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1. Show that f(t) = —sin(2t) solves the system

d’f(t)
dt?

+4f(t) = 0.

2. Given the insulin glucose model (from Math Lecture 1):

d%d—(tt) = —mig(t) — moh(t)
%(tt) = +mag(t) — msh(t)

withmy =1, mo=2, mg=0.5 my=1

(a) Find the characteristic equation.

(b) What stability characteristics will be exhibited by the zero steady-
state for this system.

(c) Using the eigenvalues find their associated eigenvectors.

(d) With the eigenvalues and eigenvectors construct e®* for this sys-
tem.

(e) Using the above results, solve the initial value problem with initial

condition
x(0) = xo = ( ; )

3. What role does linearization play in stability analysis of non linear
systems? What are some problems with this method?



4. What are the strengths and weaknesses of the above insulin/glucose
model as compared to the model given by Prof. Schneditz in the first
Physiology Lecture?

5. Given the following system
(Fo)= (0 =) ()~ (1)

(a) Show that the above system controllable.

(b) Find the feedback matrix which transforms the system to one
with eigenvalues A = —1, and A\ = —2.

6. We consider the delay differential equation

i(t) = —at—3) (1)
oD = o)=L @
o(t) = (1), —g<t< 3)

Verify that z(f) = cost and z(¢) = sint¢ are both solutions of the
system (1) - (3) in R x R

7. EXTRA CREDIT We consider now the general case with r > 0

z(t) = —z(t—r), t>0 (4)
z(t) = (), —r<i<0 (5)

and we have this theorem

Theorem. The delay differential equation system (4) - (5) has one
and only one solution in R x C([—7F,0]) with initial value .

Prove that the delay differential system (1)-(3) has also one and only
one solution in R x C([-F,0]).



