{u} is nonsingular:
- in the hook case, i.e. $Y(u)=\begin{aligned} & \square \cdot \square \\ & \vdots \\ & \square \\ & \text { (J.A. Vargas, 1979) }\end{aligned}$
- in the 2-row case, i.e. $Y(u)=\begin{aligned} & \square \cdots \\ & \square \cdot \\ & \cdots\end{aligned}$ (F. Fung, 2003).
- However, for $Y(u)=\square$
\mathcal{B}_{u} has a singular component (J.A. Vargas, 1979).

Main result

Theorem. Every irreducible component of \mathcal{B}_{u} is nonsingular exactly in four cases:
(i) the hook case $Y(u)=\square$
(ii) the 2-row case $Y(u)=\square \cdot \square$

(iii) the "2-row plus one box" case: $Y(u)=$| \cdots | .. |
| :--- | :--- |
| \square | . |

(iv) (exceptional case) $Y(u)=\square$.

Preliminaries: \mathcal{B}_{u} and the combinatorics of Young

- Jordan form of u represented by a Young diagram:

$$
Y(u)=\square .
$$

- (N. Spaltenstein): $\operatorname{dim} \mathcal{B}_{u}=\sum_{j=1}^{s} \frac{1}{2} \lambda_{j}^{*}\left(\lambda_{j}^{*}-1\right)$ where $\lambda_{1}^{*}, \ldots, \lambda_{s}^{*}$ are the sizes of the columns of $Y(u)$.
- Standard tableau $=$ numbering of $Y(u)$ by $1, \ldots, n$, increasing along the rows and the columns.

$$
\text { Example: } \quad T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & 7
\end{array} .
$$

- (N. Spaltenstein): the irreducible components of \mathcal{B}_{u} are parameterized by the standard tableaux of shape $Y(u)$.
\mathcal{B}_{u} and the combinatorics of Young (continue)
- Spaltenstein's construction of the components:
- T standard gives rise to

$$
Y_{1}(T) \subset \ldots \subset Y_{i}(T) \subset \ldots \subset Y_{n}(T)=Y(u)
$$

where $Y_{i}(T)=$ shape of the subtableau $T[1, \ldots, i]$.

- $F=\left(V_{0}, \ldots, V_{n}\right) \in \mathcal{B}_{u}$ gives rise to

$$
Y\left(u_{\mid v_{1}}\right) \subset \ldots \subset Y\left(u_{\mid v_{i}}\right) \subset \ldots \subset Y\left(u_{\mid v_{n}}\right)=Y(u) .
$$

Define $\mathcal{B}_{u}^{T}=\left\{F \in \mathcal{B}_{u}: Y\left(u_{\mid v_{i}}\right)=Y_{i}(T)(\forall i)\right\}$, we get $\mathcal{B}_{u}=\bigsqcup_{T} \mathcal{B}_{u}^{T}$.
\mathcal{B}_{u}^{T} is locally closed, irreducible, $\operatorname{dim} \mathcal{B}_{u}^{T}=\operatorname{dim} \mathcal{B}_{u}(\forall T)$.
$\Rightarrow \mathcal{K}^{T}:=\overline{\mathcal{B}_{u}^{T}}$ are the irreducible components of \mathcal{B}_{u}, and $\operatorname{dim} \mathcal{K}^{T}=\operatorname{dim} \mathcal{B}_{u}(\forall T)$.

1st step: inductive criterion of singularity

- Let T be standard, $\mathcal{K}^{T} \subset \mathcal{B}_{u}$ the associated component. Let $T^{\prime}=T[1, \ldots, n-1]$, it gives $\mathcal{K}^{T^{\prime}} \subset \mathcal{B}_{u^{\prime}}$ component.

Theorem. (a) $\mathcal{K}^{T^{\prime}}$ is singular $\Rightarrow \mathcal{K}^{T}$ is singular.
(b) Moreover, if n lies in the last column of T, then:
$\mathcal{K}^{T^{\prime}}$ is singular $\Leftrightarrow \mathcal{K}^{T}$ is singular.
Skip of the proof.

- Let $\mathcal{U}=\left\{F=\left(V_{0}, \ldots, V_{n}\right) \in \mathcal{K}^{T}: Y\left(u_{\mid V_{n-1}}\right)=Y_{n-1}(T)\right\}$.

We have $\mathcal{B}_{u}^{T} \subset \mathcal{U} \subset \mathcal{K}^{T}$, and \mathcal{U} is open in \mathcal{K}^{T}.
In case (b), \mathcal{U} is closed, hence $\mathcal{U}=\mathcal{K}^{T}$.

- Thus, it suffices to show: $\mathcal{K}^{T^{\prime}}$ singular $\Leftrightarrow \mathcal{U}$ singular.
- To do this, we show that $\Phi: \mathcal{U} \rightarrow \mathcal{H},\left(V_{0}, \ldots, V_{n}\right) \mapsto V_{n-1}$ is a fibre bundle over its image, of base nonsingular, of fiber $\mathcal{K}^{T^{\prime}}$.

2nd step: construction of singular components

- Two basic singular components:

Proposition. (a) If $T=$| 1 | 3 |
| :--- | :--- |
| 2 | 5 |
| 4 | |
| 6 | | , then \mathcal{K}^{T} is singular. (Vargas)

(b) If $T=$| 1 | 2 | 5 |
| :--- | :--- | :--- |
| 3 | 4 | 5 |
| 6 | 7 | |, then \mathcal{K}^{T} is singular.

- Combining with the previous criterion, we get:

Corollary. Whenever $Y(u)$ contains

subdiagram, \mathcal{B}_{u} admits a singular component.

3nd step: the ($r, s, 1$)-case

- It remains to show that, in the following cases:
(i) hook case $Y(u)=\begin{aligned} & \square \cdot \square \\ & \vdots\end{aligned}$
(ii) 2-row case $Y(u)=\begin{aligned} & \square \cdot \square \\ & \square \cdot\end{aligned}$
(iii) "2-row plus one box" case: $Y(u)=$
 (iv) case $Y(u)=\square$,
every component of \mathcal{B}_{u} is nonsingular.
- In cases (i), (ii), (iv), all the components are nonsingular.
- Thus, it remains to show:

If $Y(u)$ has three rows of sizes $r, s, 1$, then every component of \mathcal{B}_{u} is nonsingular.

3nd step: the $(r, s, 1)$-case (continue)

- We may assume $r=s$.
- We show that $\mathcal{K}^{T(r)}$ is nonsingular for $T(r)=$| 1 | 2 | \cdots | r |
| :---: | :---: | :---: | :---: |
| $r+1$ | $r+2$ | \cdots | $2 r$ |
| $2 r+1$ | | | |
- Say $T \sim T^{\prime}$ if $\mathcal{K}^{T}, \mathcal{K}^{T^{\prime}}$ are either both singular or both nonsingular.
We have $T^{\prime} \sim T$ if T^{\prime} is obtained from T by:
- adding/deleting n in the last column,
- the Schützenberger involution $T \mapsto \operatorname{Sch}(T)$.

For T of $(r, r, 1)$-type, we show $T \sim T\left(r^{\prime}\right)$ for some $r^{\prime} \leq r$. Therefore \mathcal{K}^{T} is nonsingular.

1st step: inductive criterion of singularity

- Let T be standard, $\mathcal{K}^{T} \subset \mathcal{B}_{u}$ component. Let $T^{\prime}=T[1, \ldots, n-1]$, it gives $\mathcal{K}^{T^{\prime}} \subset \mathcal{B}_{u^{\prime}}$ component. Theorem. (a) $\mathcal{K}^{T^{\prime}}$ is singular $\Rightarrow \mathcal{K}^{T}$ is singular. (b) Moreover, if n lies in the last column of T, then: $\mathcal{K}^{T^{\prime}}$ is singular $\Leftrightarrow \mathcal{K}^{T}$ is singular.
- In particular, adding one box to a tableau preserves the singularity of the component.

