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Abstract. Dialysis patients with high body mass index (BMI) experience
survival advantages as compared to patients with smaller BMI. This study
aimed to model uremic toxin concentrations in patients exhibiting a wide range
in BMI. The first aim was to examine how BMI contributed to heightened or
reduced levels of toxin and to test whether the model provided support for the
hypothesis that the observed enhanced survivability rates for patients with
higher versus lower BMI might be related to a differential in toxin levels. A
second aim was to carry out a classical and generalized sensitivity analysis to
examine what types of data and experiments might allow for model validation.

1. Introduction

Dialysis patients with high body mass index (BMI) experience survival advan-
tages as compared to patients with smaller BMI. Research related to this phenom-
enon can be found in [9], [10], [2], and [5].

Body mass index is defined as the ratio of an individual’s height to the square of
the individual’s weight (unit kg/m2). Developed over a hundred years ago, it is an
indicator of the deviation of an individual’s weight from what would be considered
normal (and healthy). The World Health Organization has given the following
ranges. Underweight is given to be in the range from 16 to 18.5, Normal from 18.5
to 25.0, Overweight from 25.0 to 30.0, and Obese class I from 30.0 to 35. BMI
ranges can vary with nationality and age. This index represents information on the
relation of weight to health risks, with higher than normal BMI raising the risk for
cardiovascular and other diseases.

It is odd then that there is reported increased survival advantage for dialysis
patients with high BMI. A number of hypotheses have been put forward to explain
this anomaly. See for example [3] and [5].

The kidney is the primary organ for removing toxic byproducts and wastes of
metabolism and also for the regulation of body fluid content. When the kidney
fails, uremic toxins and body fluid accumulate requiring dialysis which is a medical
intervention for removing these accumulated toxins, wastes, and excess body fluid.

One hypothesis for the survival advantage of larger BMI dialysis patients involves
the fact that, in terms of body size as measured by BMI, the proportion of organs
that produce uremic toxins to total body size, is larger in subjects with lower body
mass. Thus, as BMI increases, the ratio of toxin producing organs to total body
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size decreases. This implies higher concentration of extracellular uremic toxins in
lower BMI dialysis patients. These toxins can damage tissue.

A second and related hypothesis is that body muscle tissue and adipose (fat)
tissue absorb and release toxins from the blood acting as buffers to extracellular
levels of toxins. During dialysis (the intra-dialytic phase), all of the uremic tox-
ins are quickly removed from the extracellular space. Between dialysis treatments
(inter-dialytic phase) toxins which were accumulated in muscle and fat tissue are
gradually returned to the extracellular fluid. Depending on the buffering (deter-
mined by compartment exchange rates), it might be the case that adipose tissue
acts as a better buffer, returning toxins between dialysis treatments more slowly,
and hence helping to restrict the concentration of toxins in the extracellular space.
Hence high BMI patients would have a lower average concentration of uremic toxins,
and reduced damage from these toxins.

This paper examines these hypotheses which were outlined in [3]. Other expla-
nations and mechanisms are also possible as can be seen in [5].

2. The model

The model is a compartment model with the following four compartments:

• the extracellular fluid compartment E,
• the organ mass compartment OM,
• the muscle tissue compartment MT,
• the adipose tissue compartment AT,
• the storage compartment S in case of the extended model.

These compartments are characterized by their volumes, VE, VOM, VMT, VAT, and the
mass of toxin contained in the compartment, xE, xOM, xMT, xAT. The concentration
of the toxin in these compartments is denoted by CE, COM, CMT and CAT. Of course,
we have

CE =
xE

VE
, COM =

xOM

VOM
, CMT =

xMT

VMT
, CAT =

xAT

VAT
.

The model for the dynamics of the toxin mass in each compartment of the system
will be developed under the following assumptions:

(A1) Exchange of toxin is only between compartment E and the compartments
OM, MT, AT. In case of the extended model the exchange of toxin in the
compartment S is only with compartment AT.

(A2) The exchange of toxins between compartments is mainly due to diffusion
processes.

According to assumption (A2) the flux q of toxin from compartment I into com-
partment II is given by

q = kI,II

(

CI − CII

)

,

where CI, CII are the concentrations of toxin in the two compartments and kI,II is a
positive constant, the diffusion of toxin from compartment I into compartment II.
If q is negative then the flux is from compartment II into compartment I, of course.
The masses xI, xII of toxin in the two compartments will change in time according
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to the following equations:

ẋI = −kI,II

(

CI − CII

)

= −
kI,II

VI
xI +

kI,II

VII
xII,

ẋII = kI,II

(

CI − CII

)

=
kI,II

VI
xI −

kI,II

VII
xII,

where VI, VII are the volumes of compartments I and II.
We have to consider the diffusion constants kE,OM, kE,MT and kE,AT. Furthermore,

we denote by G the production rate of the toxin in compartment OM. During dial-
ysis we have a clearance rate kclear of the toxin from the compartment E. Next we
derive differential equations for the dynamics of the toxin mass in each compart-
ment.

a) The compartment OM.
According to our considerations from above we get

(1) ẋOM = G −
kE,OM

VOM
xOM +

kE,OM

VE
xE.

b) The compartment MT.
We have

(2) ẋMT =
kE,MT

VE
xE −

kE,MT

VMT
xMT.

c) The compartment AT.
The equation for this compartment is analogous to the one for the compartment
MT:

(3) ẋAT =
kE,AT

VE
xE −

kE,AT

VAT
xAT.

d) The compartment E.
The source term for this compartment is the sum of loss terms of the other com-
partments, whereas the loss term is the sum of the source terms of the other com-
partments plus a term describing the clearance of the toxin during dialysis:

ẋE =
kE,OM

VOM
xOM +

kE,MT

VMT
xMT +

kE,AT

VAT
xAT

−
1

VE

(

kE,OM + kE,MT + kE,AT

)

xE − Kclearance,

(4)

where

Kclearance =

{

kclearxE during dialysis,

0 during the interdialytic phase.

Equations (1) – (4) can be written as a linear system of ordinary differential
equations:

(5)
d

dt









xOM

xMT

xAT

xE









= AV









xOM

xMT

xAT

xE









+









G
0
0
0









,
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where

A =









−kE,OM 0 0 kE,OM

0 −kE,MT 0 kE,MT

0 0 −kE,AT kE,AT

kE,OM kE,MT kE,AT −(kE,OM + kE,MT + kE,AT + δkclear)









,

V = diag
( 1

VOM
,

1

VMT
,

1

VAT
,

1

VE

)

and δ = 1 during dialysis (and 0 otherwise).
Of course, we also can write the equations in terms of the concentrations:

(6)
d

dt









COM

CMT

CAT

CE









= V A









COM

CMT

CAT

CE









+









G/VOM

0
0
0









,

where we have used that col(COM, CMT, CAT, CE) = V col(xOM, xMT, xAT, xE).

E

?

-� AT� -OM-

MT

6

?

kclear

kE,ATkE,OMG

kE,MT

S� - -

kAT,S krem

Figure 1: Structure of the model (extensions in thin lines).

As a modification of the basic model we assume that the adipose tissue com-
partment AT is connected to a storage compartment S for the toxin. Also here we
assume that transport of the toxin between the compartments S and AT is primar-
ily by diffusion. However, we also assume that there is a saturation level cmax for
the toxin in compartment S, i.e., if the concentration CS of toxin in compartment
S is greater or equal cmax, then no transport of toxin from compartment AT into
compartment S is possible. This is achieved by setting the diffusion constant kAT,S,
which governs diffusion of the toxin between compartments AT and S, to zero if
CS ≥ cmax. Furthermore, we assume that the rate constant for the transport of
toxin from the compartment AT to the storage compartment S is by a factor γ > 1
larger than the rate constant for the transport of toxin from compartment S into
compartment AT. Thus we have

kAT,S =











0 for CAT ≥ CS > cmax,

k
(0)
AT,S for CAT < CS,

γk
(0)
AT,S for CS ≤ min(CAT, cmax),
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where k
(0)
AT,S > 0 is given.

The differential equations for compartments AT and S now are given by

ĊAT = −
kE,AT + kAT,S

VAT
CAT +

kE,MT

VAT
CE +

kAT,S

VAT
CS,

ĊS =
kAT,S

VS
CAT −

kAT,S

VS
CS.

In addition, we also consider degradation of the toxin in the storage compartment
S at a rate krem. In this case the equation governing the toxin concentration in
compartment S is

ĊS =
kAT,S

VS
CAT −

kAT,S + krem

VS
CS.

3. Parameters

In [3] three patient classes, each one represented by a ‘typical’ patient are con-
sidered. The typical large, medium respectively small patient has weight 100 kg,
70 kg respectively 40 kg and size h = 1.6 m. From these assumptions the volumes
(in liters) of the compartments of the model are determined in [3] as follows:

a) The organ mass compartment OM.

A linear regression gives the percentage of body weight (BW) by the organ mass:

(7)
OMweight

BW
≈ 0.33 − 0.0012 BW.

Multiplying by BW and taking into account, that the average density of the human
body is ∼ 1 kg/L, we obtain

(8) VOM = BW(0.33 − 0.0012 BW).

b) The toxin production rate G.

In order to obtain the toxin production rate G we start with a linear regression:

G ≈ 4.2 OMweight − 4,

which provides G in units of mass per day. Using (7) we get

(9) G ≈ BW(1.4 − 0.005 BW) − 4.

In our simulations we used a constant rate of 0.15 units of mass per minute.

c) The extracellular fluid compartment E.

The volume of the extracellular fluid compartment is the total body water (TBW)
minus the intracellular fluid volume (IFV). We have TBW ≈ 0.58 BW and IFV ≈

0.2BW, i.e.,

(10) VE ≈ TBW − IFV = 0.38 BW.

In [3] the term IFV is neglected. In our simulations we used the value given by
0.58 BW as in [3].

d) The muscle tissue compartment MT.

In order to obtain the total muscle tissue volume VMT,total we start with the linear
regression

VMT,total ≈ 0.76 TBW− 6.8.
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Using TBW ≈ 0.58BW we get

VMT,total ≈ 0.44 BW − 6.8 liters.

The effective muscle tissue volume VMT is given by

(11) VMT ≈ 0.75 VMT,total ≈ 0.33 BW − 5.1 liters.

This formula obviously is not used in [3]. For BW = 100 kg, for instance, we get
VMT ≈ 27.9 L. On the other hand, Table II of [3] shows VMT + VAT = 11 L in this
case. In our simulations we use the values for VMT as given in [3].

e) The adipose tissue compartment AT.

Concerning the adipose tissue volume we start with the linear regression

VAT,total ≈ 1.89 BMI− 29.2 =











44.62 for the “large” person,

22.47 for the “medium” person,

0.34 for the “small” person.

The effective adipose tissue volume VAT is given by

(12) VAT ≈ 0.1 VAT,total ≈ 0.189 BMI− 2.92 ≈ 0.189
BW

h2
− 2.92 liters.

For the extended model we also need VS, which is given by

VS = 0.9 VAT,total,

i.e.,

VS =











40.16 for the “large” person,

20.23 for the “medium” person,

0.31 for the “small” person.

In [3] The muscle tissue and the adipose tissue compartments are lumped to-
gether to one compartment MAT with

VMAT = VMT + VAT liters.

Adding up the formulas for VOM, VMT, VAT and VE as given in [3] we obtain

Vtotal = 1.113 BW− 8.02 − 0.0012 BW2,

which implies

Vtotal =











91.28 if BW = 100,

64.01 if BW = 70,

34.58 if BW = 40

in discrepancy with the values given in [3] for the total volumes (see the entries for
Vtotal in Table 1).

For our simulations we took the volumes as given in Table 1, the rate constants
given in Table 2 and the initial values for the concentrations given in Table 3.

For all simulations of the extended model we used cmax = 10 and γ = 5.

4. Some simulations

In this section we present some of the simulation with the model developed in
Section 1 using the volumes given in Table 1 and the rate constants given in Table 2.
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size VE VOM VMT VAT VMAT Vtotal BW BMI

large 58 21 6.54 4.46 11 90 100 39.06
medium 40.6 17.22 2.93 2.25 5.18 63 70 27.34
small 23.2 11.28 1.486 0.034 1.52 36 40 15.63

size VE/Vtotal VOM/Vtotal VMT/Vtotal VAT/Vtotal sum G

large 0.6444 0.2333 0.0727 0.0496 1 0.3
medium 0.6444 0.2733 0.0465 0.0357 1 0.3
small 0.6444 0.3133 0.0413 0.0009 1 0.3

Table 1: Parameters used for the simulations. Upper part: Volumes (in liters), bodyweight (in kg) and

body mass index (in kg/m2) for a typical large, medium and small person. Lower part: Percentage of

volumes and toxin production rate G for a typical large, medium and small person.

kE,OM kE,MT kE,AT kclear

0.045 0.03177 0.0193 0.1

Table 2: Rate constants used for all simulations.

COM CMT CAT CE CS

35 35 35 35 20

Table 3: Initial values for the simulations.

4.1. Simulations for the basic model. In Figures 2 we present the simulations
for the typical large, the typical medium and the typical small person over 3 cycles
(one cycle is the interdialytic phase plus the dialysis phase) for the basic model
given by (6). The graphs show the time behavior of the toxin concentration in the
compartments OM, MT, AT, E. We see that the solutions of the model approach
a periodic solution as time increases. In Figure 3 the toxin concentrations during
one cycle of this periodic solution are shown. In Figure 4 we present the toxin
concentration in the extracellular compartment during one cycle. We clearly can
see that the concentration for the large person is lowest during the cycle, whereas
the concentration for the small person is largest during a major part of the cycle.
This is also reflected by the values for the average toxin concentration during the
interdialytic period as given in Table 4.

Person large medium small

TAC 36.86 43.75 48.36

Table 4: Average concentration of the toxin during the interdialytic phase in case of the basic model

(k
(0)
AT,S = 0, krem = 0).
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Figure 2: Simulation over three cycles for the time behavior of the toxin concentration in the compart-

ments of the basic model (k
(0)
AT,S = 0, krem = 0).
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Figure 3: Simulation for the time behavior during the interdialytic period of the toxin concentration in

the compartments of the basic model (k
(0)
AT,S = 0, krem = 0).
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Figure 4: Comparison of the toxin concentration in the extracellular compartment for the basic model

(k
(0)
AT,S = 0, krem = 0).

4.2. Simulations for the model with storage compartment. In Figure 5
we present the simulations for the large, medium sized and small person over three
cycles in case of the model with storage compartment, however without degradation

of the toxin in this compartment, i.e., we have k
(0)
AT,S = 0.05 and krem = 0. Figure 6

presents the corresponding simulations over one cycle for the periodic solution.
The comparison of the extracellular toxin concentration over one cycle is given in
Figure 7. A comparison with Figure 4 indicates that the addition of a storage
compartment has no visible influence on the concentrations. This is confirmed by
Table 5, which gives the average toxin concentrations over the interdialytic phase.
The reason for this phenomenon is that after a few cycles the concentration in the
storage compartment reaches its maximum (compare Figure 5.

Person large medium small

TAC 36.86 43.75 48.36

Table 5: Average concentration of the toxin during the interdialytic phase in case of the modified

model with storage compartment (k
(0)
AT,S = 0.05, krem = 0).

4.3. Simulations for the model with storage compartment and degra-

dation of toxin. The simulations in case of k
(0)
AT,S = 0.05 and krem = 0.02 are
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presented in Figures 8 – 11. In Figure 8 we present the simulations over 10 cy-
cles, because it takes longer till the solution approaches the periodic solution. The
raggedness of some of the curves are due to non-smoothness of the right-hand side
in the equations for cAT and cS. In addition we present in this case also the simu-
lations for the toxin mass (Figure 10) in order to demonstrate that the toxin mass
during the interdialytic phase in the large person is of course considerably larger
than in the medium sized and the small person. From Table 6 we see that the
average toxin concentrations are considerably smaller, if the toxin is degraded in
the storage compartment. Also the differences in TAC for the three persons are
much smaller, but the larger person is still a little bit better of than than medium
sized person, which in turn is better of than the small person.

We also increased the degradation rate in the storage compartment and show the

result of our simulations in case k
(0)
AT,S = 0.05 and krem = 0.05 in Figures 12 – 14.

The average toxin concentrations in the extracellular compartment are presented in
Table 7. We see that the concentrations are again decreased, but the large person
is still better of than the other persons.

Person large medium small

TAC 18.68 18.88 19.90

Table 6: Average concentration of the toxin during the interdialytic phase in case of the modified

model with storage compartment and removal of the toxin from this compartment (k
(0)
AT,S = 0.05,

krem = 0.02).

Person large medium small

TAC 15.05 15.26 15.87

Table 7: Average concentration of the toxin during the interdialytic phase in case of the modified

model with storage compartment and removal of the toxin from this compartment (k
(0)
AT,S = 0.05,

krem = 0.05).
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Figure 5: Simulation over three cycles for the time behavior of the toxin concentration in the compart-

ments of the modified model with storage compartment (k
(0)
AT,S = 0.05, krem = 0).
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Figure 6: Simulation for the time behavior during the interdialytic period of the toxin concentration in

the compartments of the modified model with storage compartment (k
(0)
AT,S = 0.05, krem = 0).



14 F. KAPPEL1, J. J. BATZEL 1, M. BACHAR 2, AND P.KOTANKO 3

0 500 1000 1500 2000 2500 3000 3500
25

30

35

40

45

50

55

60

65

k
AT,R

 = 0.05, k
rem

 = 0

time (min)

co
nc

en
tr

at
io

n

 

 
large
medium
small

Figure 7: Comparison of the toxin concentration in the extracellular compartment for the modified

model with storage compartment (k
(0)
AT,S = 0.05, krem = 0).
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Figure 8: Simulation over three cycles for the time behavior of the toxin concentration in the compart-

ments of the modified model with storage compartment and removal of the toxin from this compartment

(k
(0)
AT,S = 0.05, krem = 0.02).
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Figure 9: Simulation for the time behavior during the interdialytic period of the toxin concentration

in the compartments of the modified model with storage compartment and removal of the toxin from

this compartment (k
(0)
AT,S = 0.05, krem = 0.02).
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Figure 10: Simulation for the time behavior during the interdialytic period of the toxin mass in the

compartments of the modified model with storage compartment and removal of the toxin from this

compartment (k
(0)
AT,S = 0.05, krem = 0.02).
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Figure 11: Comparison of the toxin concentration in the extracellular compartment for the modified

model with storage compartment and removal of the toxin from this compartment (k
(0)
AT,S = 0.05,

krem = 0.02).
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Figure 12: Simulation over three cycles for the time behavior of the toxin concentration in the compart-

ments of the modified model with storage compartment and removal of the toxin from this compartment

(k
(0)
AT,S = 0.05, krem = 0.05).
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Figure 13: Simulation for the time behavior during the interdialytic period of the toxin concentration

in the compartments of the modified model with storage compartment and removal of the toxin from

this compartment (k
(0)
AT,S = 0.05, krem = 0.05).
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Figure 14: Comparison of the toxin concentration in the extracellular compartment for the modified

model with storage compartment and removal of the toxin from this compartment (k
(0)
AT,S = 0.05,

krem = 0.05).

4.4. Simulations for two large persons with different body composition.

For the basic model we compared also the results for the large person with the re-
sults obtained for another ”large” person with larger effective volume for the muscle
tissue compartment and smaller effective volume for the adipose tissue compart-
ment. Instead of VMT = 6.54, VAT = 4.46 we took VMT = 12, VAT = 1. In Figure 15
we present the concentrations during one cycle of the periodic solution. The concen-
trations in the extracellular compartment during one cycle for the two large persons
are presented in Figure 16. We see that the toxin concentration in the extracellular
compartment for the person with smaller adipose tissue compartment has a con-
siderably large toxin concentration. This is also reflected by the TAC-values given
in Table 8.

Large person

Volumes VMT = 6.54, VAT = 4.46 VMT = 12, VAT = 1

TAC 36.86 43.54

Table 8: Average concentration of the toxin during the interdialytic phase in case of the basic model

(k
(0)
AT,S = 0, krem = 0) for two different choices of VMT and VAT for the large person.
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Figure 15: Simulation for the time behavior of the toxin concentration in the compartments of the

basic model (k
(0)
AT,S = 0, krem = 0) with two different choices of the volumes VMT and VAT.

5. Sensitivities and generalized sensitivities

5.1. Classical sensitivities. Classical sensitivity analysis considers how model
output is influenced by small changes in a parameter. It is the normalized derivative
of a given model output with respect to a given parameter in the sense defined
below.
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Figure 16: Comparison of the toxin concentration in the extracellular compartment for the basic model

(k
(0)
AT,S = 0, krem = 0) for the large person with two different choices of the volumes VMT and VAT.

(13) lim
∆p→0

(y0 + ∆y − y0)/y0

(po + ∆p − p0)/p0
=

p0

y0
y′(p0),

where y is a single model output, p a single parameter, and y0 and p0 are the values
around which changes are computed. Given that various outputs may have different
units it is best to consider normalized derivatives as expressed above. Note that in
this formulation time is fixed so that classical sensitivities are functions of time over
the time interval of interest. Also note that these quantities provide local estimates
of sensitivity.

We computed the sensitivities of cE(t) with respect to the rate constants kE,OM,
kE,MT, kE,AT, kclear and G, i.e., we computed

k

cE(t)

∂cE(t)

∂k
,

where k stand for one of the rate constants. The time interval considered is one
cycle (i.e., 0 ≤ t ≤ 3360) for the periodic solution. The upper two panels in Fig-
ure 17 show the sensitivities with respect to all rate constants for the small and
the large person (left respectively right upper panel). We see that in both cases
the sensitivities with respect to kclear and G are much larger than the sensitivities
with respect to kE,OM, kE,MT, kE,AT. The lower two panels show the sensitivities
with respect to these three rate constants, again for the small (left panel) and the
large person (right panel). Here we see that the sensitivities with respect to kE,OM

and kE,MT are larger for the small person, whereas the sensitivity with respect to
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kE,AT is almost zero for the small person, which reflects the fact that the volume of
the adipose tissue compartment for the small person is very small. From these ob-
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Figure 17: Sensitivities of CE for the basic model (k
(0)
AT,S = 0, krem = 0) for the large person with

respect to all parameters (upper two panels) and with respect to kE,OM, kE,MT, kE,AT (lower two

panels). The left panels are for the small person, whereas the right panels are for the large person.

servations we should expect, that identifying the rate constants kE,OM, kE,MT, kE,AT

on the basis of measurements for cE should be more difficult than identifying kclear

(which usually is known) and G. This is confirmed by our numerical calculations
(see Section 6).

5.2. Generalized sensitivity analysis. Sensitivity functions characterize the de-
pendence of system states and outputs on parameters. Given these relations, it is
possible to examine the information content of measurements of specific state out-
puts of the system on certain parameters. What would be really useful to know is
the sensitivity of the parameter estimates with respect to the measurements and
to be able to characterize the sensitivity of the parameter estimates with respect
to variations in the system parameters. For this purpose the so called generalized
sensitivity functions have been introduced in [8].

Generalized sensitivity functions will be discussed for the following dynamical
system model set up:

ẋ(t) = F(t, x(t), θ), x(0) = x0(θ),

η(t) = h(t, x(t), θ), t ≥ 0,
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where x ∈ R
n is the state vector of the system, η(·) is model output assumed to be

scalar output, and θ ∈ R
p is the vector of parameters.

The output of the above system takes the form:

(14) η(t) = f(t; θ), t ≥ 0,

The scalar output η(·) is output for which data are available, and again θ ∈ R
p is

the vector of parameters to be considered.
For the analysis which follows, the measurements for the output η(·) are assumed

to be of the form

(15) ξj = ξj(θ0) = f(tj ; θ0) + ej, j = 1, . . . , N,

where θ0 is the nominal parameter vector, 0 ≤ t1 < · · · < tN are the time instance
where we take the measurements and ej, j = 1, . . . , N , represents the measurement
noise Ej at tj , which is a random variable. Here we only indicate the dependence
of the ξj on the nominal parameter θ0. Of course, ξj depends also on ej , but this
dependence will not be exploited in the developments leading to generalized sensi-
tivity functions. It is assumed that the random variables Ej , j = 1, . . . , N , are in-
dependent and identically distributed with expected values E(Ej) = 0 and variance
σ2

j = var Ej , which is independent of θ0. Consequently, the ξj are representations of

independent and identically distributed random variables Ξj = f(tj ; θ0) + Ej with
E(Ξj) = f(tj ; θ0) and varΞj = σ2

j , j = 1, . . . , N
Given that we are interested in the impact of measurements on parameter es-

timation we need to consider the design of the estimation scheme which we will
take to be the output-least-squares approach, where we minimize a quadratic cost

functional to arrive at the parameter estimate θ̂ = θ̂(θ0). This cost functional takes
the form

(16) θ̂ = θ̂(θ0) = argmin
τ∈U

J(τ, ξ)

in a neighborhood U of θ0, where J(τ) is given as

(17) J(τ, ξ) =

N
∑

j=1

1

σ2
j

(

ξj − f(tj ; τ)
)2

with ξ =
(

ξ1, . . . , ξN

)T
, where ξj is defined in (15). It is clear that, for each concrete

data set ξ, the estimate θ̂(θ0) is a representation of a random variable Θ̂(θ0). We
assume we have locally unique identifiability, i.e., for all nominal parameters in a
neighborhood of θ0 the parameter estimation problem has a unique local solution,

and that the estimation procedure is unbiased, i.e., we have E(Θ̂(θ0)) = θ0. By our
assumption on unique identifiability in a neighborhood U of θ0 we have

(18) ∇τJ(ξ(θ), τ)
∣

∣

∣

τ=θ̂(θ)
= 0, θ ∈ U .

Given a data set ξ(θ) we want to see how the sensitivity of the parameter estimate

θ̂(θ) changes as a function of ξ(k) =
(

ξ1(θ), . . . , ξk(θ)
)T

for k = 1, . . . , N . This means

that, for each k = 1, . . . , N , we are interested in
(

∂θ̂(θ)/∂θ
)

(θ0) assuming that only

the measurements in ξ(k) vary with θ, but the measurements ξk+1, . . . , ξN are fixed
to their values for θ = θ0. Differentiating (18) with respect to θ we obtain

(19) ∇τ,τJ(ξ(θ0), τ)
∣

∣

τ=θ̂(θ0)

∂θ̂

∂θ
(θ0) + ∇ξ(k),τJ(ξ(θ0), τ)

∣

∣

τ=θ̂(θ0)

∂ξ(k)

∂θ
(θ0) = 0.
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From this equation we can compute ∂θ̂/∂θ for all k =, . . . , N , assuming that the

Hessian ∇τ,τJ is nonsingular. In doing this we take for ej, j = 1, . . . , N , and θ̂(θ0)
the expected values 0 and θ0, respectively. We arrive at (see [1] for further details)

(20) Gk(θ0) :=
∂θ̂

∂θ
(θ0) = F(tN , θ0)

−1
F(tk, θ0), k = 1, . . . , N,

where we have set F(tk, θ0) :=
∑k

j=1(1/σ2
j )∇θf(tj; θ0)

T∇θf(tj ; θ0), k = 1, . . . , N .

The matrix F(tk, θ0) is nothing else than the Fisher information matrix for our
parameter estimation problem. Under additional assumptions, the quantity Gk(θ0)
can be considered as an approximation of the expected value of the Jacobian

(∂θ̂0/∂θ)(θ0) for the case when only the first k measurements are assumed to vary
with θ.

The generalized sensitivity functions are given by the main diagonal elements of
Gk:

gi(tk, θ0) :=
(

Gk(θ0)
)

i,i
, i = 1, . . . , p, k = 1, . . . , N.

The behavior of gi as a function of the measurement times allows conclusions on
the information content of measurements on the parameter θi. Two main points
are mentioned:

• If information on parameters in the measurements is not correlated then
the sensitivity functions gi are almost monotonically increasing from gi(t1)
to gi(tN ) = 1. Otherwise, the gi’s show oscillatory behavior.

• Measurements in a time range where gi is rapidly changing contain more
information than those where gi is slowly varying. This analysis indicates
that in order to improve the parameter estimates one should increase the
number of measurements on those time regions where the generalized sen-
sitivities are varying more than in other regions.

For a fuller discussion of these features, see [1] and [8].

5.3. Generalized sensitivities examined. From the generalized sensitivity func-
tions computed for each rate constant individually (see Figure 18 for the case where
measurements are only taken during the interdialytic phase and Figure 19 concern-
ing the dialytic phase) we see that the distribution of the information content of
the corresponding measurements on the parameters kE,MT, kE,AT is almost identi-
cal. The same is true for the pair of rates kclear, G. For the dialytic phase we
see an almost identical distribution for the triple kE,OM, kE,MT, kE,AT. These obser-
vations are also shown by the generalized sensitivity functions for the rates when
they are computed simultaneously for all five rates (see Figures 20 and 21). We
see that the oscillations of the generalized sensitivity functions for kE,MT, kE,AT are
strongly correlated. The same is true for the rates kclear, G. The oscillations of the
generalized sensitivity function for kE,OM are less correlated to those of the gener-
alized sensitivity function for kE,MT, kE,AT during the interdialytic phase compared
to the dialytic phase. If we compute the generalized sensitivity functions for the
pair k, G, where k stands for each one of the rates kE,OM, kE,MT, kE,AT, then the
generalized sensitivity functions for k and G are almost identical to those shown in
Figure 18 and Figure 19, respectively. The same observation can be made when we
take kclear instead of G (see Figure 22). From these observations together with the
information obtained from the sensitivity functions (as presented in the previous
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Figure 18: Generalized sensitivities of CE with respect to the rate constants for the basic model

(k
(0)
AT,S = 0, krem = 0) for the large person. Time interval is the interdialytic phase when the solution

already is periodic.

subsection) we should expect the following behavior of the numerical algorithms
used for parameter identification:

• Despite the fact that the information of measurements on the parameters
kclear and G is strongly correlated the algorithms should behave reasonably
well, because of the high sensitivity of the measured output with respect
to these parameters.

• For the parameters kE,OM, kE,MT, kE,AT we should expect difficulties in view
of the low sensitivity of the measured output with respect to these param-
eters.

• If we want to identify one of the parameters kE,OM, kE,MT, kE,AT together
with G or kclear then the results should be good concerning G or kclear, but
also better for the other parameter in comparison to the previous item.

These observations are confirmed by the numerical computations presented in Sec-
tion 6.
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Figure 19: Generalized sensitivity of CE with respect to the rate constants for the basic model (k
(0)
AT,S =

0, krem = 0) for the large person. Time interval is the dialytic phase when the solution already is

periodic.

6. Parameter identification

The vector of parameters of the system is θ = col
(

kE,OM, kE,MT, kE,AT, kclear, G
)

∈

R
5. The toxin concentration in the extra-cellular compartment is a natural candi-

date for the measurable output y of the system,

y(t, θ) = cE(t, θ), t ≥ 0.

We assume that measurements are available at time instants 0 ≤ t1 < · · · < tN and
that these measurements are given by

ξj = y(tj , θ0) + ǫj, j = 1, . . . , N,

where θ0 is the ‘true’ or nominal parameter vector and ǫj is a representation of the
measurement noise Ej at tj with E(Ej) = 0 and var Ej = σ2

j .
For our numerical experiments we took

θ0 = col(0.045, 0.03177, 0.0193, 0.1, 0, 3)
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Figure 20: Generalized sensitivities of CE simultaneously with respect to all rate constants for the basic

model (k
(0)
AT,S = 0, krem = 0) for the large, the medium and the small person. Time interval is the

interdialytic phase when the solution already is periodic.

and assumed that the variance σ2
j is constant, σj = σ, j = 1, . . . , N . The parameter

estimate θ̂0 is obtained as a minimization of an error functional J ,

θ̂0 = argmin
θ

J(ξ, θ),
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Figure 21: Generalized sensitivities of CE simultaneously with respect to all rate constants for the basic

model (k
(0)
AT,S = 0, krem = 0) for the large, the medium and the small person. Time interval is the

dialytic phase when the solution already is periodic.

where ξ = col(ξ1, . . . ξN ). We considered two cases:

J = Jqu(ξ, θ) :=

N
∑

j=1

(ξj − y(tj , θ))
2,

J = Jabs(ξ, θ) :=

N
∑

j=1

∣

∣ξj − y(tj , θ)
∣

∣.
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Figure 22: Generalized sensitivities of CE with respect to kE,AT, G (left panel) and with respect to

kE,MT, kclear (right panel) during the dialytic phase.

Two optimization algorithms were used, the MatLab-implementation fminsearch of
the Nelder-Mead algorithm (see [7]) and solvopt, an implementation of Shor’s r-
algorithm (see [4] and [6]). Both algorithms can handle non-smooth functions. For
the error functional Jqu solvopt was used with gradient information and for Jabs

without gradient information. In most cases the performance of the two algorithms
is comparable. However, in cases where the measured output is not very sensitive
with respect to the parameters to be identified solvopt is somewhat more accurate,
whereas fminsearch is considerably faster.

In Table 9 we present the results for the parameters kclear and G. Starting values
for the algorithms where always kclear = 0.5, G = 0.8. We generated 6 respectively
21 uniformly distributed measurements during the dialytic phase by computing
the solution of our model corresponding to the nominal parameter vector θ0 at the
measurement times and adding normally distributed noise with expected value zero
and variance σ = 1. In Figure 23 we present the graphs for two of these cases. In
Figure 24 we present the results for the same parameters but with 21 uniformly
measurements distributed measurements during the dialytic phase.

Algorithm Error functional (kclear, G)
6 measurements during the dialytic phase

solvopt Jqu (0.0911 0.2739)
solvopt Jabs (0.0872 0.2636)

fminsearch Jqu (0.1040 0.3113)
fminsearch Jabs (0.0904 0.2780)

21 measurements during the dialytic phase
solvopt Jqu (0.0974 0.2960)

fminsearch Jqu (0.0951 0.2891)

Table 9: Identification of kclear and G using 6 respectively 21 measurements during the dialytic phase.

In order to check the conclusions we made in Subsection 5.3 we tried to identify
the rates kE,MT and kE,AT. As starting values for the optimization algorithms we
did choose

kE,MT = 0.15, kE,AT = 0.1 .
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Figure 23: Estimates for kclear and G using 6 measurements during the dialytic phase using solvopt

(left panel) respectively fminsearch (right panel) for the error functional for Jqu.
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Figure 24: Estimates for kclear and G using 21 measurements during the dialytic phase using solvopt

(left panel) respectively fminsearch (right panel) for the error functional for Jqu.

The estimates were again done with 6 respectively 21 measurements uniformly dis-
tributed during the dialytic phase and computed as in the previous case. Some of
our findings are shown in Table 10. If we compare the estimates with the nominal

Algorithm Error functional (kE,MT , kE,AT )
6 measurements during the dialytic phase

solvopt Jqu (0.0773 0.0556)
fminsearch Jqu (0.1616 0.0954)

21 measurements during the dialytic phase
solvopt Jqu (0.2440 0.1952)

fminsearch Jqu (0.1616 0.0954)

Table 10: Identification of kE,MT and kE,AT using 6 respectively 21 measurements during the dialytic

phase.
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values kE,MT = 0.0318 and kE,AT = 0.0193 we see that the conclusions of Subsec-
tion 5.3 are correct. In Figure 25 we depict the results obtained with solvopt.
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Figure 25: Estimates for kE,MT and kE,AT using solvopt with 6 (left panel) respectively 21 remeasure-

ments (right panel) during the dialytic phase for the error functional for Jqu.

Finally, we identified kE,AT and G, again using 6 respectively 21 uniformly dis-
tributed measurements during the dialytic phase, which were computed as in the
previous cases. We used the starting values

kE,AT = 0.1, G = 0.8 .

The results are given in Table 11, whereas Figure 26 shows the graphs corresponding
to the estimates obtained with solvopt.

Algorithm Error functional (kE,AT , G)
6 measurements during the dialytic phase

solvopt Jqu (0.0300 0.2944)
fminsearch Jqu (0.1269 0.2910)

21 measurements during the dialytic phase
solvopt Jqu (0.6551 0.2949)

fminsearch Jqu (0.1292 0.2929)

Table 11: Identification of kE,AT and G using 6 respectively 21 measurements during the dialytic phase.

7. Final observations

Based on the model and model simulations presented here we can give the fol-
lowing observations.

• For this model higher levels of extracellular uremic toxin in the interdialytic
phase will appear in patients with lower BMI under certain conditions on
the compartment exchange rates.
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Figure 26: Estimates for kE,AT and G using solvopt with 6 (left panel) respectively 21 measurements

(right panel) during the dialytic phase for the error functional for Jqu.

• Hence the model simulations indicate that the mechanisms hypothesized in
[3] could account for the survival advantage of high BMI dialysis patients.

• These mechanisms depend on the assumptions that the proportion of organ
mass is higher in low BMI patients and that adipose tissue (higher in high
BMI patients) acts as a buffer for uremic toxins. Taken together these
factors would imply a higher extracellular toxin concentration in lower BMI
patients. Model simulations indicate that these factors could produce such
higher toxin concentrations in low BMI patients.

• Generalized sensitivity analysis indicates that parameter estimation for this
model is not improved by data during the interdialytic phase which is an
advantage given that it would be difficult to have dialysis patients return
to the hospital for measurements in between dialysis sessions.

• The classical and generalized sensitivity analysis indicates that several pa-
rameter combinations can be identified using only data from the intradia-
lytic phase.
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