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1. INTRODUCTION

In the applications, the future behavior of many phenomena are as-
sumed to be described by the solution of an ordinary differential equa-
tion. Implicit in this assumption is that the future behavior is uniquely
determined by the present and independent of the past. In differential
difference equations (DDE), or more generally functional differential
equations (F'DE), the past exerts its influence in a significant manner
upon the future. Many models under scrutiny are better represented
by (FDE), than by ordinary differential equations.

(DDE) and (FDE) were first encountered in the late eighteenth
century by Bernoulli’s, Laplace and Condorcet. However, very little
was accomplished during the nineteenth century and the early part of
the twentieth century. During the last sixty years and especially the last
forty, the subject has been and is continuing to be investigated at a very
rapid pace. The impetus has mainly been due to developments in the
theory of control, mathematical biology, mathematical economics and
the theory of systems which communicate through lossless channels.

In this introductory section, we indicate by means of examples (with
references to their origin) the diversity of FDE.

Minorsky (1962, [1]) was one of the first investigators of modern
times to study the differential-difference equation

z (t) = F(t,z(t),z(t — 1))

and its effect on simple feedback control systems in which the commu-
nication time cannot be neglected.

Lord Cherwell (see Wright 1961, [2]) has encountered the differential-
difference equation

& (1) = —az(t — 1)(1 + z(t))

in his study of the distribution of primes. Variants of this equation
have also been used as models in the theory of growth (see Cunningham
1954, [3]).

Volterra [4] in his study of predator-prey models studied the integro-
differential equation

0

N1 (t) = [e1—mnNa(t) —/ Fi(=0)Na(t + 0)dOIN, (1)

-

NQ (t) = [—82 + ’YlNQ(t) + /0 FQ(—Q)Nl(t + o)dG]Ng(t),

-

Where N;, N, are the number of prey and predators, respectively.



Wangersky and Cunningham [3] have also used the equations
: m — z(t)
z(t) = olz(®)[————]—bz(t)y(?)

yt) = —pyt)+ca(t—rylt—r)

for similar models.
The equation

B (t) = — / alt — w)g(e(u))du

=T

was encountered by Ergen [5] in the theory of a circulating fuel nuclear
reactor and has been studied extensively by Levin and Nohel [6]. In
this model, x is the neutron density. It is also a good model in one di-
mensional viscoelasticity in which z is the strain and a is the relaxation
function.

In the theory of control, Krasovskii [7] has studied extensively the
system

e (t) = P()x(t) + B(t)u(t)

y(@) = Q)z(t)
i) = /_ [dyn(t, 0)]y (¢ + 0) + /_ (g (2, O)]u(t + 6).

In theory of lossless transmission lines, Miranker [8] and Brayton [9]
have encountered the equation

v(t) = av(t—r)—pPo(t)
—ay(t—7r)+ F(v(t),v(t—r1))
where «, 3,7 are constants.

In his study of vibrating masses attached to an elastic bar, Rubanik
[10] considered the equations

(t) +wiz(t) = efi(z(t),2 (1),y(t),¥ @) +n Y ({t—7)
Jt)+uwiyt) = efolz(t),s (1),y(t),Y () +1 & (t—1).

In studying the collision problem in electrodynamics, Driver [11] en-
countered systems of the type

z (t) = f1(t, (1), 2(9(1)) + fo(t, 2(2), 2(9(t) 2 (9(t)), g(t) <t
El’sgol’tz and Hughes have considered the following variational prob-
lem, minimize

V(z) :/0 F(t,z(t),z(t—r),z (t),z (t —7),2 (t —r))dt
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over some class of function x. Generally, the Euler equations are of the
form
z(t) = f(t,z(t),z(t —r),z @),z (t—71),Z (—r)).

In the slowing down of neutrons in a nuclear reactor the equation

() = /t k(s)2(s)ds

or
z(t)=k(t+ Dzt +1) — k(t)z(t)
seems to play an important role (see Slater and Wilf [12]).

2. A DELAYED EPIDEMIC MODEL

Mathematical biologist A. J. Lotka investigated, in a series of papers
from 1912 on, a differential equation model of malarial epidemics due
to Ross (1911) [14]. In particular (see Sharpe and Lotka (1923) [13]),
he examined the effect of incubation delay. Let us first look at the
model without any delay. The equations are, as given by Lotka (1923),
for the human population,

h O = 5 3o = rh

and for the mosquito population,

i () = IO = m(®)

p— Nm(t) — smf(t)
Here, p and ¢ are the total human and mosquito populations, treated as
constant quantities, which is a standard practice in simple epidemiolog-
ical models. The function A(t) and m(t) stand for human and mosquito
populations carrying the malaria organism (the infected or diseased
populations), respectively. The healthy populations are p — h(t) and
g — m(t). A fixed proportion of each of these populations is assumed
to be infective, with the infective population being fh and gm, respec-
tively. The quantities M and N are death rates, while r and s are
recovery rates.
For our presents purposes what is of most interest is the modification to
include incubation delays, quoted from Ross (1911) [14] to be u = 0.5
month in human and v = 0.6 month in mosquito. We thus have

bgm(t — u)(p — h(t — v))
p— (M +7)h(t)
bfh(t —v)(g — m(t —u))
p— (N +s)m(?)

bgm(t)(p — h(t)) .
t)’
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The delay is from the time of a bite to the time at which the human
or mosquito is infective.

3. DELAY MODELS IN PHYSIOLOGY: DYNAMIC DISEASES

There are many acute physiological diseases where the initial symp-
toms are manifested by an alternation or irregularity in a control sys-
tem that is normally periodic, or by the onset of an oscillation in a
nonoscillatory process. Such physiological diseases have been termed
as dynamical diseases by Glass and Mackey (1979) , who have made
a systematic study of several important and interesting physiological
models with time delays. The following is one example of these models

_aVpz(t)z"(t —1)

(1) O =A==

Here, A\, o, Vi, n, 7,0, By, and v are positive constants. Equation (1)
is used to study a ”"dynamic disease” involving respiratory disorders,
where z(t) denote the arterial COy concentration of a mammal, A is
the C'O, production rate, V,, denotes the maximum ”ventilation” rate
of CO,, and 7 is the time between oxygenation of blood in the lungs
and stimulation of chemoreceptors in the brainstem. (for more detail
see article by Glass and Mackey (1979))

4. SIMPLE EXAMPLES OF DELAY DIFFERENTIAL EQUATION

As we see the above, there are many different types of equations that
occur in the applications, some which depend only upon the past state,
some which depend upon the past state as well as the rate change of
the past state and some which depend upon the future. The solutions
behave differently for each of these types of equations. To recognize
some of the difficulties, let us discuss in an intuitive manner some very
simple examples.

Q Example 1:

Consider first the linear retarded equation
(2) z(t)=—z(t—r), r>0.

What is the minimum amount of data that is necessary for (2) to define
a function for ¢ > 07 A moment of reflection indicates that we must
specify a function on the interval [—r 0]. If ¢ is a given continuous
function defined on [—r, 0], then there is only one function z(¢) defined
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on [—r, 00) which coincides with ¢ on [—r, 0] and satisfies (2) for ¢ > 0.
In fact, if x is such a function, then is must satisfy

(3) 2(t) = (0) —/0 (s — r)ds, t> 0

and in particular,

z(t) = ¢(0) — /0 p(s—r)ds, 0<t<r.

This latter equation uniquely defines z on [0,7]. Once x is known on
[0,7], then (2) uniquely defines x on [r, 2r], etc.

The following observation about (2) are important:

— (I) For any continuous function ¢ defined on [—r,0], there is a
unique solution z of (2) on [—r,00). Designate this solution by z(¢p).

— (II) The solution z(y) has a continuous derivative for ¢ > 0, but
not at ¢t = 0 unless ¢(#) has a left hand a derivative at § = 0 and
¢ (0) = —p(—r). The solution x(y) is smoother than the initial data.

— (IIT) For a given ¢ on [—r,0], the solution x(¢)(¢) of (2) need
not be defined for ¢ < —r. In fact, if z(¢)(t) is defined for ¢t < —r,
say z(p)(t) is defined for t > —r — ¢, € > 0, then ¢(#) must have a
continuous first derivative for 8 € (—¢, 0]. If a solution z(¢) does exist
for t < —r, then z(p)(t) for ¢ < —r has in general fewer derivatives
than ¢.

© Example 2:

As a second example, consider the advanced equation

(4) d‘ZS_T) =y(r+r), r>0.

If we let 7 = —t, z(t) = y(—t), then z satisfies (2). Therefore, the
natural problem for (2) is for 7 < 0. On the other hand, if this equation
describes a physical system, then it must be integrated for 7 > 0. As
in (III) above, any such solution must satisfy some special conditions
and, in general, has fewer derivatives than the initial data.

Q Example 3:

As another example, consider the neutral equation
(5) z(t)—cx(t—r)—de(t—r)=0, >0, c#0.

In this situation, it is a little more difficult to begin the discussion since
many different possibilities are available for the concept of a solution.
In any case, if (5) is to define a function for ¢ > 0, then we must specify
a function on [—r, 0] . If we suppose that ¢ is a function on [—r, 0] which
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has a continuous first derivative, then one can certainly find a function
which satisfies (5) for ¢ > 0 and even has a continuous first derivative
except at the points t = kr, k = 0,1, 2, ....
In fact
z(t)=czx (t—r)+dz(t—r)

can be integrated successively in steps of length r. If ¥ (0) # c ¢
(—r) + dp(—r), then z is discontinuous at t = 0. Consequently, = will
be discontinuous at t = kr, k = 1,2, .... Since ¢ # 0, we can also write

Bt —r) = % [ (t) — da(t — )]
and, therefore, define z(¢) for ¢ < —r. The following observations are
now immediate:
— (IV) For any function ¢ defined on [—r,0] with ¢ () continuous,
there is a unique solution z(¢p) of (5) on (—oo0, +00) which has a con-
tinuous first derivative for ¢ # kr, k = +1,+2, ...
— (V) The solution z(p) has essentially the same smoothness proper-
ties as the initial data. Compare this with hyperbolic partial differential
equations. One can also interpret (5) in integrated form as

(6)  x(t) —cx(t—r)=p(0) —cp(—r) + d/o z(s —r)ds, t > 0.

A solution can now be defined for a continuous initial function. For
¢ = 0, this now includes the retarded equation (2).

Q Example 4:

As a final example, consider the equation of mixed type
z(t)+ax(t—r)+bx(t+r)=0, >0, a#0, b#0.

For this equation it is not at all clear what information is needed for
(6) to define a function for ¢ > 0 since the derivative of z depends
upon past as well as future values. This equation seems to dictate that
boundary conditions should be specified in order to obtain a solution
in the same way as one does for elliptic partial differential equations.

Just looking at the examples above from the point of view of the infor-
mation needed to obtain solutions of the equations and the resulting
smoothness properties of the solutions, we have seen there are distinct
types in a manner suggestive of the types in partial differential equa-
tions. To gain more insight into the differences in these types, let us
look at their corresponding characteristic equation. As for linear ordi-
nary differential equations with constant coefficients, the characteristic
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equation is obtained by trying to find a A such that e* is a solution of
the differential equation.

‘ Characteristic equation:

For equation (2) :
z(t)=—zx(t—r), r>0.
the characteristic equation is
(1) A+eM=0e M =—-1=e®" L =041 +2, ...
It is clear that A satisfies (7) if and only if
Ar+1In |\ = 2k + )i, k=0,£1,£2, ...

or
Re(Ar +1n|A|) = 0= rReA = —Reln |}|.

Therefore,

Red — —ooas |A| — oo if r > 0 (retarded)
Red — +oo0as |\ — oo if r < 0 (advanced).

Since (7) is an entire function of A, this implies there are only a fi-
nite number of roots to the right of any line Rez =y if r > 0
(retarded) and there are only a finite number of roots to the
left of any line Rez = v if r < 0 (advanced). Also, as r — 07,
Rel — —oo unless |A\| - 1 and as r — 0, ReA — +o0 unless || — 1.
It is natural to expect that the asymptotic behavior of the solutions
will be depicted by the supremum of real parts of the X satisfying the
characteristic equation. If this is so, then for r — 0" then equation de-
generates nicely (as far asymptotic properties at t = oo are concerned)
to the ordinary differential equation

& (t) = —a(t).

5. A GENERAL INITIAL VALUE PROBLEM

Suppose 7 > 0 is given real number, R = (—o00, +00), R" is a real or
complex n-dimensional linear vector space with norm |p|. (norm sup
for example), C'([a, b] ,R™) is the Banach space of continuous functions
mapping the interval [a, b] into R” with the topology of uniform conver-
gence. If [a, b] = [—r, 0] we let C'([—r, 0], R™) and designate the norm of
an element ¢ in C by ||¢|| = sup |p(8)|. Even though single bars are

—r<8<0

used for norms in different space, no confusion should arise. If o € R,
A>0and z € C([o —r,0+ A],R"), then for any ¢ € [0,0 + A], we let
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7(0) =x(t+0), —r <0 <0.Ifz (t) =dz(t)/dt and f : Rx C - R"
is a given function, we say that the relation

(8)  (t) = f(t,z1)

is a functional differential equation of retarded type or simply a func-
tional differential equation. A function z is said to be a solution of (8)
if there are 0 € R, A > 0 such that z € C([o0 — r,0 + A], R") and z(?)
satisfies (8) for ¢t € (0,0 + A). In such a case, we say z is a solution of
(8) on [0 — 1,0+ A). For a given 0 € R and a given 0 € R and a given
¢ € C we say © = z(0, ) is a solution of (8) with initial value ¢ at
o or simply a solution of (8) through (o, ¢) if there is an A > 0 such
that z(o, ¢) is a solution of (8) on [0 — r,0 + A) and z, (0, p) = .
We say system (8) is linear if

f@t,9) = L(t, ) + h(?),
where L(t,¢) is linear in ¢; linear, homogeneous if 4 = 0 and linear

nonhomogeneous if A # 0. We say system (8) is autonomous if f(t, ¢) =
g(p) where g does not depend on ¢.

Lemma 1. If o € R, ¢ € C are given and f(t,p) is continuous,
then finding a solution of (8) through (t, ) is equivalent to solving the
integral equation

t
z(t) = (0) —i—/o f(s,x5)ds, t > 0, T, = .

‘Existence and uniqueness of the solution‘

In this section, we give a basic existence theorem for the initial value
problem of (8) assuming that f is continuous. We need

Lemma 2. Ifz € C([o—r,0+a],R"), then z; is a continuous function
of t fort in [o,0+ .
Proof: Since x is continuous on [0 — r,0 + «l, it is uniformly con-
tinuous and thus for any € > 0 there is a 6 > 0 such that
lz(t) —z(7T)| <eif [t —71| <6.

or
uniformly

lz(t) —x(T)] =0 ift—r
Consequently, for t,7 in [o,0 + ], |t — 7| < §, we have
|z(t +0) — x(7 + 0)| < € for all 6 in [—r,0].

This proves the lemma.

Q@ Existence
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Theorem 1. Suppose € is an open set in R x C' and f : QO - R
is continuous. If (o,¢) € Q, then there is a solution of (8) passing
through (o, ¢).

QO uniqueness

Theorem 2. Suppose ) is an open set in R x C and f : Q — R is
continuous and f(t,) is Lipschitzian in ¢ in each compact set in Q.
If (0,¢) € Q, then there is a unique solution of (8) with initial value @
at o.

6. REMARKS ON THE MAP DEFINED BY SOLUTIONS

In this section, we give some specific examples of functional differen-
tial equation in order to contrast the behavior with ordinary differential
equations.

The examples will also serve to formularize the reader with the idea of
looking at the solution of (8) in the space C rather than R".

Throughout this section, suppose f : R x C — R" is continuous
and for any (o, ) € R x C, there is a unique solution z = (o, ¢) of
(8) passing through (o, ¢). x(o,¢)(t) is continuous in (¢, 0, ) in its
domain of definition.

Q first example

Two distinct solutions of (8) considered in R x R* may intersect
an infinite number of times. In fact, consider the scalar equation

© (1) = —alt - 7)

has a unique solution through each (o,¢) € R x C, but it also has
the solutions z(t) = sint and z(¢) = cost. The sets {(¢,sint),t € R},
{(t,cost),t € R} in Rx R intersect an infinity number of times on any
interval [0, 00) and yet are not identical on any interval.

The above example shows that it is probably impossible to develop a
geometric theory for (8) by defining trajectories in RxR"™ as { (¢, z (o, ¢)(t)),t >
o}.

On the other hand, it seems reasonable to have the definition of
a trajectory of a solution so that it will depict the evolution of the
state of the system. Furthermore, the state of the system should be
that part of the system which uniquely determines the future behavior.
From our basic existence and uniqueness theorem the state at time ¢
therefore, should be z; (0, ¢) and the trajectory through (o, ) should be
the set Uy>o(t, z4(0, ¢)) in Rx C. For the geometric theory of functional



11

differential equation, the map is going to be zy(o,.). Therefore, for
t > o, define the operator T'(t,0) : C — C by the relation

T(t,0)p = z4(0, ).

The operator T'(t,0) is continuous. From the hypothesis of uniqueness
of solutions of (8), for given ¢, 1 € C, if there is a 7 > o such that
T(r,0)p =T(r,0)¢, then T(t,0)p =T(t,0)y for t > 7.

For autonomous equations, it is more natural to consider the orbits
of solutions rather than the trajectories; that is, the path traced out by
the solution in the phose space X rather than the graph of the solutions
in R x C. If the phase space for Equation (9) is chosen as R and the
orbits as Ui>oz(0, ¢)(t), then the orbits for the solutions z(t) = sint
and z(t) = cost coincide and are equal to the interval [—1,1]. That
the orbits coincide is expected because sin(t + 7/2) = cost, Equation
(9) is autonomous and therefore, a solution shifted in phose is still a
solution. The difficulty encountered by choosing the phase space R
is that the orbit of one solution may completely contain the orbit of
another solution and not be related in any way to a phase shift. The
orbit of the solution z = 0 is contained in the orbit of cost.

On the other hand, if the phase space is chosen as C = C([-7/2,0],R),
then the orbit of the solution sint of Equation (9) is the set,

C={¢:90) =sin(t+0),—7/2<60<0, fort € [0,00)},

of points in C. The set I" as before is also the orbit of the solution cost.
Furthermore, because of uniqueness of solutions and one-to-oneness of
the mapping T'(¢, o), any solution z of Equation (9) for which there
is a 7 with x; € ' must be a phase shifts on sin ¢. Therefore, I' is
determined by phase shifts of a solution. Finally, I' is a closed curve in
C which is intuitively satisfying since sint is periodic.

This simple example suggests the geometric theory for Equation (9)
will probably be richer if the map T'(¢,0) is used. However, in some
situations, it is very advantageous to know that T'(¢,0)¢ is determined
by taking a restriction over an interval of a function in R”.

Q second example

There are functional differential equations for which there is a ¢y, with
z(t) = 0 for all t > t5. Consider the equation

{ z(t) = —a)zt—1),t>0

zo(s) = ¢(s), —1<s<0
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where

(1) = 2sin’7t , t€[2n,2n+1]
Y= 0 . te (2n—1,2n)

for each integer, we have

Vt >4, 2,=0.]

we want to proof that x;(—1) = 0, for any ¢ > 4, then we want to see
z(t—1)=0,t>42(s)=0,s+1=t>4 < x(s)=0,s5> 3.
We have for :
¢s5€(0,1],
T (s) = —2sin®(ws)p(s — 1) = z(s) = 2(0) — / 2sin®(77) (T — 1)dr
0

¢scl,2],
z(s)=0=xz(s) =2(1) = z(2)

s € 2,3,
i(s) = —2sin’(ms)g(s — 1)
T (s) = —%m%ﬁnu)
2(s) = a(2) - /2 2 sin? (7r)z(1)dr
o(s) = z(1)(1— /2 9 sin?(rr)dr).
¢s € [3,4],

T (s) =0=2(s) =2(3) =z(4)

For that we want to proof

In fact

3 3
1 /
/ sin(rr)dr = — / — sin(77) cos (n7)dr
2 2 T
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then \
/2 sin?(w7)dr = %
Finally
2(s) = 2(3) = 2(4) = 2(1)(1 - /2 sin?(xr)dr) = (1)(1 ~ 2) = 0.

7. DEFINITIONS OF STABILITY

Let Cyg = {¢ € C : |p| < H}, R" = [0,00). In this section, we
consider the system (8) with f(¢,0) = 0, ¢t € RY, f : Rt x Cy is
continuous and satisfies enough additional hypotheses to ensure that
the solution z(o, ¢)(t) through (o, ¢) is continuous in (o, ¢,t) in the
domain of definition of the function.

Definition 1. (a) The solution x = 0 of (8) is called stable at t, if
to > 0 and

(i) there is a b = b(ty) > 0 such that ¢ in C, implies the solution
z(to, ) of (8) exists fort >ty and x.(to, ) is in Cy for t > to;

(11) For every e > 0, there is a 6 = 6(ty, &) > 0 such that ¢ in Cs implies
the solution x(to, @) of (8) satisfies x(to, p) in Ce for all t > ty.

(b) The solution x = 0 of (8) is called asymptotically stable at to if it
is stable and there is an Hy = Hy(to) such that ¢ in Cy, implies the
solution x(ty, ) of satisfies

lim |z (o, )| = 0.
t—o0

(c) The solution x = 0 of (8) is unstable at ty if it is not stable at ty.

In ordinary differential equations, a system which enjoys either one
of the above types of stability at ty enjoys the same type of stability at
t; for any t; > ty. The basic reason for this fact is that the mapping
induced by the solutions of ordinary differential equations for which
solutions are uniquely defined by their initial values takes a sphere of
initial values into a set which contains a sphere. Also, continuity with
respect to initial values implies the above remark is also true for any
t; < to provided only that solutions of the equation exist on [t1, %] .

For functional-differential equations, the latter property holds for
exactly the same reason; namely, if the solution z = 0 of (8) is stable
at to in the sense of definition 1 (a) or 1 (b), then it is stable at ¢; < tg
in the same sense provided that the solutions exist on [t1, ¢o] .

However, stability of the solution z = 0 of (8) at ¢y, does not neces-
sarily imply stability of z = 0 at t; > ¢y. In fact, consider equation

& (1) = b(t)z(t — 31/2).
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For ty = 0, the solution is given by

0), 0<t<3m/2
(0, ¢)(2) ={ ((p_( s)int)(p(O), t > 3m/2, /

and so the solution x = 0 of is clearly stable for t; = 0. On the other
hand, for any ¢; > 3, the solution z(¢, ¢) of must satisfy the equation

(10) z (t) = z(t — 37/2).
For any constant a and any A for which A = exp(—37A/2), the function

z(t) = aexp(At) satisfies (10). Since there is a Ay > 0 satisfying this
equation, the solution x = 0 is unstable for any t; > 3.

8. SUFFICIENT CONDITIONS FOR STABILITY OF GENERAL SYSTEMS

In this section, we give sufficient conditions for stability of the solu-
tion z = 0 of and illustrate the results with examples. If V : Rt xCy —
R is continuous we let

. S|

V (ta 90) = lim _[V(t + ha xt-}-h(ta QD)) - V(ta 90)]

h—0th

where x,,5(t, ) is the solution of (8) through (t,¢). V (t,¢) is the
upper right hand derivative of V (¢, ¢) along the solutions of (8).
Theorem 3. Suppose [ takes closed bounded sets of R x Cyg into
closed bounded sets of R™. Suppose u(s), v(s), w(s) are continuous func-
tions for s in [0, H), u(s), v(s) positive and nondecreasing for s # 0,
u(0) = v(0) = 0, w(s) nonnegative, and nondecreasing. If there is a
continuous function V : Rt x Cg — R such that

u(lp(0)) < V(t,¢) < v(lol)
V(te) < —w(le(0)])

then the solution x = 0 of (8) is uniformly stable. If, in addition,
w(s) > 0 for s > 0, w(s) nondecreasing, then the solution x =0 of (8)
s uniformly asymptotically stable.

Example

Consider the scalar equation
z (t) = —ax(t) — b(t)z(t —r)

where a > 0, b(t) is continuous and bounded for all ¢ > 0. If z is scalar,
take |z| as the absolute value of z. If

1 0
V(p) = —=¢*(0) +u/ @ (0)df,

~ 2a —r
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where 4 is to be determined. We can apply Theorem 3 and if b is a
constant, then the exact region of stability is indicated in the Figure 1

- Stability Region
- 0,2

|
|
|
|
il

(- L0}

-

a+bE=0

FIGURE 1. Delay

The region |b| < @ is the maximum region for which stability is
assured for all values of , 0 < r < co. On the other hand, as » — 0
the true region of stability for approaches the half-plane b+ a > 0.

9. SUFFICIENT CONDITIONS FOR INSTABILITY

In this section, we give a sufficient condition for the instability of the
solution x = 0 of (8) and give some examples to illustrate result.

Theorem 4. Suppose V() is a continuous bounded scalar function on
Cy. If there exist a v, 0 < v < H and an open set U in C' such that
(1) V(e) >0 on U, V(¢) =0 on the boundary of U,

(it) 0 belongs to the closure of U N C,,
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(i) V() < u(l(0)]) on UNC,
(iv) V' () > w(|p(0)]) on [0,00) x UNC,,

- %

V' (p) = lim —[V($t+h(t ©)) = V()

h—0t

where u(s), w(s) are continuous, increasing and positive for s > 0, then
the solution x = 0 of (8) is unstable. More specifically, each solution
zi(to, ) of (8) with initial function ¢ in U N C, at to must reach the
bounded of C, in a finite time.

Example

Consider the equation

z (t) = —ax(t) — b(t)z(t —r)

where a + b < 0 and r is any positive constant. We wish to prove by
use of Lyapunov functions that the solution z = 0 of this equation in
unstable. The exact region of stability for this equation is shown in
Figure 1.

The region a+b < 0 is the interior of the intersections of the instability
regions as a function of r.

If F'is any given function and

_ 2 1/t Pt — u) [a(u) — 2(6)] du

2 2

10. OSCILLATIONS AND DELAY

With the origin of the introduction of delays into certain models one
finds the need to take account oscillatory phenomena.
The simple model of the demography is can be written
dN
dt
where the parameter ¢ = r — d, and it is supposed that r and d depend
on the total of the population, we have the equation

dN
(11) g = PN (@) = dN@)]N()
It is natural to suppose that 7(0) > d(0) and that r(/NV) is decreasing
and d(N) is increasing, with 7(c0) < d(oc). The all solutions of (11)
are monotonous increasing if N(0) < N*, decreasing if N(0) > N*
where N* is the unique root of the equation

r(N(t)) = d(N (1))

= aN(t)
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The functions r(N(t)) and d(N(t)) represent the answers which the
population brings to the level reproduction and mortality at any mo-
ment. These answers are made starting from the evaluation of the size
of the population at any moment. If it is supposed now that the rate of
reproduction is not controlled instantaneously but with a delay which
is of about a period of gestation, one leads to the model following

dN

12 —

(12) pm

N* is still the unique stationary solution not equal to zero of the equa-

tion. The Linearization of (12) around of N* gives the following equa-
tion

= [r(N(t = 7)) = d(N ()] N()

d
=T (NO)N"y(t = 7) = d(N)N"y(t)
Let
p=—r'(N*)N*, § =d'(N*)N*
we have p > 0 and § > 0. One can in fact of bringing in case where
0 = 0, by making the change of variable

z(t) = exp(0t)y(t)
one has then
2(t) = —pe’T2(t — )
Thus, we suppose, without loss of general information, that 6 = 0, and
we suppose
p>0
One thus considers the equation

(13) % = —py(t—1)

The characteristic equation of (13) is

A= —pe

Posing z = —A7 and ( = p7 > 0, the equation can be written
(14) ze *=(

The equation (14) has two strictly positive real roots z; < 1 < 2z if
(e }0, é [, z =1 or root doubles if ( = % and no real root if ( > % In
the case when ¢ > 1 all the solutions of (13) are oscillating. It is said
that the equation (13) is oscillating. It is also checked that in this case
all the solutions of the nonlinear equation (12) are oscillating around
solution N*.

The theory of the oscillations studies the conditions under which an
equation is oscillating. This theory was developed with strength in years
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80: it was generalized with all kinds of equations belonging to the cate-
gory of the functional differential equations.

11. STABILITY FUNCTION OF DELAY

The effect of the delay on stability was examined by many authors.
In many examples, a system which was stable remainder in the presence
of one or more delays, this until the delay reaches a value threshold,
beyond which the system becomes unstable. In certain examples, sta-
bility can be found by increasing the delay and there can be a finished
or infinite number of intervals where the system is alternatively stable
then unstable: it is the phenomenon of the switch of stability.

11.1. Tepic result. One considers the equation

(15) Cé—f = ax(t) + bx(t — 7)

The characteristic equation is :
A—a—bexp(—=A1) =0
By making the change of parameter: z = A7, p = ar and ¢ = b7, the
equation becomes
(16) pe’ +q—ze* =0
There is the following result:

Theorem 5. ‘A condition necessary and sufficient so that all the roots
of the equation (16) are the real part strictly negative is that
(i) p<1 and
(i) p < —q < (0% + p?)Y/2, where 0 is the only root of the equation
6 =ptanf, 0 < § < 7w where @ =7/2 if p= 0.

General result: if the equation (15) is stable for 7 = 0, then or well
it is stable for all 7 > 0, or there is a value 7* such that the equation
is stable for 7 < 7* and unstable for all 7 > 7*.

12. THE LOGISTIC EQUATION

Let z(t) denote the population size at time; let b and d denote the
birth rate and death rate, respectively, on the time interval [¢,t + At],
where At > 0. Then

(17) x(t + At) — z(t) = bx(t) — dz(t) At.
Dividing (17) by At and letting At approach zero, we obtain
(18) e _ bx —dx = rz,

dt
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where r = b — d is the intrinsic growth rate of the population. The
solution of equation (18) with an initial population z(0) = ¢ is given
by

(19) z(t) = zpe™.

The function (19) represents the traditional exponential growth if > 0
or decay if r < 0 of a population. Such a population growth. Verhulst
(1836) proposed the following logistic equation

dx x
2 (1= =
(20) (1)
where r > 0 is the intrinsic growth rate and K > 0 is the carrying
capacity of population.. Solving (20) we obtain (z(0) = z,)

@1 o) =

The asymptotic behaviour of solution (21) is described in fig (2).

N
s

n
o [3

FIGURE 2. Solution

If xy < K, the population grows, approaching K asymptotically as
t — oo. If xy > K, the population decreases, again approaching K
asymptotically as t — oo. If xy = K, the population remains in time at
x = K. The above analysis can be summarized into following theorem

Theorem 6. The positive equilibrium x = K of the logistic equation
(20) is globally stable; that is, tlim z(t) = K for solution x(t) of with
—00

any initial value z(0) = x.
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13. HOPF BIFURCATION

13.1. Hutchinson’s Equation. In the classical logistic model it is
assumed that the growth rate of a population at any time ¢ depends
on the relative number of individuals at that time. Hutchinson (1948)
proposed the following more realistic logistic equation

dx(t) z(t —7)

(22 2 = a1 - )

where 7 and K have the same meaning as in the classical logistic equa-
tion (22), 7 > 0 is constant. Equation (22) is often referred to as the
delayed logistic equation.

The initial value of equation (22) is given by

2(0) = ¢(6) > 0,0 € [, 0]

where ¢ is continuous on [—7, 0]. an equilibrium z = z* of (22) is stable
if for any given ¢ > 0 there is a § > 0 such that |¢(¢) —2z*| < § on
[—,0] satisfy |z(t) —z*| < e for all ¢ > 0. If in addition there is a
do > 0 such that |¢(t) — z*| < &y on [—7, 0] implies tliglo z(t) = x*, then
x* is called asymptotically stable.

Notice that equation (22) has equilibria z = 0 and x = K. Small

perturbations from z = 0 satisfy the linear equation d”fi—gt) = rxz(t),
which shows that © = 0 is unstable with exponential growth. We thus
only need to consider the stability of the positive equilibrium z = K.

Let X =z — K. Then,

dX r
Thus, the linearized equation is
dX

We look for solution of the form X (¢) = ce*, where c is a constant and
the eigenvalues A are solutions of the characteristic equation

(24) A+ re™™ =0,

which is a transcendental equation. By the linearization theory x = K
is a asymptotically stale if all eigenvalues of (24) have negative real
parts. In fact, we have the following conclusions.

Theorem 7. (i) If 0 < r7 < %, then the positive equilibrium x = K of
equation (22) is asymptotically stable.
(i) If rm > 7, then x = K is unstable.
(iii) When r1 = %, a Hopf bifurcation occurs at v = K that is, periodic
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solutions bifurcate from x = K. The periodic solutions erist for rt >
and are stable.

The above theorem can be illustrated by Fig where the solid curves
represent stability while the dashed lines indicated instability.

By (iii), the solution of the Hutchinson’s equation (22) can exhibit
stable limit cycle periodic solution for a large range of values of rr,
the product of the birth rate r» and the delay 7. If 7" is the period the
z(t+T) = z(t) for all £. Roughly speaking, the stability of a periodic
solution means that if a perturbation is imposed the solution returns
to the original periodic solution as ¢ — oo with possibly a phase shift.
The period of the solution at the critical delay value is IQJ—Z (Hassard,

Kazarinoff and Wan (1981)), thus, it is 47.

13.2. Van der Pol’s equation. The equations for the RLC electric
circuit illustrated below

can be written as

ic _ Cd’l}(j d’il

%, UL, = LE’ VUp = ¢(iR)

ip = i = —l¢, VR + VL = Vg,



22

where the ¢’s are the currents in the branches indicated by the sub-
scripts and where vg = ¢(ig) is generalized Ohm’s law, characteristic
of the "resistor” R, which is actually an active device. If we set i, = x,
ve = (L/C)Y?y and t = (LC)'/?1, then the equations take the form

g = —y— f(a)

!

y =z
where f(z) = (L/C)"?¢(z) and ' = % denote differentiation which
respect to the scaled time variable 7; Further, if the resistance is de-
scribed by the function

f(x) = —pT + xS,

then the system is a form of van der Pol’s equation. The parameter p
controls the amount of ”gain” of the device R.
For all values of p, (z,y) = (0,0) is a stationary point.

(v )= (4 01)(0)-(5)

so the linear stability of this stationary solution id determined by the

eigenvalues
1
Ma = GpEVi? —4).

For s < —2 the eigenvalues are real and negative; for —2 < p < 0 they
form a complex conjugate pair with negative real part; for 0 < p < 2
they form a complex conjugate pair with positive real part; and for
1 > 2 they are real and positive.
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