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4 1 INTRODUCTION

1 Introduction

Definition 1. A System is a complex organization of interacting factors,
conditions or components, usually functioning to create some result. The
components of the system often can exist in a wide range of states. These
states influence each other producing a dynamic evolution of the system over
time.

Definition 2. Often the mutual influence of states forces the system to a
condition called the steady state in which all components states are con-
stant.

Definition 3. If one or more of the states of a system at a steady state are
abruptly changed or perturbed by outside influences the system may or
may not return to its steady state.

e If the system does return to steady state the steady state is called
asymptotically stable.

o If the system does not return to steady state but remains in some
bounded region around the steady state the steady state is called sta-
ble.

o If the system wanders further and further from the steady state the
steady state is termed unstable.

Definition 4. Mathematical Control theory is the study of the design of
controls which can force a system to achieve certain goals in certain ways such
as tracking a prescribed path (servomechanism) or regulating a system
around a given state (regulator mechanism). The typical model for such
systems consist of differential or difference equations.

Example 1. In the absence of voluntary control of breathing or neurologi-
cally induced changes in breathing, the respiratory control system varies the
ventilation rate in response to the levels of COy and O, in the body.

The control mechanism which responds to the changing needs of the body
to acquire oxygen and expel CO, acts to maintain the levels of these gases
within very narrow limits (and to a less understood degree match ventilation
and blood flow). The control system consists of three components:

e sensors which gather information;
e effectors which are nerve/muscle groups which control ventilation; and

e the control processor located in the brain which organizes information
and sends commands to the effectors.
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Figure 1: Block diagram of respiratory control system

2 Traditional approaches to control design

2.1 Open Loop, Closed Loop Systems and Block Dia-
grams

Traditional approaches to Control Design evolved from engineering fields,
primarily electrical engineering. Indeed, early linear system theory borrowed
heavily from electrical terminology and schematic diagrams as did early ap-
plications in physiology. Adaptations of models for computer simulations
also used linear electrical circuit concepts and symbols such as resistance,
capacitance, voltage, and current as well as analog devices to sum, differen-
tiate, and integrate. There are clear and useful analogies between electrical
systems and other dynamic systems as can be seen in the following Table
1. The primary method of analyzing linear time-invariant systems used
Laplace transforms.

Table 1: Electrical-Physiological comparisons

Electrical Physiological
Voltage Fluid Pressure
Resistance Vascular Resistance

Capacitance Compliance
Inductance | Fluid Mass or Inertia
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The traditional techniques involved steady state analysis and dynamic
input/output analysis utilizing special input signals such as impulse, step
input and sinusoidal.

Figures (2) and (3) show Block Diagrams which describe the relation-
ships between input and output in the two main forms of Control system.
Figure (2) describes open loop control. In this format, the system involves
some physical structure (or plant) which is reflected in the output which
can be either the state of the system or some measurement (or function) of
the state of the system. The state of the system is altered by the applica-
tion of an input which can be modified by a controller. The signal from the
controller alters the state of the system and thus the output.

Closed loop systems as depicted in Figure (3) monitor the output of the
system and can feed back this knowledge to the control system to alter the
control to respond to perturbations. Usually the aim is to maintain a steady
state or track another signal.

OPEN LOOP CONTROL

PERTUBATION

CONTROL » PLANT OUTPUT

INPUT

Figure 2: Open loop control system

CLOSED LOOP CONTROL

PERTUBATION

l

’ CONTROL [—» PLANT OUTPUT

INPUT

feedback [«

Figure 3: Closed loop control system



3 Laplace transform method

We want to give a short introduction to the methods and terminology of the
technique for analyzing linear systems involving Laplace transforms.

This method is most successful when applied to linear systems with con-
stant coefficients (linear-time-invariant or LTT), though it is sometimes useful
for time dependent coefficients. The method can be used to analyze systems
with single input and single output (SISO) as in Figure 2 but can be used to
analyze multiple inputs multiple outputs (MIMO) by successive applications
of the SISO method.

The system itself can be defined either by a set of linear differential equa-
tions in the time domain which are then transformed by the Laplace trans-
form or by blocks directly defined by transfer functions representing elec-
trical components in the ”s” domain. Algebraic manipulations are employed
to find the transformed unknown solution (with initial conditions incorpo-
rated).

The approach to analyzing a system employs the study of the system
steady state response to various inputs including the impulse input and
step input as well as the studying system response to trigonometric inputs
(frequency response).

One important advantage of this approach to analyzing linear systems is
that the linearity and the algebraic feature of the Laplace transform allow for
the modularizing of the total system into subsystems and for the combining
of subsystems into larger super systems in a convenient way.

3.1 Laplace transform
The following definitions and examples illustrate the Laplace transform method
for solving linear systems. For a more thorough treatment see [7] and [1].

Definition 5. Let f(t) be a given real-valued function defined on the Interval
0 <t < co. The Laplace transform of f(¢), denoted by L{f} = F, is
defined by

F(s) = /0 e (@t = Jim /0 et p(t)at

We assume now, that s is a real number (in general it can be complex).
If F(s) exists at some sq it can be shown, that F'(s) also exists for all real
numbers s > Ssg.

Example 2. Let f(t) =1 for all t > 0. Then for s > 0

Sy T efst 1
Fls)= [T et = Jim [ et = Jim [ ] 1
0 0 s

T—o00 Jo T—oo | —8
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Hence, L{1} = 1/s exists for all s > 0.

Example 3. Let f(t) = e® for some real number a. Then for s > a

o0 T 1
F(s)= / e Ste™ = lim et dt =
0

T—00 Jo S—a

Hence, L{e®} = (s — a)™! exists for all s > a.

Example 4. Analogous you can get L{sint} = — 1
s

Definition 6. A function defined on [0, 00) is said to be of exponential

order if there are real constants M > 0 and a such that |f(¢)| < Me® for

all t > 0.

Theorem 1. If f is of exponential order and at least piecewise continuous
over [0,T], T > 0 then the Laplace transform L{f} = F(s) exists for all
s > a. Moreover |F(s)| < M(s —a)™" for all s > a.

Example 5. The unit step function is defined by

0 ift<ec
“’C(t):{ 1 if > ¢

We see clearly that u.(t) is of exponential order, thus we can use Laplace
transform

L{uc} = /0 e lu(t) dt = /0 et 0dt + / et 1dt
e st T e 5¢
= lim [ ] = for any s > 0

T—oo | —8
c

Important calculation rules for the Laplace operator (with c;, cs real,
f1, f2 of exponential order):

1. Linearity:

L{cifr + cofo} = alL{fi} + c2L{ f2}

2. Convolution:

L{[ St =) fa(r) dr} = LU} * L{F(0)}
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3. Integration: , )
L{[ f(r)dr} = -L{f}

4. Differentiation: There exists a real b depending on f, that for s > b

d" _ n— n—
Mm@} = 8"F(s) =" fom o= sf" = 1777
Wit ST = A

5. Shifting:
L{f(t = b)} = e L{f(t)}
6. Similarity:
L{f(at)} = %F(Z) with a > 0

7. Damping:
L{e ' f(t)} = F(s+ a)
8. Multiplicity:
n dn
L{t"f(O)} = (=1)" 2 F(s)
s
9. Division:

1 0o
L{Zf®} = [ Flo)dg
To justify the inversion of the Laplace transform we have the following result:

Theorem 2. If z1(t) and z5(t) are two functions of exponential order, both
continuous and their Laplace transforms equal on an interval sy < s < o0,
then x1(t) = xo(t) for allt > 0. This is not true for only piecewise-continuous
functions! If they are piecewise-continuous, then x1(t) = z2(t) on 0 <t < 00
except on a set {t,} of isolated points.

F(s) = L{f(t)} = [;° e~ f(t)dt

[ F(s) [ f) [ F(s) [ f®)
% 1 s—ll—oz e
1 1 1 —at t
52 ¢ GraGiB) | Fal¢ " ¢ )
ol | fem(al) | gim | cos(ad
m éeiﬂt sin(Ozt) m 67& <COS(Ozt) - gsin(at))
1 1 n—1 1 T n—lg—at
s™ (n=1)! (s+a)™ (n—1)!
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| F(s) | (1) | F(s) | f(®) |
= @ - | & i
\/ ittt |2 cos(at) \/ Ve ot \/% cos(at)
arctan £ Sin(tat)

[t] =the biggest natural number n with n <.

[ F(s) @ FG6) [ fB) |
i | 18] | e | ]

[ F(s) | /(1)

0 fir 0<t<a
1 fir a<t<p
0 fur <t

f(
{0 fir 0<t< 2«

(e=os—ePs)’ t—2a fir 2a<t<a+pf
s? 28—t fir a+p<t<?2p
0 fur 28 <t
e—as 0 fir 0<t<a
s+ e Al fiir o<t
1 fir 2na<t<(2n+1)a
m { 0 fir 2n+1la<t<(2n+2)a

n=20,1,2,...

3.2 Transfer function

We let x(t) denote the state of the system which can be thought of also as
the output of the system, while u(¢) denotes the input either as a direct
input to the system or a control signal. u(t) is a function of ¢ and affects
the equations of the state. In this case z(t) and u(t) are functions but the
discussion carries over for vectors as well with division replaced by matrix
inversion. Let
2
ol d"””tgt) + bdflit) + ea(t) = ult),

z(0) =0, 2'(0)=0.

If we take Laplace transform on each side of this equation, using the rules
described in the first lecture we find that:

as’X (s) +bsX(s) + cX(s) = U(s),
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or
1

=———U(s).
as? +bs +c (5)
The quantity X (s) defines the Laplace transform of the state of the system

or output. The quantity U(s) is the Laplace transform of the input. The
quantity

X(s)

1
as?+bs+c

relates the input to the output and is referred to as the transfer function,
usually denoted by H(s). Thus:

X(s) = H(s)U(s). (1)

By taking the inverse Laplace transform of the expression H(s)U(s) we find
x(t). Systems can be analyzed either in the ”t” domain or in the transformed
's” domain and then retransformed into the ”t” domain. Furthermore, letting
h(t) be the inverse Laplace transform of H(s), and recalling the convolution
formula

L{[fi = f]()} = L{/Ot fit =) fo(m) dr} = L{fi(O) }LAf2(8)}
we have
z(t) = LZI{H (s)U(s)} (2)
- /0 h(t — T)u(r) dr. (3)

We see that once h(t) (or the transfer function H(s)) is known the system re-
sponse to any input u(t¢) can be calculated. Note also from (1) and Figure (4)
that if we could choose an input whose Laplace transform U(s) = 1 then the
output X (s) of the system for this input U(s) would actually represent H(s)
and thus the time domain response z(¢) would actually represent A(¢). In
other words, we could observe the system defining function h(t) by applying
a special test signal which would reveal it.

1

u(s)
S) a.s2+b.s+c

X(S)

H(S)=Transfer Function

Figure 4: Open loop transfer function
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To see how feedback works in this setting we let u(t) = r(t) — Kz(t),
z(0) = 0, 2/(0) = 0and 0 < K < 1. In this case, the control r(t) is
influenced by the state z(t) and this influence is to reduce the control r(t)
when z(t) increases thereby acting to feed back the growth of z(¢). The
fed back information is a multiple of x and is called proportional control.
Other feed back controls are possible which involve information about /z
(derivative control) or the integral of x (integral control).

Applying Laplace transforms gives

1

H = .
(5) as?+bs+c+ K

3.3 Impulse response

Once the transfer function H(s) is known, A(t) can be found and the output
for any input can be derived by applying the convolution formula (2) and
integrating the control u(¢ — 7) with A(¢). In this set up, note that if there
were a function whose Laplace transform was X(s) = 1 then the application of
this input would produce a response which actually described the underlying
transfer function which could be used to analyze systems whose internal
structure was unknown. See Figure (4).

Strangely, there is no function which has Laplace transform X (s) = 1.
The following family of functions in Equation (4) are concentrated around
x = 0 and have Laplace transform as close to 1 as we want and can be
thought of as approximating the ideal of a function whose Laplace transform
is one. Let

Ug(t) — ug(t
) = =l @
a
where u,(t) indicates a step function which jumps from 0 to 1 at x = b. That
is:
0 ift<b
“”(t)_{ 1 if £ > b.

The idealized function is referred to as the Dirac delta function and is
denote by §(z). Note that these approximating functions become more and
more concentrated around z = 0 but always with area under the curve equal
to one. Hence, the applied input ”impulse” gets more and more concentrated
but with equal total ”force”. Figure (5) illustrates some of these functions
with the impulse beginning at x = 0. The application of very short impulses,
then, will give an approximate picture of the inverse Laplace of the transfer
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Figure 5: Impulse function approximations

function H(s) of the system. Note also, that the step response u(t) = 1 is
found by

/Oth(w)dw.

3.4 Model analysis

To study the nature and behavior of a given system there are a number of
analytical and simulation techniques which include:

e Finding the steady states of the system where the system is fixed and
does not change over time. This is done by setting all derivatives equal
to zero and solving for the states which produce this condition;

e Finding the transfer function by applying test inputs or controls which
approximate the impulse ¢ dirac function;

e Studying the system response to various controls such as the step re-
sponse and impulse response. This is referred to as transient re-
sponse analysis;
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e Studying the system response to sinusoidal inputs which is referred to
as Frequency domain analysis;

e Studying the stability of the system.

We will also see that in general there will be some alteration in the steady
state of the system when a closed loop proportional feedback control is ap-
plied. This is referred to as steady state error. We will develop several models
and develop techniques using Simulink to carry out these investigations.

4 Electrical Circuits and Physiological sys-
tems

To develop the systems to analyze we introduce some design terminology
which links electrical and physiological systems. As we mentioned before,

there are clear and useful analogies between electrical systems and other
dynamic systems such as we see in Table 2. The following symbols given in

Table 2: Electrical-Physiological comparisons

Electrical Physiological
Voltage Fluid Pressure
Resistance Vascular Resistance
Capacitance Compliance
Inductance | Fluid Mass or Inertia

Figures 6, 7, 8, and 9 are used for the electrical quantities above.
DC voltage DC voltage AC voltage
T

Figure 6: Electrical symbols for voltage or pressure

We also will apply Kirchhoft’s Laws to set up flow relations.

Definition 7. Kirchhoff’s First Law states that the algebraic sum of the
across-variable values (voltages) around any closed loop must be zero.

Definition 8. Kirchhoff’s Second Law states that the algebraic sum of
all through-variable values (currents) into any given node must be zero.
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Fixed-value Iron core

BE R I

Figure 7: Electrical symbols for inductance or inertia

Non-polarized Polarized (top positive)

1 4 L L I
T *T T T 51T

Figure 8: Electrical symbols for capacitance or compliance

We also need to note the following rules for combining resistances and
capacitances which follow from Kirchhoff’s Laws.

e Given R; and R, are in series then the total resistance R is given by

R=Ri+R, (5)

e If Ry and R, are in parallel we have

1 1

R=(p+ 5

)~ (6)

e If capacitances are in series we have

1.
C‘(Eﬁ@) :

Fixed-value Rheostat

) AN

Figure 9: Electrical symbols for resistance
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e If capacitances are in parallel we have

C=C,+C, (8)

Finally, we note some important electrical relations:

0= 0
R— % (10)
V= /th (11)

5 Lung mechanics model

We now establish the first model which will utilize the ideas described above.
This will be a model of air flow through the mechanical structure of the lungs.
The simplest form of this model will be an open loop control model which
can be used to study the effects of various respiratory parameters on lung
function. Medical applications exist such as methods for artificial respiration.
The set up for this model as it is given represents an artificial ventilator
generating forces at the airway opening producing positive pressures relative
to ambient pressure on inspiration (otherwise there are some changes needed
in the representation).

5.1 Lung mechanics physical model

The lung mechanics model considers the relation between air flow volumes @)
and various pressures in the lungs. The model considers air flow resistance
R, compliances C' of air flow compartments, and pressures P. An electri-
cal analogy schematic diagram is given in Figure 10 and Table 3 gives the
meaning of the parameter symbols.

As the air flows into the air passages, it encounters different resistances in
the central and peripheral airways. Furthermore, spatial volumes are effected
by the compliant nature of these structures. The model also includes the
effect of shunting of a portion of the air away from the alveoli compartment
as a result of disstention of the conducting airways and gas compression.

The relation among quantities in the mechanical air low model are rep-
resented in Figure 10 which utilizes the analogous electrical symbols to rep-
resent @, R, C, and P.



5.1 Lung mechanics physical model
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Figure 10: lung mechanics schematic design

Table 3: Physiological parameters

Parameter

Symbol

Cw

chest wall compliance
lung compliance
shunt compliance
peripheral airway resistance
central airway resistance
pressure at airway opening
pressure in pleural space
pressure in central airway
pressure in alveoli
ambient pressure
airflow in alveoli
total airflow

17

Beginning with the airflow P,, at the mouth (the input will be modeled
as a sinusoidal flow) we follow the path of the airflow through the system.
Note that the ambient pressure P, is set to zero. Compliances C' multiplied

by pressure changes give volume change of stored air (see Eq. 9).

1. As the air flow travels first through the central conducting tubes and
then the periheral conducting tubes, pressure drops occur resulting in
pressures P, leaving the central airway and finally P, in the alveoli.

2. Different resistances for the central and peripheral airway are utilized.
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3. The flow () 4 represents the air flow rate through the peripheral airways
to the alveoli. Part of the total airflow ) — Q4 does not reach the
alveoli but is diverted by compliance Cs representing lost volume due
to expanding of airways and the phenomenon of gas compression.

4. The compliance C, and Cy together form the effective air storage space
available for alveoli air. Being in series the total effective compliance
is smaller that either individually (see Eq. 7). The compliance C},
represents the expansion of the lung space (alveoli) and the quantity
Cw represents chest wall expansion which increase by a like volume.
The reason for the series arrangement requires some explanation. Cy,
represents the expansion of the chest wall due to the pressure P, in
the pleural space between lung and chest wall. When the breathing
is by ventilator (so that we have positive pressures at each point),
the expansion of the lung space must also push out the chest wall.
Thus there must be a positive pressure expanding the lungs which
then further pushes on the interpleural space which then pushes the
chest wall. The compliance of the pleural space is in series because the
combined reaction to the overall pressure change is reduced somewhat
like a series of springs which don’t completely transfer the force. This
acts to reduce the overall compliance as can be seen from Eq. 9.

5. As the sinusoidal flow of air at the mouth is impressed on the system
we have an alternating or oscillatory flow pattern in the system.

6. The model can be used to study the effect of a variety of parameter
combinations on the functioning of the system.

5.2 Lung mechanics mathematical model

Note first that given a 2nd order system where y(¢) is the output and z(t) is
the input:

Py |, dy)

d?x(t dz(t
LI x()+b1 z(t)

+yt) =b— s dt

ao + b()d?(t) (12)

we have as transfer function:

Y(S) N b252 + b18 + b()
X(s)  ays?+as+1°

the form of which we will develop for the following lung model.
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dQPao(t) 1 dPao(t) dQQ(t) 1 RC dQ(t)
i RpCr i Re—e + & T Rocy) " at
1 1 1
— 4+ —)Q. 1
Here,
1 1.1
CT_(CL+CW)CS) .

The derivation of the lung model equation is made via Kirchhoff’s Laws
applied to the electrical circuit representation given in Figure 10. This figure
was developed to represent the components involved in the mechanical flow
of air to the lungs via the analogous electrical-physiologucal relations given
in Table 1 or Table 2.

To translate the electrical circuit model Fig. 10 to a mathematical format
we begin with the node P,,, and apply Kirchhoff’s Second Law to conclude
that if the airflow to the alveoli is given by )4 then the shunted air flow is
@ — Q4. Furthermore, when we apply Kirchhoff’s Second Law to the circuit
containing C's, Rp, Cr, and Cy we find that

1 1

1
RrQq+ (o + &) / Qudt = & / (Q — Qa)dt. (14)

Now we apply Kirchhoft’s First law to the circuit containing R¢ and Cg to
obtain

1
Puy=ReQ+ & [@-Qua (15)

Differentiating Eq. 14 and Eq. 15 we arrive after substitution and simplifi-
cation at Eq. 13.

At this stage we could set up the transfer function using Laplace trans-
forms and simplifying as exemplified in Eq. 12. We get:

Q(s) = s°+420s
Puo(s) 82+ 620s + 4000

Here C;, = 0.2 LemH,O Y, Cy = 0.2 LemH,O0 1, Cs = 0.005 LemH,0 1,
Re = 1.0 ecmH30sL !, and Rp = 0.5 cmH,OsL!. Also we have for initial
conditions P,,(0) = 0 and @(0) = 0. The following block diagram (Fig.
11) illustrates this transfer relation with some additional input and output
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symbols which will be discussed in the next section. Note that the above
formulation allows us to test a variety of inputs to the system but not to
vary the parameters without rederiving the transfer function. We will con-
sider a Simulink model for the above system which reflects more directly the
components of the system given in Fig. (). Solving that system numerically
will allow us to vary the parameters values to study various situations.

=]
Pao vs time
Mux » respml.mat
»
Mux To File
- Us =]
D s2+420s i
N > =T — Integrator
! V Pao $2+620s+4000 Volume vs time
Ventilator
Respiratory Mechanics 9 > I:I
Qvstime

Figure 11: lung mechanics transfer function

6 Simulink and Matlab

Matlab is a numerical package well suited for solving linear systems, dif-
ferential equations, and engineering design problems. It has a programming
language which is easier to debug thus allowing a wide range of programs and
numerical schemes to be developed. Simulink is a specialized package with
graphical user interface for design and study of engineering control systems
especially for modularly designed hierarchical systems.. The basic option list
which will be found when Simulink is called up from Matlab is given in figure
?7?7. Sources include all kinds of inputs such as signal generators, step, pulse,
and ramp functions. Sinks are really nothing more than output devices.
Other categories include continuous operations including integrator, transfer
functions etc. These and other categories will be explored throughout the
course.

Some elementary symbols for Simulink program diagrams are given in
figure 13. These and other basic structures are coupled together in ”calcula-
tion flow charts” which are patterned after electrical circuit and other system
schematic diagrams or block diagrams. The Simulink diagrams for the lung
mechanic model are given in Figures 11 and 14. We will now discuss how
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Figure 12: Basic Simulink categories

these schematics are developed. Figure 11 represents transfer function rela-
tionships and also includes some output symbols. This model is constructed
with the following steps:

1. A new Simulink design window is called up by clicking and dragging
on the

2. From the continuous window a transfer function symbol is dragged
into the design window.

3. Having done the mathematics to derive the Laplace transform one
needs only specify the coefficients of the transfer function to set it

up

4. For the first simulations we choose a sinusoidal input from the source
window which we drag into the design window and connect from arrow
to receptor.

5. The outputs for P,,, @, and V are represented by the scope figures.

6. With this set up we only need click on simulate to start the action.
Time span, numerical step size, and other simulation options can be
set and will be discussed in the lab.

The model represented in Fig. 11 while easy to construct requires the solution
of the Laplace transformation and does not allow new variations in parame-
ters. The design in Figure 14 follows more closely the modular approach set
forth in the lung mechanics schematic diagram and hence allows for a wide
range of variation in parameter settings to be studied. The development of
this model will now be discussed.

To translate an electrical or physiological system to a Simulink flow dia-
gram one needs to keep in mind the following points.
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e In a certain sense, Simulink diagrams are ”calculation flow charts”

which describe the interrelation between quantities in the system.

e The lung mechanics model in Figure 14 shows computational relations

between pressures P, resistances R, capacitances C, and flows Q).

e All computational relations at nodes must be defined via the parts of

the model.

For example, let’s begin to trace out the calculation starting with P,,.

1.

The air flow () through resistance Rc depends on pressure difference
P,, — P,,, which is calculated using the sum box With inputs P,, and

Paw The triangle - T Says to multipy the constant - with Py, — Py
which thus calculates () as in Eq. 10. At the next branch point we have
another sum box with inputs ) and the shunted flow Qs = Q — Qa4
which is subtracted leaving @ 4.

(4 is multiplied by Rp calculating the pressure P,, — P4 using Eq.
10. The second branch using ()4 is used to calculate the pressures
at the compliances. First integrating () which is air flow rate we get
the air volume V4 moving through the alveoli and then using Eq. 9
we multiply V4 with &z generating P4 — P and with &— generatmg
P, pl — P 0-

. Adding the three pressures in the last item gives P,, — P which is

actually P,, since we set Py = 0. We link this output back to the
original sum box as input P,, which then calculates the difference
P,, — P,,, completing the calculation loop.

. To complete the calculation we need the input Qs which we find by

multiplying P, with Cs as denoted by the triangle. This generates a
volume Vs which when differentiated gives the required ().

Note that subtlties are introduced into the discussion when we point
out that the Egs. 9, 10, and 11 bounce back and forth between changes
in volumes and pressures and the absolute quantities.

In this way we set up the calculation dependencies of the various loops instead
of generating the transfer function. We can thus numerically solve this system
with various parameter values.

Finally, outputs from this model are given in Figures 77, 16, and 17.
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INPUT SYMBOLS SIMULATION SYMBOLS
o U By L
Constant Step Sine Wave Scope Stop Simulation Memory

MATHEMATICS SYMBOLS

1 1 X" = Ax+Bu
s P du/dt o Y = Cx+Du : >[>>

Integrator Derivative Transfer Fcn State-Space Sum Gain

Figure 13: Basic Simulink mathematics symbols
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Time offset: 0

Figure 15: Pao vs time
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Figure 16: Q vs time
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Figure 17: Volume vs time
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