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� k is a field,

� G a finite group,

� V a n-dimensional representation of G over k.
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� k is a field,

� G a finite group,

� V a n-dimensional representation of G over k.

� k[V ] is the symmetric algebra on the vector space dual V ∗ of V .
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� k is a field,

� G a finite group,

� V a n-dimensional representation of G over k.

� k[V ] is the symmetric algebra on the vector space dual V ∗ of V .

If x1, x2, . . . , xn is a basis for V ∗, then

k[V ] = k[x1, . . . , xn],

the polynomial ring in x1, . . . , xn.
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� k is a field,

� G a finite group,

� V a n-dimensional representation of G over k.

� k[V ] is the symmetric algebra on the vector space dual V ∗ of V .

If x1, x2, . . . , xn is a basis for V ∗, then

k[V ] = k[x1, . . . , xn],

the polynomial ring in x1, . . . , xn.

� G acts on k[V ] via (σ · f)(v) = f(σ−1 · v).
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� k is a field,

� G a finite group,

� V a n-dimensional representation of G over k.

� k[V ] is the symmetric algebra on the vector space dual V ∗ of V .

If x1, x2, . . . , xn is a basis for V ∗, then

k[V ] = k[x1, . . . , xn],

the polynomial ring in x1, . . . , xn.

� G acts on k[V ] via (σ · f)(v) = f(σ−1 · v).

� Finally, k[V ]G is the subring of k[V ] fixed by the action of G.
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� Let V be a 2-dimensional vector space over C.

� Let C4 = 〈σ〉, the cyclic group of order 4, act on V via:

σ 7→

(

i 0
0 i

)

.
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� Let V be a 2-dimensional vector space over C.

� Let C4 = 〈σ〉, the cyclic group of order 4, act on V via:

σ 7→

(

i 0
0 i

)

.

� If x, y is the basis of V ∗ dual to the usual basis of V , then

k[V ] = k[x, y],
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� Let V be a 2-dimensional vector space over C.

� Let C4 = 〈σ〉, the cyclic group of order 4, act on V via:

σ 7→

(

i 0
0 i

)

.

� If x, y is the basis of V ∗ dual to the usual basis of V , then

k[V ] = k[x, y],

� σ · x = i−1x = −ix, and σ · y = i−1y = −iy, thus
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� Let V be a 2-dimensional vector space over C.

� Let C4 = 〈σ〉, the cyclic group of order 4, act on V via:

σ 7→

(

i 0
0 i

)

.

� If x, y is the basis of V ∗ dual to the usual basis of V , then

k[V ] = k[x, y],

� σ · x = i−1x = −ix, and σ · y = i−1y = −iy, thus

� k[V ]G = k[x4, x3y, x2y2, xy3, y4].
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� Invariants take the same value on all elements belonging to the

same orbit.
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� Invariants take the same value on all elements belonging to the

same orbit.

� If there is an f ∈ k[V ]G such that f(u) 6= f(v), then

� u and v belong to distinct orbits,
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� Invariants take the same value on all elements belonging to the

same orbit.

� If there is an f ∈ k[V ]G such that f(u) 6= f(v), then

� u and v belong to distinct orbits,

� f separates u and v.
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� Invariants take the same value on all elements belonging to the

same orbit.

� If there is an f ∈ k[V ]G such that f(u) 6= f(v), then

� u and v belong to distinct orbits,

� f separates u and v.

Definition 1 (Derksen and Kemper (2002)). A subset E ⊂ k[V ]G is a

separating set if and only if for all u, v ∈ V ,

� if there is an f ∈ k[V ]G such that f(u) 6= f(v), then there is an

h ∈ E such that h(u) 6= h(v).
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� Invariants take the same value on all elements belonging to the

same orbit.

� If there is an f ∈ k[V ]G such that f(u) 6= f(v), then

� u and v belong to distinct orbits,

� f separates u and v.

Definition 1 (Derksen and Kemper (2002)). A subset E ⊂ k[V ]G is a

separating set if and only if for all u, v ∈ V ,

� if there is an f ∈ k[V ]G such that f(u) 6= f(v), then there is an

h ∈ E such that h(u) 6= h(v).

A subalgebra A ⊂ k[V ]G satisfying this condition is a separating algebra.
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The ring of invariants C[x, y]C4 is minimally generated by

x4, x3y, x2y2, xy3, y4.



Back to the Example

Introduction

Separating Algebras

Separating invariants

Back to the Example

Separating invariants
are well-behaved

Separating algebras
are close to the ring of
invariants

Geometric Separating
Invariants

Geometric Separating
Invariants (continued)

Well-behaved
Separating Algebras

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 5

The ring of invariants C[x, y]C4 is minimally generated by

x4, x3y, x2y2, xy3, y4.

For points such that x4(u) = 0, we know that x2y2(u) = xy3(u) = 0.



Back to the Example

Introduction

Separating Algebras

Separating invariants

Back to the Example

Separating invariants
are well-behaved

Separating algebras
are close to the ring of
invariants

Geometric Separating
Invariants

Geometric Separating
Invariants (continued)

Well-behaved
Separating Algebras

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 5

The ring of invariants C[x, y]C4 is minimally generated by

x4, x3y, x2y2, xy3, y4.

For points such that x4(u) = 0, we know that x2y2(u) = xy3(u) = 0.
For all others,

x2y2(u) =
(x3y(u))2

x4(u)
and xy3(u) =

(x3y(u))3

(x4)2(u)
.
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The ring of invariants C[x, y]C4 is minimally generated by

x4, x3y, x2y2, xy3, y4.

For points such that x4(u) = 0, we know that x2y2(u) = xy3(u) = 0.
For all others,

x2y2(u) =
(x3y(u))2

x4(u)
and xy3(u) =

(x3y(u))3

(x4)2(u)
.

Thus, as functions, x2y2 and xy3 are entirely determined by x4, x3y, y4,

and they are not needed to separate.
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The ring of invariants C[x, y]C4 is minimally generated by

x4, x3y, x2y2, xy3, y4.

For points such that x4(u) = 0, we know that x2y2(u) = xy3(u) = 0.
For all others,

x2y2(u) =
(x3y(u))2

x4(u)
and xy3(u) =

(x3y(u))3

(x4)2(u)
.

Thus, as functions, x2y2 and xy3 are entirely determined by x4, x3y, y4,

and they are not needed to separate.

� Hence, S = {x4, x3y, y4} is a separating set.
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The ring of invariants C[x, y]C4 is minimally generated by

x4, x3y, x2y2, xy3, y4.

For points such that x4(u) = 0, we know that x2y2(u) = xy3(u) = 0.
For all others,

x2y2(u) =
(x3y(u))2

x4(u)
and xy3(u) =

(x3y(u))3

(x4)2(u)
.

Thus, as functions, x2y2 and xy3 are entirely determined by x4, x3y, y4,

and they are not needed to separate.

� Hence, S = {x4, x3y, y4} is a separating set.

� A = C[x4, x3y, y4] is a separating algebra.



Separating invariants are well-behaved

Introduction

Separating Algebras

Separating invariants

Back to the Example

Separating invariants
are well-behaved

Separating algebras
are close to the ring of
invariants

Geometric Separating
Invariants

Geometric Separating
Invariants (continued)

Well-behaved
Separating Algebras

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 6



Separating invariants are well-behaved

Introduction

Separating Algebras

Separating invariants

Back to the Example

Separating invariants
are well-behaved

Separating algebras
are close to the ring of
invariants

Geometric Separating
Invariants

Geometric Separating
Invariants (continued)

Well-behaved
Separating Algebras

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 6

� Finite separating sets always exist. (Derksen and Kemper (2002))
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� Finite separating sets always exist. (Derksen and Kemper (2002))

� The polarization of separating invariants yields separating invariants.

(Domokos (2007), Draisma, Kemper, and Wehlau (2008))
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� Finite separating sets always exist. (Derksen and Kemper (2002))

� The polarization of separating invariants yields separating invariants.

(Domokos (2007), Draisma, Kemper, and Wehlau (2008))

� For G finite, the invariants of degree at most |G| form a separating

set. (Derksen and Kemper (2002))
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� If G is reductive and A is a graded separating subalgebra, then the

extension A ⊂ k[V ]G is finite and k[V ]G is the normalization of

the purely inseparable closure of A in k[V ]. (Derksen and Kemper

(2002))
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� If G is reductive and A is a graded separating subalgebra, then the

extension A ⊂ k[V ]G is finite and k[V ]G is the normalization of

the purely inseparable closure of A in k[V ]. (Derksen and Kemper

(2002))

� If G is reductive, k is a field of positive characteristic, and A is a

graded subalgebra, then A is a separating subalgebra if and only if

k[V ]G is the purely inseparable closure of A in k[V ]. (Derksen and

Kemper (2008))
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� If G is reductive and A is a graded separating subalgebra, then the

extension A ⊂ k[V ]G is finite and k[V ]G is the normalization of

the purely inseparable closure of A in k[V ]. (Derksen and Kemper

(2002))

� If G is reductive, k is a field of positive characteristic, and A is a

graded subalgebra, then A is a separating subalgebra if and only if

k[V ]G is the purely inseparable closure of A in k[V ]. (Derksen and

Kemper (2008))

� For reductive groups, separating algebras are easier to compute

than the ring of invariants, and the close relationship means that we

can obtain generators for the ring of invariants from a separating set.

(Kemper (2003))
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The notion of separating set is not stable over extension of the base field,

and the properties of separating algebras are not very uniform over

non-algebraically closed fields.
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The notion of separating set is not stable over extension of the base field,

and the properties of separating algebras are not very uniform over

non-algebraically closed fields.

� Let k be an algebraic closure of k,

� and let V = V ⊗k k.
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The notion of separating set is not stable over extension of the base field,

and the properties of separating algebras are not very uniform over

non-algebraically closed fields.

� Let k be an algebraic closure of k,

� and let V = V ⊗k k.

Definition 2. A subalgebra A ⊂ k[V ]G is a geometric separating

algebra if and only if, for all u, v ∈ V , if there is an f ∈ k[V ]G such that

f(u) 6= f(v), then there is an h ∈ A such that h(u) 6= h(v).
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Theorem 3. A subalgebra A ⊂ k[V ]G is a geometric separating algebra

if and only if the following equivalent properties hold:
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Theorem 3. A subalgebra A ⊂ k[V ]G is a geometric separating algebra

if and only if the following equivalent properties hold:

� if V = Spec(k[V ]), V//G = Spec(k[V ]G), and W = Spec(A),

then

(V ×W V )red = (V ×V//G V )red = S;
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Theorem 3. A subalgebra A ⊂ k[V ]G is a geometric separating algebra

if and only if the following equivalent properties hold:

� if V = Spec(k[V ]), V//G = Spec(k[V ]G), and W = Spec(A),

then

(V ×W V )red = (V ×V//G V )red = S;

� if δ : k[V ] → k[V ] ⊗ k[V ] sends f to f ⊗ 1 − 1 ⊗ f , then

√

(δ(A)) =
√

(δ(k[V ]G)).



Geometric Separating Invariants (continued)

Introduction

Separating Algebras

Separating invariants

Back to the Example

Separating invariants
are well-behaved

Separating algebras
are close to the ring of
invariants

Geometric Separating
Invariants

Geometric Separating
Invariants (continued)

Well-behaved
Separating Algebras

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 9

Theorem 3. A subalgebra A ⊂ k[V ]G is a geometric separating algebra

if and only if the following equivalent properties hold:

� if V = Spec(k[V ]), V//G = Spec(k[V ]G), and W = Spec(A),

then

(V ×W V )red = (V ×V//G V )red = S;

� if δ : k[V ] → k[V ] ⊗ k[V ] sends f to f ⊗ 1 − 1 ⊗ f , then

√

(δ(A)) =
√

(δ(k[V ]G)).

Theorem 4. Suppose G is reductive. A subalgebra A ⊂ k[V ]G is a

geometric separating algebra if and only if the morphism of schemes

θ : V//G → W is radicial, that is, if the corresponding morphism of

F-points is injective for all fields F.
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Theorem 5. If there is a polynomial geometric separating algebra, then

the action of G on V is generated by reflections.
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Theorem 5. If there is a polynomial geometric separating algebra, then

the action of G on V is generated by reflections.

Definition 6. An element σ of G is a reflection if it fixes a subspace of

codimension 1 in V .
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Theorem 5. If there is a polynomial geometric separating algebra, then

the action of G on V is generated by reflections.

Definition 6. An element σ of G is a reflection if it fixes a subspace of

codimension 1 in V .

Theorem 7 (Serre (1969)). If k[V ]G is a polynomial ring, then the action

of G on V is generated by reflections.
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Theorem 5. If there is a polynomial geometric separating algebra, then

the action of G on V is generated by reflections.

Definition 6. An element σ of G is a reflection if it fixes a subspace of

codimension 1 in V .

Theorem 7 (Serre (1969)). If k[V ]G is a polynomial ring, then the action

of G on V is generated by reflections.

Theorem 8 (Shephard and Todd (1954), Serre, Chevalley (1955), Clark

and Ewing (1974)). Suppose |G| is invertible in k, then k[V ]G is a

polynomial ring if and only if the action of G on V is generated by

reflections.
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Theorem 5. If there is a polynomial geometric separating algebra, then

the action of G on V is generated by reflections.

Definition 6. An element σ of G is a reflection if it fixes a subspace of

codimension 1 in V .

Theorem 7 (Serre (1969)). If k[V ]G is a polynomial ring, then the action

of G on V is generated by reflections.

Theorem 8 (Shephard and Todd (1954), Serre, Chevalley (1955), Clark

and Ewing (1974)). Suppose |G| is invertible in k, then k[V ]G is a

polynomial ring if and only if the action of G on V is generated by

reflections.

Corollary 9. Suppose |G| is invertible in k. There exists a polynomial

geometric separating algebra if and only if the action of G on V is

generated by reflections.
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Recall that the action of G = C4 on V was given by:

σ 7→

(

i 0
0 i

)

.
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Recall that the action of G = C4 on V was given by:

σ 7→

(

i 0
0 i

)

.

Hence, G is not a reflection group, and so no geometric separating

algebra is a polynomial ring. In other words, there are no geometric

separating sets of size two, and thus

{x4, x3y, y4}

is a geometric separating set of minimal size.
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Consider the group G acting as follows on a 4-dimensional vector space

over a field k of characteristic p > 0 containing a root z of Zp − Z + 1:

G =

〈









1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1









,









1 0 0 1
0 1 0 0
0 0 1 z
0 0 0 1









〉

.

Then the ring of invariants is an hypersurface, but there is a polynomial

separating set.
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Consider the group G acting as follows on a 4-dimensional vector space

over a field k of characteristic p > 0 containing a root z of Zp − Z + 1:

G =

〈









1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1









,









1 0 0 1
0 1 0 0
0 0 1 z
0 0 0 1









〉

.

Then the ring of invariants is an hypersurface, but there is a polynomial

separating set.

Remark 10.

� There are other similar examples.

� In all cases the groups are rigid groups, the isotropy subgroups are

reflection groups.
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Theorem 11. Let G be a finite group. If there is a finitely generated

graded geometric separating algebra which is a complete intersection,

then the action of G on V is generated by bireflections.
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Theorem 11. Let G be a finite group. If there is a finitely generated

graded geometric separating algebra which is a complete intersection,

then the action of G on V is generated by bireflections.

Definition 12. An element σ of G is a bireflection if it has finite order and

fixes a subspace of codimension 2 in V .
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Theorem 11. Let G be a finite group. If there is a finitely generated

graded geometric separating algebra which is a complete intersection,

then the action of G on V is generated by bireflections.

Definition 12. An element σ of G is a bireflection if it has finite order and

fixes a subspace of codimension 2 in V .

Theorem 13 (Kac and Watanabe (1981), Gordeev (1982) ). Let G be a

finite group. If the ring of G-invariants is a complete intersection ring, then

the action of G on V is generated by bireflections.
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(From now on: joint work with Jonathan Elmer and Martin Kohls.)
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(From now on: joint work with Jonathan Elmer and Martin Kohls.)

Theorem 14. If V is faithful and modular, then there exists r≥ 1 such

that, for all k, every graded geometric separating algebra in k[V ⊕k]G has

Cohen-Macaulay defect at least k − r − 1. In particular, for k > r + 1, no

graded geometric separating algebra in k[V ⊕k]G is Cohen-Macaulay.
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(From now on: joint work with Jonathan Elmer and Martin Kohls.)

Theorem 14. If V is faithful and modular, then there exists r≥ 1 such

that, for all k, every graded geometric separating algebra in k[V ⊕k]G has

Cohen-Macaulay defect at least k − r − 1. In particular, for k > r + 1, no

graded geometric separating algebra in k[V ⊕k]G is Cohen-Macaulay.

Theorem 15. Let G be a p-group. If there exists a graded geometric

separating algebra in k[V ]G which is Cohen-Macaulay, then G is

generated by elements acting as bireflections.
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k is a finite field and G is the group generated by the matrices of the form:









I4 0

α 0 0 δ
0 β 0 δ
0 0 γ δ

Im









,

where α, β, γ, δ ∈ k, and I4 is the identity matrix.



Some More Interesting Examples

Introduction

Separating Algebras

Well-behaved
Separating Algebras

The Polynomial
Property

Back to the Example,
once more

Some Interesting
Examples

The Complete
Intersection Property

The Cohen-Macaulay
Property

Some More Interesting
Examples

A further interesting
example

A last visit to the
running example

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 15

k is a finite field and G is the group generated by the matrices of the form:









I4 0

α 0 0 δ
0 β 0 δ
0 0 γ δ

Im









,

where α, β, γ, δ ∈ k, and I4 is the identity matrix.

No graded geometric separating algebra in k[V ]G is Cohen-Macaulay.
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k is a finite field and G is the group generated by the matrices of the form:









I4 0

α 0 0 δ
0 β 0 δ
0 0 γ δ

Im









,

where α, β, γ, δ ∈ k, and I4 is the identity matrix.

No graded geometric separating algebra in k[V ]G is Cohen-Macaulay.

Remark 16.

� This is a reflection group (and so, in particular a bireflection group),

but not a rigid group.

� The converts of Theorem 3 (for graded subalgebras) and theorem 7

do not hold.
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G = C2 × C2 = 〈σ, τ〉 is the Klein four group. Consider the

5-dimensional representation of G over a field of characteristic 2 given by

σ 7→













1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, τ 7→













1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.
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G = C2 × C2 = 〈σ, τ〉 is the Klein four group. Consider the

5-dimensional representation of G over a field of characteristic 2 given by

σ 7→













1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, τ 7→













1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

k[V ]G is not Cohen-Macaulay, but there is a graded geometric separating

algebra which is Cohen-Macaulay.
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G = C2 × C2 = 〈σ, τ〉 is the Klein four group. Consider the

5-dimensional representation of G over a field of characteristic 2 given by

σ 7→













1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, τ 7→













1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

k[V ]G is not Cohen-Macaulay, but there is a graded geometric separating

algebra which is Cohen-Macaulay.

Remark 17. This is, of course, a bireflection group.
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Let G = C4 and let V be as before.
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Let G = C4 and let V be as before.

C[x4, x3y, y4] ⊂ C[x4, x3y, xy3, y4] ⊂ C[x4, x3y, x2y2, xy3, y4]

are all geometric separating algebras.
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Let G = C4 and let V be as before.

C[x4, x3y, y4] ⊂ C[x4, x3y, xy3, y4] ⊂ C[x4, x3y, x2y2, xy3, y4]

are all geometric separating algebras.

C[x4, x3y, xy3, y4] is not Cohen-Macaulay.



For more details

Introduction

Separating Algebras

Well-behaved
Separating Algebras

For more details

Well-behaved separating algebras Algebraic Groups and Invariant Theory, Aug. 30-Sept. 4, 2009 – 18

[1] Emilie Dufresne. Separating invariants and finite reflection groups.

Adv. Math., 221:1979–1989, 2009. arXiv:Math.AC/0805.2605v3.

[2] Emilie Dufresne Jonathan Elmer and Martin Kohls. The

Cohen-Macaulay property of separating invariants of finite groups.

Transform. Groups, to appear. arXiv:Math.AC/0904.1069.


	Introduction
	General Setting
	An Easy Example

	Separating Algebras
	Separating invariants
	Back to the Example
	Separating invariants are well-behaved
	Separating algebras are close to the ring of invariants
	Geometric Separating Invariants
	Geometric Separating Invariants (continued)

	Well-behaved Separating Algebras
	The Polynomial Property
	Back to the Example, once more
	Some Interesting Examples
	The Complete Intersection Property
	The Cohen-Macaulay Property
	Some More Interesting Examples
	A further interesting example
	A last visit to the running example

	For more details
	For more details


