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Outline

• Lung Models: solutions and transfer functions

– First and second order models with various pa-

rameters

– Proportional, Derivative and Integral Feedback

– Impulse and Step Inputs

• Root Locus Plots
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Closed loop transfer functions for LTI system

The ideas involved in analyzing a closed loop system such

as represented in Figure (1) can be illustrated using the

following example.

U(S) X(S)
1

a.s  +b.s+c2

H(S)=Transfer Function

K

Feedback

Figure 1: Closed loop transfer function

Example 1. In this example, a simple linearized model

is used to study the relation between the input of air pres-

sure Pao at the airway opening and the pressure PA at the

alveoli. Using simple mechanical laws of pressure drop,

air flow resistance, and lung compliance (similar to elec-

trical diagrams), the following second order differential

equation is derived:

Pao(t) = LC
d2PA(t)

dt2
+ RC

dPA(t)

dt
+ PA. (1)

Here PA(0) = 0, PA
′(0) = 0, u(t) = Pao, and LC, and

RC are constant. The transfer function of this system
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takes the form

PA(s)

Pao(s)
=

1

LCs2 + RCs + 1
= H(s), (2)

where H(s) is the transfer function of the open loop sys-

tem as represented in Equation (1).

Assume now that the air flow to the lungs needs to

be regulated to avoid damage. We assume a mechanism

that measures the alveolar pressure PA and produces a

negative feedback to the input control Pao, that is the new

control u(t) = Pao(t) − KPA(t). The transfer function

for this system (after rearranging terms) takes the form

PA(s)

Pao(s)
=

1

LCs2 + RCs + (1 + K)
= G(s), (3)

where G(s) is the transfer function of the closed loop

system.

Note that Pao(s) = 1 for impulse and Pao(s) = 1
s

for

step function.
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Simplified First Order Model

Consider the simplified model where L = 0.

PA(s)

Pao(s)
=

1

RCs + (1 + k)
= G(s), (4)

Let λ = 1 + k and τ = RC. We get transfer function

PA(s)

Pao(s)
=

1

τ







1

s + λ
τ





 (5)

and for impulse input we get for both open and closed

loops:

PA(t) =
1

τ
exp



−λ

τ
t



 , (6)

The time for the system to reach the zero equilibrium is

influenced by k. For step input we get
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PA(s) =
1

τ









1

s
(

s + λ
τ

)









, (7)

PA(t) =
1

λ



1 − exp



−λ

τ
t







 , (8)

So we can see that with the step input open loop case we

generate a long term response of PA(t) = 1 but in the

closed loop case there is some steady state error in the

long run behavior.

Comparing open and closed loop control for PROPOR-

TIONAL CONTROL:

• Impulse response

– Transient response is faster for closed loop.

– However, oscillatory frequency increases for closed

loop although amplitude diminishes.

• Step response

– transient response is also faster for closed loop.

– frequency of oscillations increases and amplitude

drops.

– Steady state error is introduced.
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Second Order Model

Consider the second order model:

PA(s)

Pao(s)
=

1

LCs2 + RCs + λ
= H(s), (9)

Where we again let λ = 1 + k so that by setting λ = 1

we have k = 0 and open loop and for larger λ we have

closed loop (k > 0). Dividing by LC we have

PA(s)

Pao(s)
=

1
LC

s2 + sR
L

+ λ
LC

= H(s), (10)

The eigenvalues or poles are given as

α1,2 =
−R

2L
±

√

√

√

√

√

R2

4L2
− λ

LC
(11)

We simulate with L = 0.01, C = 0.1, and R vari-

ous values. If R = 0 we end up with the time domain

solution:

PA(t) =
1√

λLC
sin









√

√

√

√

√

λ

LC
t









(12)

So we have oscillations. What happens if R 6= 0?
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Derivative and Integral Control

Consider the case where L = 0, λ = 1, τ = RC. We get

PA(s)

Pao(s)
=

1

τs + 1
= H(s), (13)

For derivative feedback we have the relation Pao − kP
′
A.

We have then

PA(s)

Pao(s)
=

1

(τ + k)s + 1
(14)

The time domain solution for the steady state response

is:

PA(t) = 1 − exp−( t

τ+k) (15)

Notice that for derivative control there is no steady state

error but the response is slower. A similar story holds for

integral control.
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Root Locus Plots

The relationship

PA(s)

Pao(s)
=

1

LCs2 + RCs + (1 + K)
= G(s) (16)

allows for the study of transient (or impulse response),

steady-state response to step inputs or sinusoidal inputs.

Further, it can be used to study stability and the depen-

dence of the response to changes in the parameters LC

and RC. We see that

• the impulse response g(t) = L−1{ 1
LCs2+RCs+(1+K)

};

• the response to a step input or other input can be

found by the convolution formula;

• the roots (called poles) of the expression LCs2 +

RCs + (1 + K) are actually the same as the eigen-

values of the characteristic equation described ear-

lier. These roots determine the stability qualities of

the solution.

A method for graphically representing the change in the

poles as the parameters change is called the root-locus

method. This representation draws the curves gener-

ated by the poles as plotted in the complex plane.
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• The lung mechanics model has a second degree poly-

nomial in the denominator, so there will be two roots

for each choice of parameter values.

• The movement of these roots as K is varied from

K = 0 to K = ∞ is represented in the figure below.

• This example illustrates that ”closing the loop” al-

lows the designer to manipulate the characteristics

of the the poles which determine the stability of the

system.

• By varying K, it is possible to move the poles to

the left half plane where they will have negative real

part. This is called pole placement.
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Figure 2: Closed loop root locus plot
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Frequency domain analysis

We mention that the expression in (17) for G(s) can be

used to study the response to a sinusoidal input as well.

One need only replace s = iω into (21) and one can

derive the amplitude and phase shift in the output for a

sine wave input of given frequency and unity amplitude.

We have:

PA(s)

Pao(s)
=

1

LCs2 + RCs + (1 + K)
= G(s), (17)

and with the substitution s = iω we derive

H0(ω) =
1

LC(jω)2 + RCjω + (1 + K)
(18)

= ‖H0(ω)‖ejφ(ω) (19)

A motivation for this technique is as follows:

• The time domain relation is: Pao(t) = LC d2PA(t)
dt2

+

RC
dPA(t)

dt
+ PA + KPA.

• assuming a complex input Pao(t) = X0e
jωt this forces

an output of the same form PA(t) = Zejωt.

• substituting these forms of input and output in the

equation above implies Z = H0(ω)X0

• Here H0(ω) = 1
LC(jω)2+RCjω+(1+K)

• Substituting for Z in the expression for PA(t) we

have that PA(t) = ‖H0‖X0e
j(ω)t+φ(ω))
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In Figure (3) we see the relation between input (solid

line) and output (dashed line) when the input frequen-

cies are 1, 3, and 8 Hz (cycles/sec) for the lung model

with proportional feedback. In this figure, the change in

amplitude and phase are represented as functions of the

input frequency response in radians. That is the gain is:

‖H0(ω)‖ =
1

√

LC(jω)2 + RCjω + (1 + K)
, (20)

and phase shift:

φ(ω) = −tan−1(
RCω

−LC(ω)2 + (1 + K)
). (21)
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Figure 3: Closed loop frequency response
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The bode plot which provides a summary of all fre-

quency inputs is given as: The Bode plot gives informa-
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Figure 4: Bode plot frequency response

tion about the frequency response.


