Mathematics Homework

Seminar on Optimization and Control

of Physiological Systems Control

Special Research Center for Optimization and Control

(SFB F003 "Optimierung und Kontrolle") Graz, Austria Summer Semester 2001

1. Show that $f(t) = -\sin(2t)$ solves the system

$$\frac{d^2f(t)}{dt^2} + 4f(t) = 0.$$

2. Given the insulin glucose model (from Math Lecture 1):

$$\frac{dg(t)}{dt} = -m_1 g(t) - m_2 h(t)
\frac{dh(t)}{dt} = +m_3 g(t) - m_4 h(t)
\text{ with } m_1 = 1, \quad m_2 = 2, \quad m_3 = 0.5, \quad m_4 = 1$$

- (a) Find the characteristic equation.
- (b) What stability characteristics will be exhibited by the **zero** steady-state for this system.
- (c) Using the eigenvalues find their associated eigenvectors.
- (d) With the eigenvalues and eigenvectors construct $e^{\mathbf{A}t}$ for this system.
- (e) Using the above results, solve the initial value problem with initial condition

$$\mathbf{x}(0) = \mathbf{x}_0 = \left(\begin{array}{c} 1\\2 \end{array}\right)$$

3. What role does linearization play in stability analysis of non linear systems? What are some problems with this method?

- 4. What are the strengths and weaknesses of the above insulin/glucose model as compared to the model given by Prof. Schneditz in the first Physiology Lecture?
- 5. Given the following system

$$\begin{pmatrix} x_1'(t) \\ x_2'(t) \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t).$$

- (a) Show that the above system controllable.
- (b) Find the **feedback matrix** which transforms the system to one with eigenvalues $\lambda = -1$, and $\lambda = -2$.
- 6. We consider the delay differential equation

$$\dot{x}(t) = -x(t - \frac{\pi}{2}) \tag{1}$$

$$\varphi(\frac{\pi}{4}) = x(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \tag{2}$$

$$x(t) = \varphi(t), -\frac{\pi}{4} \le t \le \frac{\pi}{4}$$
 (3)

Verify that $x(t) = \cos t$ and $x(t) = \sin t$ are both solutions of the system (1) - (3) in $R \times R$

7. **EXTRA CREDIT** We consider now the general case with $r \geq 0$

$$\dot{x}(t) = -x(t-r), \ t \ge 0 \tag{4}$$

$$x(t) = \varphi(t), -r \le t \le 0 \tag{5}$$

and we have this theorem

Theorem. The delay differential equation system (4) - (5) has one and only one solution in $R \times C([-\frac{\pi}{2}, 0])$ with initial value φ .

Prove that the delay differential system (1)-(3) has also one and only one solution in $R \times C([-\frac{\pi}{2}, 0])$.