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1 Definitions

Definition 1. Often the mutual influence of states forces the system to
a condition called the steady state in which all components states are
constant.

Definition 2. If one or more of the states of a system at a steady state are
abruptly changed or perturbed by outside influences the system may or
may not return to its steady state.

e [f the system does return to steady state the steady state is called
asymptotically stable.

e If the system does not return to steady state but remains in some
bounded region around the steady state the steady state is called sta-
ble.

e If the system wanders further and further from the steady state the
steady state is termed unstable.

Definition 3. A Control system which acts to regulate a system around
a given state is called a (regulator mechanism).

2 Closed Loop Systems

Closed loop systems as depicted in Figure (1) monitor the output of the
system and can feed back this knowledge to the control system to alter
the control to respond to perturbations. Usually the aim is to maintain a
steady state or track another signal.

2.1 An example

Example 1. The chemical respiratory control system varies the ventilation
rate in response to the levels of COy and Os in the body. The control
mechanism which responds to the changing needs of the body to acquire
oxygen (O2) and expel carbon-dioxide (COg2) acts to maintain the levels of
these gases within very narrow limits.

The control system consists of three components:

e sensors which gather information;
e effectors which are nerve/muscle groups which control ventilation; and

e the control processor located in the brain which organizes information
and sends commands to the effectors.

In this steady state model example , there are two compartments and a
control:
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Figure 1: Closed loop control system

e a compartment which models the partial pressures of carbon dioxide
(Paco,) and partial pressure of oxygen and (Pa,, ) in the lungs;

e the control sensors monitor COy and O levels in the carotid arteries
which translates this information into changes in ventilation. This
control is modeled after Cunningham (1974).

e We assume that Pacoz = PACOQ'

2.2 model equations

We account for that part of the lungs which do not allow transfer of gases
using;:

Va = Vi—Vp
The mass balance equation for CO entering and leaving the lungs is

VC02 - kvA(FAcoz_FICO2) (1)

where Vc02 is the metabolic production rate for CO5. In steady state the
net production of COy must equal the net outflow from the lungs.

Metabolic rates are in STPD units and ventilation volumes in BT PS
units. Thus we need a conversion factor:

Vsrpp760 Verps(Pp — 47)

273 310
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or

P Vsrpp

VBrpPs
Pp — 47
863

Using Dalton’s law for pressure volume relations:

Pieo, = Figo,(PB —47)
Paco, = Faco, (P —47)
we substitute in (1):
863Vco
Paco, = Pico, + —7 = (2)

A similar equation hold for Pa02

863V
Pag, = Pio, + (3)
The control equation is
Va = (1.46 + 32 )(Paeo — 37)
AT T T Py, — 3867 A0

In the simulink diagram below the important organizational features
of the system are diagrammed.
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3 Solutions of a second order linear time invariant
system

Every solution of a linear system can be written as a sum of the general
solution to the homogeneous problem (where u(t) = 0) plus a particular
solution to the non-homogeneous system (where u(t) # 0).

Theorem 1. The solution of the system defined by

ddﬁgt) +a dz(:) +aoz(t) = u(?), 4)

2(0) =co, 2'(0)=c1, wu(t)#0, (5)

az

can be written as the sum of the general solution x(t) of the homogeneous
system :

az d2§fg(t) + aldxgt(t) +aozn(t) = wul(t), (6)
zp(0) = co, z4(0) =c1, wu(t) =0, (7)

and the solution x,(t), of the non homogeneous problem:

2 z
a2d dfz(t) —I—ald é’t(t) +aozy(t) = wu(t), (8)
zp(0) =0, z,(0)=0, wu(t)#0. )

The solution z(t) is called the transient response because it depends
only on the uncontrolled behavior. z,(t) is referred to as the forced re-
sponse because the control u(t) changes the behavior.

4 Laplace Solutions of Linear Systems

Consider again the second order system:

d ;tgt) +ar d”;it) + aoz(t) = u(?)

wherez(0) =0, z'(0) = 0.

a2

If we take Laplace transform on each side of this equation, using the rules

described in an earlier lecture we find that:
a9s? X (s) + a1sX (s) + agX (s) = U(s),

or

1

X(s) = —
as8“ + a18 + ag
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The quantity X (s) defines the Laplace transform of the state of the system
or output. The quantity U(s) is the Laplace transform of the input. The
quantity

1

a9282 +a18+ ag

relates the input to the output and is referred to as the transfer function,
usually denoted by H(s). Thus:

X(s) = H(s)U(s). (10)

By taking the inverse Laplace transform of the expression H(s)U(s) we find
x(t).

Systems can be analyzed either in the ”t” domain or in the transformed
’s” domain and then retransformed into the ”t” domain. Furthermore, let-
ting h(t) be the inverse Laplace transform of H(s), and recalling the convo-
lution formula (see notes) we have

z(t) = LTH{H(s)U(s)} (11)
t
= /Oh(t—T)u(T)dT. (12)

We see that once h(t) (or the transfer function H(s)) is known the system re-
sponse to any input u(t) can be calculated. Note also from X (s) = H(s)U(s)
or Figure (3) that if we could choose an input whose Laplace transform
U(s) = 1 then the output X(s) of the system for this input U(s) would
actually represent H(s) and thus the time domain response z(t) would ac-
tually represent h(t). In other words, we could observe the system defining
function h(t) by applying a special test signal which would reveal it.

1
Uu(s) ? > > X(S
(S) a.s2+b.s+c (S)

H(S)=Transfer Function

Figure 3: Open loop transfer function

5 Laplace Transform for n-dimensional systems

The Laplace transform method works for n-dimensional systems as well.
Note that differentiation and integration are done component-wise and hence



the basic process is the same as illustrated in the above examples. The main
difference is in the formulation of the transfer matrix which involves finding
the inverse of a matrix. Note that in terms of components

X1(s) L{z1 (1)}
X*(s) = ( ) = L{x(t)} = ( )
Xn(s) L{z,(t)}

Recall that the general n dimensional linear system with constant coef-
ficients takes the form

x'(t) = Ax(t) +u(t), x(0)=xo.

Let X*(s) be the Laplace transform of x(¢) and U*(s) be the Laplace trans-
form of u(¢). Then

sX*(s) —xg = AX*(s)+U*(s)
or
(s —A)X*(s) = x¢+ U*(s).

Thus
X*(s) = (sI — A)7lxg + (sT — A)~1U*(s). (13)

What is (sI — A)~!? Recall from earlier lectures that
X(t) = eA* satisfies the matrix relation

%eAt — AeAt

and hence satisfies the matrix differential equation
X'(t) = AX(t) X(0)=1 (14)

where X', A, X, and X(0) are matrices. Letting X**(s) = L{eA*}, take the
Laplace transform of the system (14) component by component. This gives
after simpification with matrix rules

(sX**(s) — I) = AX*(s),

or

(sT — A)~t = X**(s) = L{eA}.

When we take the inverse Laplace transform of (13) we get the same solution
as with variation of constants described later using (sI — A)~! = L{e®*}.
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Example 2. Solve the initial value problem

x'(t)z(} i)x(t)—l—(i)et, x(O)z(?).

Taking Laplace transform of both sides of the differential equation gives

X (s) — (f) _ (i T)X(s)mil (D

Considering the system component-wise gives the following pair of equations
to solve simultaneously:

1
(S - 1)X1(S) - 4X2(S) = 24 s 1
1
Xi(s)+(s—1)Xa(s) = 1+ T
The solution of these equations is
2 1 1 ]
X, (s) = T Xy(s) =
1) 3—3+32 1’ 2(5) s—3+(s—1)(s-|—1)(s—3)
Now,
2 3t 1 el —et
3_3—L{2e },andsz_l—L{ 5 }.
Hence,
ot — et
1 (t) = 2¢° + —
To invert X5(t) we use partial fractions and get
s _ -4, 18 38
(s—1)(s+1)(s=3) s—-1 s+1 s—3
and thus ) ) 1
za(t) = —ge_t - Zet + §e3t.

6 Systems analysis

Analytical tools for analyzing the steady state behavior of control systems
includes then:

e Finding the steady states of the system where the system is fixed and
does not change over time. This is done by setting all derivatives equal
to zero and solving for the states which produce this condition.

e Finding the transfer function by applying test inputs or controls which
approximate the impulse § dirac function
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e Studying the system response to various controls such as the step
response or frequency response. In general there will be some
alteration in the steady state of the system when controls are applied.
This is referred to as steady state error.

7 Solutions of the linear system

The set of equations:

where x(t9) = X, defines the solution implicitly. In this case (in general,
the only case) we can find an explicit representation for the solution. To
begin, consider the uncontrolled system:

X'(t) = Ax(t). (17)

where x(t9) = x¢, and u(¢f) = 0. We know from earlier lectures that the

solution is
x(t) = eAlt—to)x,.

Consider next the case:
x'(t) = Bu(t), (18)

where x(ty) = x¢. A simple integration (for vectors, entry by entry) yields
the solution

t
x(t) =xo+ [ Bu(r)dr.
to

Now consider the system (15) above and let x(¢) be the solution of this
system. Further let

z(t) = e A0T0)x(1).  az(to) = x(to). (19)
Differentiating z(¢) with respect to ¢ (using the product rule) gives:

Z(t) = —Ae Allx(y) e Al—o)x/(t)
~Ae~Altt0)x(4) 4 =AU (Ax(¢) + Bu(t))
= e_A(t_tO)Bu(t).

Hence ¢
z(t) =29+ | e AU Bu(r)dr.
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So that relating = and z by Equation (19) above we have:

x(t) = eAltto)g(s)
eAI10)5(40) 4 A1) [ o= AT—10)By(r)dr
to
t
eAl—t)x(t) + [ AU Bu(r)dr

to

and the observation output variable y(¢) is given by

t
y(t) = Cerlx(t0) + [ CeA"Bu(r)dr + Du(t).
to

8 System modes

The eigenvalues which are found via the characteristic equation determines
a solution called a fundamental mode Suppose that A has the n distinct
eigenvalues Ay, ..., A\, and corresponding eigenvectors €1, ...,€,. Then these
vectors form a basis for R™ and are linearly independent. Thus any initial
vector x(0) = > i u;e€i, Let us furthermore define the n x n matrix T
consisting of the eigenvectors of A as columns, T = (eq,...,e,). Then

Theorem 2. For the above defined vectors and matrices we have:
i) T diagonalizes A, that is,

T AT = diag(\1, ..., \n)- (20)

i1) The transition matriz has the form

At ARt ety et
et = Z = Tdiag (e™’...e™") T . (21)
e

i11) The solution of (17) can be written in the form
x(t) = eA'x(0)

n
_ At
= > pietle
=1
n
_ At
— Zﬂze v ey,
=1

where the scalars p; depend on the initial condition x(0) via (i1, ..., n) "
T x(0).
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1
a.s2+b.s+c

u(s) X(S)

H(S)=Transfer Function

Feedback

Figure 4: Closed loop transfer function

9 Closed loop transfer functions for LTI system

The ideas involved in analyzing a closed loop system such as represented in
Figure (4) can be illustrated using the following example.

Example 3. In this example, which is presented in Khoo 2000, a simple lin-
earized model is used to study the relation between the input of air pressure
P,, at the airway opening and the pressure P4 at the alveoli. Using simple
mechanical laws of pressure drop, air flow resistance, and lung compliance
(similar to electrical diagrams), the following second order differential equa-
tion is derived:
d*P4(t) dP4(t)
RC———= + P,4. 22
az @ A (22)
Here P4(0) = 0, P4’(0) = 0, u(t) = P,,, and LC, and RC are constant.
The transfer function of this system takes the form

Py(s) 1 B
Pw(s) LCs2+RCs+1

Poolt) = LC

H(s), (23)

where H(s) is the transfer function of the open loop system as represented
in Equation (10).

Assume now that the air flow to the lungs needs to be regulated to avoid
damage. We assume a mechanism that measures the alveolar pressure Py
and produces a negative feedback to the input control P,,, that is the new
control u(t) = Po(t) — KP4(t). The transfer function for this system (after
rearranging terms) takes the form

PA(S) _ 1
Pu(s)  LCs?+ RCs+ (1+K)

= G(s), (24)

where G(s) is the transfer function of the closed loop system.
The relationship

Pa(s) 1
Pu(s)  LCs>+ RCs+ (1+K)

= G(s) (25)
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allows for the study of transient (or impulse response), steady-state response
to step inputs or sinusoidal inputs. Further, it can be used to study stability
and the dependence of the response to changes in the parameters LC and
RC'. We see that

e the impulse response g(t) = Lil{LC’s2+RCI’s+(1+K) }
e the response to a step input or other input can be found by the con-
volution formula;

e the roots (called poles) of the expression LCs? + RCs + (1 + K)
are actually the same as the eigenvalues of the characteristic equation
described earlier. These roots determine the stability qualities of the
solution.

A method for graphically representing the change in the poles as the param-
eters change is called the root-locus method. This representation draws
the curves generated by the poles as plotted in the complex plane.

e The lung mechanics model has a second degree polynomial in the de-
nominator, so there will be two roots for each choice of parameter
values.

e The movement of these roots as K is varied from K = 0 to K = oo is
represented in the figure below.

e This example illustrates that ”closing the loop” allows the designer to
manipulate the characteristics of the the poles which determine the
stability of the system.

e By varying K, it is possible to move the poles to the left half plane
where they will have negative real part. This is called pole place-
ment.

10 Frequency domain analysis

We mention that the expression in (26) for G(s) can be used to study the
response to a sinusoidal input as well. One need only replace s = iw into
(30) and one can derive the amplitude and phase shift in the output for a
sine wave input of given frequency and unity amplitude. We have:

Py(s) . 1
Pu(s)  LCs?>+ RCs+ (1+ K)

=G(s), (26)
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Figure 5: Closed loop root locus plot

and with the substitution s = iw we derive
1
H = 27
o) LC(jw)? + RCjw + (1 + K) (27)

= [ Ho(w)|le’* (28)

A motivation for this technique is as follows:

o The time domain relation is: P,,(t) = LCEEA0 4 podfal) | p, 4
KPy.

e assuming a complex input P,,(t) = Xoe/“! this forces an output of the
same form P4(t) = Ze/*t.

e substituting these forms of input and output in the equation above
implies Z = Hy(w)Xo

_ 1
e Here Hy(w) = LC(w) >+ RCjwt+(1+K)

e Substituting for Z in the expression for P4(t) we have that P4(t) =
|| Hy || X el (@)t+ (@)

In Figure (6) we see the relation between input (solid line) and output
(dashed line) when the input frequencies are 1, 3, and 8 Hz (cycles/sec)
for the lung model with proportional feedback. In this figure, the change
in amplitude and phase are represented as functions of the input frequency
response in radians. That is the gain is:

1
- VLC(jw)? + RCjw + (1 + K)’

|1 Ho(w)] (20)
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and phase shift:

RCw
—LC(w)2+ (1+ K) )

d(w) = —tcm_l( (30)

input/output for frequency of 1,3,8 Hz
T T T T T

-

Pao and PA
=)

-1

I
o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time in seconds

Pao and PA

Pao and PA

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time in seconds

Figure 6: Closed loop frequency response

The bode plot which provides a summary of all frequency inputs is given
as: The Bode plot gives information about the frequency response.

11 Stability analysis

For the general linear time invariant system with proportional feedback the
equations for the transfer function follow directly as in Example 3. For a
given input u(t), output z(t), feedback proportion K and open loop transfer
function H(s) we have by direct application of the Laplace transform:

X(s)__HE) g
U(s) 1+ KH(s)

where G(s) is the transfer function of the closed loop system. Compare this
formulation with the one given equation (30). As in every case, we find the
poles by solving

1+ KH(s) = 0.

That is we find the roots of the expression in the denominator of the trans-
fer function. The techniques given in Example 3 can be applied to these
expression to study the steady state and dynamic dependence of the general
system on the parameters.



Freq Resp Phase (deg)

Freq Resp Magnitude

o
©

o©
3

o
=2}

o
o

©
~

o
[

| | |
(o] N N
o o o

|
[e]
o

-100

-120

-140
0

17

10 20 30 40 50

70

| |
10 20 30 40 50
Frequency (rad/s)

Figure 7: Bode plot frequency response

60

70



18 12 NYQUIST CRITERION

12 Nyquist criterion

12.1 How to derive Nyquist plot
12.1.1 By Bode plot

If you have the Bode plot, it’s rather easy to derive the Nyquist plot. The
Bode plot shows for each frequency w the magnitude ratio and the phase
shift of the input-output relation. Watch out, in the Bode plot you have a
log-log plot for the magnitude!

To get the Nyquist plot, you plot for every frequency a dot in polar axis.
The radius equals the magnitude ratio and the angle equals the phase shift.
Thus you get for every frequency one point.

12.1.2 By Transfer function

The Transfer function is a function from C — C. If you plug in s = iw in
the Transfer function, then you have a function from R — C. The plot of
this is the Nyquist plot.

12.2 The Nyquist Criterion

Let the open loop system be

Assuming you know the number of poles and zeros of the open loop system in
the right hand plane, you are able to determine the stability of a closed loop
system with proportional feedback k - Y'(s). You have to plot the Nyquist
plot for k - G(s) to count the encirclements.

e N = number got by: Let each counterclockwise encirclement of the
point P(-1/0) in the complex plane be counted as +1 and each clock-
wise encirclement as -1.

e P = number of poles in right half plane of the open loop system
e 7 = number of poles in right half plane of the closed loop system
Z=P—-N
The closed loop is stable, if there are no poles in the right half plane.

12.2.1 Where does this come from? Why at the point P(-1/0)?

As mentioned above we have G(s) is the transfer function of the open loop:
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With proportional feedback we get
Y(s) = G(s) [X(s) + k- Y (s)]

which yields
Y(s) G(s)

X() 1Tk G L

We know poles and zeros of G(s). How are they related to poles and
zeros of T'(s)?
Let G(s) be given by

Gls) = %
then
1+k-G(s)=1+k- Ia)((z)) _ a(s) l—(l:) b(s)
thus
aF b

T(s) =

a(s)tk)'b(s) ~a(s)+k-b(s)

Good. What can we tell from this?

e The number of poles of 1 + k- G(s) in the right half plane is equal to
the number of poles of G(s) in the right half plane.

e The number of poles of T'(s) in the right half plane equals the number
of zeros of 1 + k- G(s) in the right half plane.

We know (explanation follows) that the number derived by counting the
encirclements N around the origin is related to the number of poles P and
zeros Z in the right half plane - for a certain graph. N =P — Z

1+kG(s) If we consider the graph of 1 + k- G(s), which is the graph of
k - G(s) shifted by one (i.e. origin is P(-1/0)), we can derive the number of
encirclements N by counting (assuming P(-1/0) the origin).

The number of poles P in the right half plane is the same as of G(s) and
thus is known.

Thus we can calculate Z, the number of zeros of 1 + k - G(s), which is
the number of poles of T'(s) in the right half plane.

Another possibility is to map the Nyquist plot of G(s) and then count
the encirclements of the point P(-/0).
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12.2.2 Where do the encirclements come from?

Given is the analytic function g(s), with

—
Vo)
|
N
\./
E

Q
—_
VA
N—
I
Hw|L3e

~
Il
—

(s —pi)™i

where z; are the zeros and p; the poles. Now we define

n(s) = L = Liog g,

Now we may take the logarithm of g(s). ..

B

log g(s sz log(s — z;) an log(s — p;).
=1 i=1

..and plug it in the above equation
o

B
h(s) = jlogg Z i —Z ni

=15 T % z—ls_pZ

It follows that the poles of h(s) have to be the poles and the zeros of g(s).
We can now evaluate the contour integral of h(s) around any closed path
that contains the poles and zeros of g(s).
With the cauchy integral theorem

1 m;

— ds =m; if z; inside 7y, v clockwise
21 Jy 8 — 2

we get
1 a B
—,]{h(s)ds =Y mi—> ni=Z-P,
2mi Jy i=1 i=1

where Z is the number of zeros of ¢g(s) and P the number of poles inside the
contour.

As we want to know the number of poles on the right hand side, the
contour must enclose all of them. Most common is to use a D-contour,
which goes along the imaginary axes and makes a half circle in the right
half plane. If the radius is large enough, we enclose all poles and zeros of
the right half plane.

For more details please look for yourself. It’s not easy to find good
references. . .
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On the other hand we can start all over and exploit the logarithm

log g(s) =log|g(s)| +i£(g(s)),
/(g(s)) is the phase angle of g(s). Plugging in yields to

37 § s = 5 f Thog a(o)ds = 5ok (o]

211

with expansion of logarithm

57 M) = 5 logla(e)| + i)}

Since it is a closed contour log|g(s1)| = log|g(s2)|. Thus

mi W) = 5 (L0(s2)) ~ La(er))) = N
N is the number of encirclements of the origin by g(s).

(The last statement leads into problems, because the argument function
doesn’t yield to unique solutions. As part of a proper solution, we would
have to split up the integral into parts, so that the angles are correct.)

Overall we get

1

13 Nyquist criterion: an example

We discussed a steady state model for the respiratory control before. Now
we look at a different model, which doesn’t take into account the O, but
distinguishes the two different controllers Gpp and Gcce. Before we had

863V/
Psco, = Prco, + —7C0:
A
now we have the dynamic equation
dPsco, _ (v -
Viung =, = (VE - VD) (Prco, — Paco,) +863Q (Cyco, — Caco,)

Suppose that small perturbations are imposed on Vg (AVE) which lead to
changes in Paco, and Cyco,- (We ignore the effect of arterial blood gas
fluctuations on mixed veneous CO4 concentration and assume dead space
ventilation remains constant.) We may neglect terms of AP4¢0, AVg and
get thus

d(APACO2 )

7 = - (VE - VD) APyco, +

(Prco, — Paco,) AVi — 863QACco,

Vlung
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If we approximate the blood COs dissociation curve with a straight line
(ACuco, = Kco,APaco,) and impose assumption of alveolar-arterial Pco,
equilibration (P4co, = Paco,) we obtain:

d(AP,co,)

Vieng———— + (VE ~Vp+ 863QK002) APico, = (Pico, — Paco,) AVi

Taking the Laplace transform and rearranging the terms of the transfer
function: Hiynge(s) to

AP“.C 0s _ ~Clung equals H(t) = ——Glung e

AVg Tlung$ + 1 Tlung

Tlung

Hlung(s)

We add some delay as the CO2 moves to the central and peripheral con-
troller.

APyco,(t) = AP,co,(t —Tp)
APCCOQ (t) == APaCO2 (t - TC)

And the chemoreflex responses follow the equations
av;
Tpd—tp +dotVp = Gp[Ppco, — Iy
v,
TCE +dotV, = GC[P0002 - c]

with V, + V}, = Vg Using some tricks we get to

. G
A = P_AP, 1
Vp(s) s 1o Troo: (31)
AV;(S) = %Af’cco2 (32)
GL*Gp D%(
ig TL*Tp.52+TL+Tp.s+1
GPP Tau P
N\ 1: —P»{ output
f V dot
GL*Gc
> TL*Tc.s2+TL+Tc.s+1 I y
GCC Tau C

Figure 8: Normal-CHF respiratory model
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Figure 9: Nyquist plot normal respiratory model

Congestive Heart Failure
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Figure 10: Nyquist plot CHF respiratory model
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