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1 Abstract

Hemorrhagic shock is the term used for the medical syndrome resulting from insufficient oxygen
perfusion of key organs as a consequence of a significant loss of blood volume to the circulatory
system. The initial reaction to blood loss is a drop in stroke volume (blood pumped by the heart
in one beat) as a result of the Frank Starling mechanism and reduced filling pressure of the heart.
This results in a drop in arterial pressure and (depending on the degree and duration of blood
loss) may lead to a negative and worsening spiral of reactions of the cardiovascular system (CVS)
if not compensated for by the CVS control system. The focus of this paper involves modeling CVS
behavior and in particular the control system response to hemorrhage. We will consider a single
feedback loop to study the impact of increased heart rate on stabilizing arterial blood pressure after
an acute hemorrhage of various degrees. Future applications will involve implementing additional
control elements and the exploration of transfusion mechanisms in clinical settings.

2 Physiology and statement of the problem

Hypovolemia and compensatory mechanisms

Hypovolemia refers to reduced blood volume which may be due to blood loss, fluid loss due to
dialysis and other reasons. Hypovolemia affects blood pressure and other CVS variables. When
Pas drops, vasoconstriction and increased heart rate are seen. In moderate hypovolemia, defined by
a 20 - 40 % loss of blood volume, the drop in Pas begins to be significant and there is the potential
for shock to set in. When greater than 40 % of blood volume is lost (severe hypovolemia), Pas may
drop severely and organ failure begins. Figure 1 depicts the response of Pas to various blood loss
levels due to hemorrhage (from [7]).

Hypovolemia can also occur in dialysis treatment where plasma water depletion can result in
blood volume reduction of about 15 %. This can lead in some cases to a decrease in arterial pressure
serious enough to terminate treatment. This is a serious complication of hemodialysis, as the drop
in blood pressure can be so severe that it requires quick termination of the treatment in up to
one-third of dialysis sessions and up to 60 % of sessions in critically ill patients [4]. Compensatory
mechanisms available to stabilize the CVS after reduction in blood volume consist of a number of
control loops among which the following are key:

• baroreceptor reflexes consisting of high pressure sensors responding to arterial blood pressure
Pas and cardiopulmonary low pressure sensors which respond to central venous pressure;

• hormonal vasoconstrictors transported in circulation influencing primarily arterial and ve-
nous tone which influences pressure due to increased systemic resistance and reduced venous
capacitance;

• chemoreceptor reflexes which respond to changes in CO2 and O2 and which play an important
role when the arterial pressure drops below 60 mmHg – the point where the baroreflex
becomes less effective;

• transfer (auto-transfusion) of tissue (interstitial) fluids into the blood which raises blood
fluid volume - this can compensate for about 15 % of lost volume [11];

• reabsorption of sodium and water by kidney which raises blood fluid volume.

The sites at which the baroreflex and chemoreflex sensors are located are depicted in Figure 2.
The sites for both are located in the carotid and aortic bodies (perhaps they even overlap) on the
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Figure 1: Blood pressure response to blood volume reduction (adapted from Guyton and Klaubun-
des).

Figure 2: Sensory system diagram for the control loops

systemic arterial side while the cardiopulmonary sensors are near the region of the entrance and
exit to the right heart. Figure 3 provides a schematic diagram of the cardiovascular-respiratory
system indicating the baroreflex and respiratory feedback controls.

Baroreflex firing is reduced due to reduced arterial pressure. This leads to inhibition of the
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Figure 3: Block diagram for the model

cardioinhibitory area of the vasomotor center via parasympathetic output, as well as increased
sympathetic activity from the vasomotor center. This results in increased vasoconstriction, and
increased heart rate and contractility which raises cardiac output. Vascular constriction in splanch-
nic and skin tissue shifts blood to critical organs such as the brain and heart.

Hormonal control also acts to control cardiovascular function including heart rate and vaso-
constriction. There are a number of feedback loops involving hormonal mechanisms including
circulating catecholamines, the renin-angiotensin system, and vasopressin, among others. The
chemoreceptor control loop is most important when Pas falls below 60 mmHg where baroreceptor
sensitivity falls off. Chemoreceptors also stimulate respiration which may help mechanically to
increase venous return. They also respond to acidosis.

Renal control responds to renal blood flow. When reduced, the response is increased production
of renin which stimulates the production of angiotensin II which induces vasoconstriction. The
renal control loop also contributes to the release of aldosterone from the adrenal cortex, which
aids the reabsorption of salt and water. Water absorption is further induced by the increased
production of vasopressin (ADH).

As a result of changes in capillary pressure and blood content ratios, fluid can be released from
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interstitial space into the blood. This is known as auto-infusion or auto-transfusion.
Figures 4, 5, and 6 provide schematic diagrams of the baroreceptor, vasoconstrictor, and renal

control loops. It is interesting to note that one study showed that an 8 % drop in blood volume
can result in a 12 % drop in aortic pressure when the compensatory mechanisms operate but
can result in drops of 50 % or more if these mechanisms are impaired. Thus, understanding the
action of these control loops is important and models describing the response to hemorrhage are
of considerable medical and research interest.

Clearly, as can be seen from Figures 4, 5 and 6 and the discussion, the control processes are
complex and interrelated and quantitative predictions for system performance depend on accurate
models of the CVS and its control mechanisms. An excellent overview of these processes can be
found in [2].

This paper will focus on studying how the CVS response to hemorrhage can be modeled.
Mathematically the problem is formulated as a control problem. We adapt a model we have used
previously to study the behavior of the CVS in other contexts such as transition from rest to aerobic
exercise, orthostatic stress, and the transition from rest to quiet sleep. See, e.g., [1, 6, 8, 9, 15].
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3 Mathematical model

Full details and description of the basic model can be found in the papers cited above (see especially
[8]). We present here the basic model equations and the general basis for their derivation as well
as aspects particular to modeling hypovolemia and hemorrhage. Other models which consider this
problem can be found in [3, 4, 11]. Figure 3 provides a block diagram for the system. For current
purposes, we only consider the cardiovascular system with the lungs and tissue compartments
acting as resistances to flows Fp and Fs respectively. Equations for the respiratory component can
be included in a manner similar to that found in Batzel et al. 2003, [1] and Fink et al. 2004 [6].

Basic mathematical model

The basic model consists of the following cardiovascular equations:

casṖas = Q` − Fs, (1)

cvsṖvs = −Qr + Fs, (2)

capṖap = Qr − Fp, (3)

cvpṖvp = Fp −Q`, (4)

Ṡ` = σ`, (5)

Ṡr = σr, (6)

σ̇` = −γ`σ` − α`S` + β`H, (7)

σ̇r = −γrσr − αrSr + βrH, (8)

Ḣ = u1, (9)

ċvs = u2. (10)

Equations (1-4) are derived as mass balance equations for for the circuit elements consisting of
the four lumped vascular volume compartments of arterial systemic (as), venous systemic (vs),
arterial pulmonary (ap) , and venous pulmonary (vp). The right side of each of these equations
(1-4) describe the blood inflow and outflow from the circuit element. The left side of each of
these equations describe the change in volume in the compartment as calculated by pressure P
multiplied by capacitance c. Thus, for example, in Equation (1) the left hand side describes the
product casṖas of arterial systemic capacitance and rate of change of arterial blood pressure Pas.
Equations (5-8) represent a model for the Bowditch effect which describes the effect of heart rate
H on left and right heart contractility S` and Sr. The symbols Q` and Qr denote cardiac outputs
from the left and right heart respectively while cas denotes capacitance of the arterial systemic
compartment and similarly for the other symbols cvs, cap, cvp. Values for the parameters are given
in Table 2. Auxiliary equations relating flow and pressure are given as:

Fs = (Pas − Pvs) /Rs, (11)

Fp = (Pap − Pvp) /Rp. (12)

where Rs and Rp denote the vascular resistances of the systemic and pulmonary systems respec-
tively. Cardiac outputs Q` and Qr are defined in Equations (13-14) as the product of heart rate
H and stroke volume Vstr. Stroke volume depends upon filling pressure, time of diastole td, and
other considerations. The expression for Vstr can be seen as the remaining factors in Equations
(13-14) excluding H . See [8] for the derivation of this expression for Vstr. The formula f is used as
a minimum function to exclude the possibility that Vstr could be greater than the filling volume.
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Q`(t) = H
c`Pvp(t)f

(
S`(t), Pas(t)

)(
1− k`

)

Pas(t)
(

1− k`
)

+ f
(
S`(t), Pas(t)

)
k`
, (13)

Qr(t) = H
crPvs(t)f

(
Sr(t), Pap(t)

)(
1− kr

)

Pap(t)
(

1− kr

)
+ f

(
Sr(t), Pap(t)

)
kr

, (14)

where k`, kr, f , and td are defined as

k` = exp(−td/(R`c`)) and kr = exp(−td/(Rrcr)), (15)

f(s, p) = 0.5(s+ p)− 0.5
(
(p− s)2 + 0.01

)1/2
, (16)

td =
60

H
− κ

(
60

H

)1/2

. (17)

The control equations in the above model set up appear as u1 and u2 in the last two equations
(9-10):

Ḣ = u1, , ċvs = u2.

These represent the change of heart rate H and venouse capacitance cvs due to the baroreflex
response to levels of blood presure Pas. The controls u1 and u2 are derived via the cost functional:

∫∞
0 qa

(
Pas − P fas

)2
+ qv

(
Pvs − P fvs

)2
+ q1 (u1)

2
+ q2 (u2)

2
dt

which defines the optimal behavior of the system. The feedback control is defined by linearizing
about a steady state and deriving the feedback gain matrix (algebraic Riccati equation) which
drives the linear system to this steady state in an optimal way as defined by the cost function
above. This control is used to stabilize the nonlinear system Eq. (1) to Eq. (10). This control will
be suboptimal in the sense of Russell [12] and still stabilizing for the non linear system provided
that specified deviations are sufficiently small.

In fact the sympathetic system also alters systemic resistance and contractility and hormonal
influences also change some of these quantities as well as fluid retention. These effects can be
included in the control or included as an exponential variation in these quantities to reflect these
effects (by varying Apesk, β`, and βr). Further details on this approach are given in Section 5.
For the preliminary simulations in this paper we only consider one control, namely the variation
in heart rate.

Modeling hemorrhage

Basic considerations

In modeling hemorrhage and hypovolemia it is necessary to consider:

• where and how fast blood is lost from the system;

• how to model auto-transfusion from the interstitium;

• how to implement exterior (clinical) transfusion.

• which features of hemorrhagic shock and deterioration of system and organ function to
model;

• how to implement the maximum sustainable heart rate as part of the control;
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• how to reflect any inefficiencies in the system function due to reduced blood volume; filling
pressure, or heightened heart rate produced only by the baroreflex response and hormonal
effects.

Blood loss from an artery is a more serious matter than blood loss from a vein. Arterial blood
loss should be modeled so that the loss rate is reduced as the blood volume and pressure are
reduced. Exterior transfusion should be applied in the systemic venous compartment. There are
a number of choices on type of fluid and regimen to be considered in exterior transfusion.

Even though auto-transfusion from the interstitium can only restore about 15 % of blood plasma
volume it is a key element in stabilizing blood pressure and ultimately it should be modeled with
an interstitial compartment.

One aspect of hemorrhagic shock is the deterioration in cardiac performance due to reduced
blood flow to the heart. This can be a consequence of either tissue damage or inefficient perfor-
mance due to disruption of normal CO2 and O2 levels. A reduction in contractility can reflect
these features and there are several ways to model the reduction in contractility.

Obviously after the maximum sustainable heart rate (and cardiac output) is reached any further
loss of blood volume will tend to imply a potential steady state with reduced Pas. Thus the system
may stabilize at a lower Pas or continue to deteriorate if more volume is lost or system performance
erodes due to the shock condition.

Animal data is readily available but clearly human data on hemorrhage is not easily obtained.
Data from hypovolemia in dialysis can provide some human corroboration of simulated results and
a current review by Cooke et al. 2004 [5] has justified the use of lower body negative pressure as
a model to study acute hemorrhagic shock in humans.

Inefficiency in response

The Betzold-Jarisch reflex is a cardiovascular reflex which has a depressor effect on cardiovascular
function. The reflex involves a significant increase in vagal parasympathetic discharge to the heart,
elicited most likely by stimulation of chemoreceptors, primarily in the left ventricle. The reflex
causes a slowing of the heart beat (bradycardia) and dilatation of the peripheral blood vessels
with resulting lowering of the blood pressure.

According to Secher et al. (1992) [13] ”Heart rate response to reversible central hypovolemia
can be divided into three stages. In the first stage (corresponding to a reduction of the blood
volume by approximately 15 %) a modest increase in heart rate (< 100 beats/min) and total
peripheral resistance compensate for the blood loss, and a near normal arterial blood pressure
prevails (preshock). During the second stage, a reduction of the central blood volume by approx-
imately 30 % results in a decrease in heart rate, total peripheral resistance and blood pressure
due to activation of unmyelinated vagal afferents (C-fibres) from the left ventricle. In the third
stage, blood pressure falls further as haemorrhage continues and tachycardia (> 120 beats/min)
is manifest”.

Control strategy

The algorithm we use to model the impact of blood volume loss is given in Section 5, but as an
overview the feedback controls are constructed according to the following requirements:

(i) At each time t the control tries to steer the system to an equilibrium, where the arterial
systemic pressure P̄as equals the pressure Pas,0 before the hemorrhage occurred. There is
one degree of freedom in the steady state calculation.

(ii) There is a maximal sustainable heart rate He,max.

(iii) If at the calculated equilibrium with P̄as = Pas,0 the heart rate is larger than He,max, then
the control tries to steer the system to the equilibrium picking H̄ = He,max.
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4 Steady state calculations

Steady state calculation are provided in this section. As noted above, there is one degree of
freedom in the steady state calculation. It is shown that the steady state relations can be reduced
to solving one equation in one unknown once a value for H or Pas is chosen. Calculations for both
of these cases are given because the algorithm for the control requires that H be varied to drive
the system back to the prescribed normal Pas level as long as H ≤ He,max. When the situation is
such that the control requires that H > He,max then the control is set to He,max and the a level
for Pas is derived from this assumption.

The reduction of the steady state relations to a single equation together with numerical anal-
ysis indicates that there is a unique equilibrium in the region of reasonable physiological values.
Furthermore, using this simplified structure, the numerical calculation of the equilibrium is ex-
tremely successful, whereas when numerical solvers are applied to the steady state relations using
more than one equation a solution is not always achievable.

The model without auto-regulation

In case of an equilibrium we have Fp = Fs = Q` = Qr =: F , which gives the equations:

1

Rp
(Pap − Pvp) = F, (18)

1

Rs
(Pas − Pvs) = F, (19)

Hf(Sr, Pap)
crar(H)Pvs

Papar(H) + f(Sr, Pap)kr(H)
= F, (20)

Hf(S`, Pas)
c`a`(H)Pvp

Pasa`(H) + f(S`, Pas)k`(H)
= F, (21)

where

kr(H) = e−(crRr)
−1td(H), ar(H) = 1− kr(H),

k`(H) = e−(c`R`)
−1td(H), a`(H) = 1− k`(H)

and
f(S, P ) = min(S, P ).

In addition we have
casPas + cvsPvs + capPap + cvpPvp = V0 (22)

and

Sr =
βr

αr
H, S` =

β`
α`
H. (23)

H or F is given

We consider equations (18) – (22) as a linear system for Pas,. . . ,Pvp. In doing this we have to
distinguish four cases:

Case 1: Sr < Pap and S` < Pas.
In this case we have f(Sr, Pap) = Sr and f(S`, Pas) = S`. Then equations (18) – (22) have the
form

Pap − Pvp = RpF,

Pas − Pvs = RsF,

ar(H)FPap + Srkr(H)F = HSrcrar(H)Pvs,

a`(H)FPas + S`k`(H)F = HS`c`a`(H)Pvp,

casPas + cvsPvs + capPap + cvpPvp = V0.

(24)
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With the notation

µr(H) = HSrcrar(H) =
βr

αr
crar(H)H2,

µ`(H) =
β`
α`
c`a`(H)H2,

λr(H,F ) = Srkr(H)F =
βr

αr
kr(H)HF,

λ`(H,F ) =
β`
α`
k`(H)HF,

νr(H,F ) = ar(H)F, ν`(H,F ) = a`(H)F

(25)

system (24) can be written as




0 0 1 −1 RpF

1 −1 0 0 RsF

0 µr(H) −νr(H,F ) 0 λr(H,F )

ν`(H,F ) 0 0 −µ`(H) −λ`(H,F )

cas cvs cap cvp V0



.

If we solve the first four equations for Pas, Pvs, Pap and Pvp we obtain

Pas =
νr(H,F )λ`(H,F ) + µ`(H)

(
λr(H,F ) + νr(H,F )RpF + µr(H)RsF

)

µr(H)µ`(H)− νr(H,F )ν`(H,F )
,

Pvs =
µ`(H)λr(H,F ) + νr(H,F )

(
λ`(H,F ) + µ`(H)RpF + ν`(H,F )RsF

)

µr(H)µ`(H)− νr(H,F )ν`(H,F )
,

Pap =
ν`(H,F )λr(H,F ) + µr(H)

(
λ`(H,F ) + ν`(H,F )RsF + µ`(H)RpF

)

µr(H)µ`(H)− νr(H,F )ν`(H,F )
,

Pvp =
µr(H)λ`(H,F ) + ν`(H,F )

(
λr(H,F ) + µr(H)RsF + νr(H,F )RpF

)

µr(H)µ`(H)− νr(H,F )ν`(H,F )
.

(26)

System (24) is solvable if and only if

casPas + cvsPvs + capPap + cvpPvp = V0

for Pas, Pvs, Pap and Pvp given by (26). As a result we get the following equation:

(cas + cvs)
(
νr(H,F )λ`(H,F ) + µ`(H)λr(H,F ) + νr(H,F )µ`(H)RpF

)

+ (cap + cvp)
(
µr(H)λ`(H,F ) + ν`(H,F )λr(H,F ) + µr(H)ν`(H,F )RsF

)

+ (casRs + capRp)µr(H)µ`(H)F + (cvsRs + cvpRp)νr(H)ν`(H)F

=
(
µr(H)µ`(H)− νr(H,F )ν`(H,F )

)
V0. (27)

This is a non-linear equation for F respectively H , if H respectively F is given. Once we have
computed F respectively H , we get Pas,. . . ,Pvp either from (26) or from

Pvs =
µ`(H)λr(H,F ) + νr(H,F )

(
ν`(H,F )RsF + λ`(H,F ) + µ`(H)RpF

)

µr(H)µ`(H)− νr(H,F )ν`(H,F )
,

Pas = Pvs +RsF,

Pvp =
µ`(H,F )λr(H,F ) + µr(H)

(
λ`(H,F ) + ν`(H,F )RsF + µ`(H)RpF

)

µr(H)µ`(H)− νr(H,F )ν`(H,F )
,

Pap = Pvp +RpF.

(28)
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Of course, Sr and S` are given by (23).

Case 2: Sr < Pap and S` ≥ Pas.
In this case we have f(Sr, Pap) = Sr and f(S`, Pas) = Pas. Then equations (18) – (22) have the
form (using also the notation introduced in (25))

Pap − Pvp = RpF,

Pas − Pvs = RsF,

νr(H,F )Pap + λr(H,F ) = µr(H)Pvs,

F = c`a`(H)HPvp,

casPas + cvsPvs + capPap + cvpPvp = V0,

(29)

which can be written as




0 0 1 −1 RpF

1 −1 0 0 RsF

0 µr(H) −νr(H,F ) 0 λr(H,F )

0 0 0 c`a`(H)H F

cas cvs cap cvp V0



.

Solving the first four equations for Pas, Pvs, Pap and Pvp we obtain

Pas = RsF +
νr(H,F )

µr(H)
RpF +

λr(H,F )

µr(H)
+
νr(H,F )

µr(H)

F

c`a`(H)H
,

Pvs =
νr(H,F )

µr(H)
RpF +

λr(H,F )

µr(H)
+
νr(H,F )

µr(H)

F

c`a`(H)H
,

Pap = RpF +
F

c`a`(H)H
,

Pvp =
F

c`a`(H)H
.

(30)

System (29) is solvable if and only if

casPas + cvsPvs + capPap + cvpPvp = V0

for Pas, Pvs, Pap and Pvp given by (30). As a result we get the following equation:

(cas + cvs)
(
λr(H,F ) + νr(H,F )RpF +

νr(H,F )F

c`a`(H)H

)
+ µr(H)casRsF

+ (cap + cvp)
µr(H)F

c`a`(H)H
+ capµr(H)RpF = µr(H)V0. (31)

This is a non-linear equation for F respectively H , if H respectively F is given. Once we have
computed F respectively H , we get Pas,. . . ,Pvp either from (30) or from

Pvp =
F

c`a`(H)H
,

Pap = RpF + Pvp,

Pvs =
νr(H,F )

µr(H)
Pap +

λr(H,F )

µr(H)
,

Pas = RsF + Pvs.

(32)

Of course, Sr and S` are given by (23).
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Case 3: Sr ≥ Pap and S` < Pas.
In this case we have f(Sr, Pap) = Pap and f(S`, Pas) = S`. Then equations (18) – (22) have the
form (using also the notation introduced in (25))

Pap − Pvp = RpF,

Pas − Pvs = RsF,

F = crar(H)HPvs,

ν`(H,F )Pas + λ`(H,F ) = µ`(H)Pvp,

casPas + cvsPvs + capPap + cvpPvp = V0,

(33)

which can be written as




0 0 1 −1 RpF

1 −1 0 0 RsF

0 crar(H)H 0 0 F

−ν`(H,F ) 0 0 µ`(H) λ`(H,F )

cas cvs cap cvp V0



.

Solving the first four equations for Pas, Pvs, Pap and Pvp we obtain

Pas = RsF +
F

crar(H)H
,

Pvs =
F

crar(H)H
,

Pap = RpF +
ν`(H,F )

µ`(H)

F

crar(H)H
+
λ`(H,F )

µ`(H)
+
ν`(H,F )

µ`(H)
RsF,

Pvp =
ν`(H,F )

µ`(H)

F

crar(H)H
+
ν`(H,F )

µ`(H)
RsF +

λ`(H,F )

µ`(H)
.

(34)

System (33) is solvable if and only if

casPas + cvsPvs + capPap + cvpPvp = V0

for Pas, Pvs, Pap and Pvp given by (34). As a result we get the following equation:

µ`(H)casRsF + (cas + cvs)
µ`(H)F

crar(H)H
+ capµ`(H)RpF

(cap + cvp)
(
λ`(H,F ) + ν`(H,F )RsF +

ν`(H,F )F

crar(H)H

)
= µ`(H)V0. (35)

This is a non-linear equation for F respectively H , if H respectively F is given. Once we have
computed F respectively H , we get Pas,. . . ,Pvp either from (34) or from

Pvs =
F

crar(H)H
,

Pas = RsF + Pvs,

Pvp =
ν`(H,F )

µ`(H)
Pas +

λ`(H,F )

µ`(H)
,

Pap = RpF + Pvp.

(36)

Again, Sr and S` are given by (23).
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Case 4: Sr ≥ Pap and S` ≥ Pas.
In this case we have f(Sr, Pap) = Pap and f(S`, Pas) = Pas. Then equations (18) – (22) have the
form (using also the notation introduced in (25))

Pap − Pvp = RpF,

Pas − Pvs = RsF,

F = crar(H)HPvs,

F = c`a`(H)HPvp,

casPas + cvsPvs + capPap + cvpPvp = V0,

(37)

which can be written as




0 0 1 −1 RpF

1 −1 0 0 RsF

0 crar(H)H 0 0 F

0 0 0 c`a`(H)H F

cas cvs cap cvp V0



.

Solving the first four equations for Pas, Pvs, Pap and Pvp we obtain

Pvs =
F

crar(H)H
,

Pas = RsF +
F

crar(H)H
,

Pvp =
F

c`a`(H)H
,

Pap = RpF +
F

c`a`(H)H
.

(38)

System (37) is solvable if and only if

casPas + cvsPvs + capPap + cvpPvp = V0

for Pas, Pvs, Pap and Pvp given by (38). As a result we get the following equation:

casRs + capRp + (cas + cvs)
1

crar(H)H
+ (cap + cvp)

1

c`a`(H)H
=
V0

F
. (39)

This is a linear equation for F respectively a non-linear equation for H , if H respectively F is
given. Once we have computed F respectively H , we get Pas,. . . ,Pvp either from (38) or from

Pvs =
F

crar(H)H
,

Pas = RsF + Pvs,

Pvp =
F

c`a`(H)H
,

Pap = RpF + Pvp.

(40)

As before, Sr and S` are given by (23).

Once we have computed Pas, Pvs, Pap, Pvp, Sr and S` in all four cases, we can decide which
case is valid.
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Pas is given

Case 1: Sr < Pap and S` < Pas.
Equations (18) and (19) imply

RpPvs +RsPap −RsPvp = RpPas. (41)

and equation (22) is written as

cvsPvs + capPap + cvpPvp = V0 − casPas (42)

and equations (19) and (21) imply (note that min(S`, Pas) = S` and min(Sr, Pap) = Sr in this
case) (

Pasa`(H) + S`k`(H)
)
Pvs +HS`Rsc`a`(H)Pvp = Pas

(
Pasa`(H) + S`k`(H)

)
. (43)

We introduce the function

δ(H) =
RsS`c`a`(H)H

Pasa`(H) + S`k`(H)
=

c`β`Rsa`(H)H2

α`a`(H)Pas + β`k`(H)H

and write equations (41) – (43) as



Rp Rs −Rs RpPas

cvs cap cvp V0 − casPas

1 0 δ(H) Pas


 ,

which is transformed to




0 Rs −Rs −Rpδ(H) 0

0 cap cvp − cvsδ(H) V0 − (cas + cvs)Pas

1 0 δ(H) Pas


 .

From the first equation we obtain

Pap =
(

1 +
Rp

Rs
δ(H)

)
Pvp.

This and the second equation imply

(
cap + cap

Rp

Rs
δ(H) + cvp − cvsδ(H)

)
Pvp = V0 − (cas + cvs)Pas

respectively

Pvp =
V0 − (cas + cvs)Pas

cap + cvp +
(
cap

Rp

Rs
− cvs

)
δ(H)

=: η(H). (44)

Then we get

Pap =
(

1 +
Rp

Rs
δ(H)

)
η(H) (45)

and

Pvs = Pas − δ(H)η(H). (46)

From equation (18) we get

F =
1

Rs
δ(H)η(H).

14



Using this in (20) gives

1

Rs
δ(H)η(H) = HSr

crar(H)Pvs

Papar(H) + Srkr(H)

=
HSrcrar(H)

(
Pas − δ(H)η(H)

)

ar(H)
(

1 +
Rp

Rs
δ(H)

)
η(H) + Srkr(H)

or, equivalently,

1

Rs
δ(H)η(H) =

βr

αr

crar(H)H2
(
Pas − δ(H)η(H)

)

ar(H)
(

1 +
Rp

Rs
δ(H)

)
η(H) + βr

αr
kr(H)H

.

This is an equation for H . Once we have determined H , we get Pvs, Pap, Pvp from (44) – (46)
and S`, Sr from (23).

Case 2: Sr < Pap and S` ≥ Pas.
Equation (21) implies c`a`(H)HPvp = F respectively

Pvp =
F

c`a`(H)H
. (47)

From equation (19) we see that
Pvs = Pas −RsF. (48)

and equation (18) implies

Pap =
( 1

c`a`(H)H
−Rp

)
F. (49)

Using (47) – (49) in (42) we get

( cap + cvp

c`a`(H)H
− cvsRs − capRp

)
F = V0 − (cas + cvs)Pas

respectively

F =

(
V0 − (cas + cvs)Pas

)
c`a`(H)H

cap + cvp − c`a`(H)H(cvsRs + capRp)
=: δ0(H). (50)

Using this and (48), (49) in equation (20) we get

βr

αr
crar(H)H2(Pas +Rpδ0(H)) = δ0(H)

(( 1

c`a`(H)H
−Rp

)
δ0(H)ar(H) +

βr

αr
kr(H)H

)
. (51)

This is an equation for H . Once we have determined H , we get F from (50) and then Pvs, Pap,
Pvp from (47) – (49) and, finally, S`, Sr from (23).

Case 3: Sr ≥ Pap and S` < Pas.
We have f(Sr, Pap) = Pap and f(S`, Pas) = S`. Then equation (20) implies

Pvs =
F

crar(H)H
.

On the other hand we get from (19)

Pvs = Pas −RsF. (52)

These two equations imply

F =
crar(H)HPas

1 + crar(H)HRs
=: δ1(H). (53)
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From equations (21) and (18) we obtain

Pvp =
F
(
α`a`(H)Pas + β`k`(H)H

)

β`c`a`(H)H2
(54)

and

Pap = RpF + Pvp = RpF +
F
(
α`a`(H)Pas + β`k`(H)H

)

β`c`a`(H)H2
. (55)

The system (18) – (22) is solvable if and only if we have

(cas + cvs)Pas + (capRp − cvsRs)δ1(H) + (cap + cvp)
δ1(H)

(
α`a`(H)Pas + β`k`(H)H

)

β`c`a`(H)H2
= V0. (56)

this is a non-linear equation for H . Once we have computed H we get F from (53) and then Pvs,
Pap, Pvp from (52), (54) and (55). As usual, Sr and S` are obtained from (23).

Case 4: Sr ≥ Pap and S` ≥ Pas.
We have f(Sr, Pap) = Pap and f(S`, Pas) = Pas. Then equations (20) and (21) imply

Pvs =
F

crar(H)H2
,

Pvp =
F

c`a`(H)H2
. (57)

From (19) we get
Pvs = Pas −RsF. (58)

As in Case 3 we have
F = δ1(H). (59)

From equation (18) we get

Pap = F (Rp +
1

c`a`(H)H2
.

The solvability condition for the system (18) – (22) is

(cas + cvs)Pas + (capRp − cvsRs)δ1(H) + (cap + cvp)
δ1(H)

c`a`(H)H2
= V0. (60)

This equation determines H . Then we get F from (59) and Pvs, Pap, Pvp from (58), (57) and
Pap = Pvp +RpF . Again, Sr and S` are given by (23).

5 Simulation

Algorithm for control design

When designing a control that directs the transition from a single initial perturbation (which may
be an initial steady state) xi to the final state xf the following steps are carried out:

• Compute the steady states ”initial”, xi, and ”final”, xf .
where the steady states ”initial” and ”final are defined by parameter changes such as: change
in blood volume over the interval due to hemorrhage, interstitial replacement or transfusion.

• The control functions ui (depending on the number of controls modeled) which transfer
the system (Eq. (1) to Eq. (10)) from the initial steady state to the final steady state are
found as follows. We consider the linearized system around state xf with initial condition
x(0) = xi, and the cost functional as given in Eq. (3). We then compute the control
functions ui such that the cost functional is minimized subject to the linearized system.
These control functions are defined by the feedback gain matrix which is found by solving
an associated algebraic matrix-Riccati equation. In particular, the ui are given as feedback
control functions.
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• This control is used to stabilize the nonlinear system Eq. (1) to Eq. (10). This control will
be suboptimal in the sense of Russell [12] and still stabilizing.

As hemorrhage continues, the change in blood volume implies that the control response must
change. We adapt the one step control design described above as follows. We carry out the above
control derivation process over small time steps, recalculating the control after a small time step
in which the blood volume is altered by the hemorrhage. We use the final state of the system xk
at the kth step as the initial state for the simulation at the k + 1 step. The control at the k + 1
step is found using the equilibrium calculated using the volume at the end of the kth step. This
implements a form of adaptive control using the following algorithm:

Algorithm for hemorrhage

As mentioned above, the feedback controls are constructed according to the following requirements:

(i) At each time t the control tries to steer the system to an equilibrium, where the arterial
systemic pressure P̄as equals the pressure Pas,0 before the hemorrhage occurred.

(ii) There is a maximal heart rate He,max acceptable at an equilibrium.

(iii) If at the calculated equilibrium with P̄as = Pas,0 the heart rate is larger than He,max, then
the control tries to steer the system to the equilibrium with H̄ = He,max.

We introduce the following notation:

x̄e,t . . . equilibrium, which at time t is the goal of the control efforts.
p̄t . . . parameter vector at time t.
At . . . system matrix for the linearized system around x̄e,t

, and At = ∂f
∂x (x̄e,t, p̄t), where

ẋ(t) = f(x(t), p̄t) +Bu(t),

y(t) = Cx(t)

with B = col (0, . . . , 0, 1) and C = (1, 0, . . . , 0) is the model for the
cardiovascular system.

Xt . . . solution of the Riccati equation AT
t X +XAt −XBBTX + CTC = 0.

He,max . . . maximal acceptable heart rate at an equilibrium (∼ 130 beats/min)

The parameter vector changes in time. This is due to the following effects:

a) Change of V0 as a consequence of hemorrhage, infusion and exchange processes with the
interstitium (capillary refill, loss of cristalloid or colloid substitutes from plasma into the
interstitium).

b) Change of Rs and Rp as a consequence of changing viscosity of blood.

The control u(t) at time t ≥ 0 is calculated as follows:

Step 1: Determine the parameter vector p̄t.

Step 2: Compute x̄e,t = col
(
P̄as, . . . , H̄

)
from f(x, p) = 0 with P̄as = Pas,0 and p = p̄t.

Step 3: If H̄ ≤ He,max, then accept x̄e,t, compute Xt and set

u(t) = −BTXt(x(t) − x̄e,t).

Step 4: If H̄ > He,max, then calculate x̄e,t with H̄ = He,max and p = p̄t. Compute Xt and set

u(t) = −BTXt(x(t) − x̄e,t).
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Simulation results

We model several levels of acute hemorrhage and consider the response of heart rate to the reduced
blood volume. The heart rate control will act to restore arterial pressure Pas by increasing H up
to the maximum sustainable rate He,max described above. Once He,max is reached the system will
stabilize around a reduced steady state Pas consistent with this fixed control He,max.

Figure 7 provides the state variable simulation for an acute hemorrhage of 20 % blood loss in
one minute. Figure 8 provides the auxiliary variable simulations for the same case. The vertical
line in the simulation of H increases to 100 bpm at the top of the graph which is the maximal
heart rate.
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Figure 7: 20 % blood loss in 1 minute: state variables
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Figure 8: 20 % blood loss in 1 minute: auxiliary variables where V is blood volume

Figure 9 provides the state variable simulation for an acute hemorrhage of 45 % blood loss in
one minute. Figure 10 provides the auxiliary variable simulations for the same case. Again, the
vertical line in the simulation of H increases to 100 bpm which is the maximal heart rate. Figure
11 focuses on the key variables of Pas, Q`, S`, H , V and and Vstrl. Comparison can be made to
the data provided by Guyton and Crowell (1961) [7] in Figure 1 for animal experiments of acute
hemorrhage.
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Figure 9: 45 % blood loss in 1 minute: state variables
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Figure 10: 45 % blood loss in 1 minute: auxiliary variables where V is blood volume

In these simulations the quick initial drop in Pas is consistent with the data provided in [7].
Also for the 45 % blood loss case, the fact that recovery to original Pas levels is consistent with the
data and reflects the fact that a maximal sustainable heart rate exists which is lower than that
for exercise because it is the response only of the baroreflex. There are a number of issues to be
addressed in this model which will be discussed in Section 7.
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Figure 11: 45 % blood loss in 1 minute: key variables where V is blood volume
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6 The transfusion problem

It is estimated that more than 4.9 million patients in the United States receive transfusion every
year because of blood loss occurring in different situations such as accidents, transplants, cancer
therapies, anemia, and other situations (National Blood Data Resource Center). It is relevant
to point out that it was noted in an editorial in a recent issue of the New England Journal of
Medicine [10] that ”The art of fluid administration and hemodynamic support is one of the most
challenging aspects of treating critically ill patients. Considering that every year in the United
States over 11 million units of red cells are transfused in more than 3 million patients, there is a
surprising paucity of data to guide decisions on transfusion.”

This editorial goes on to note that there exists a transfusion algorithm developed by the
American College of Physicians based on a consensus of experts, and not on quantitative analysis.
It also notes that transfusion regimens in critically ill patients varies widely, with ”an estimated
66 percent of transfusions are administered inappropriately.” Thus a fuller understanding of the
control interactions of the various control systems of the cardiovascular and respiratory systems
as it relates to blood volume control and the development of mathematical models which describe
these interactions is essential to developing optimal strategies for treatment. Acute hemorrhage
treatment issues include the following areas:

• What fluid should be used in acute hemorrhage treatment? How administered?

– isotonic vs hypertonic fluids,

– whole blood vs packed blood,

– crystaloid vs non-crystaloid fluids,

– hemoglobin or perfluorocarbon-based solutions.

• What treatment is best for individuals who have medical conditions?

– patients that are at risk for myocardial infarction,

– patients with kidney disease,

– patients with diabetes,

– older individuals.

Information on types of fluids and transfusion protocol can be found at [16].

7 Future work on transfusion problem

This paper presents the issues to be examined in this area of research and some preliminary results.
Qualitatively the model produces results consistent with clinical and experimental experience. The
following points need to be addressed:

• The simulations at this point include only the response of H to volume loss. It is necessary
to add to the model the other sympathetic effects of increased systemic resistance, effects
on contractility, venous capacitance, and volume shifts. It will also be necessary to model
interstitial fluid auto-transfusion as discussed in Section 2. This effect can act to replace
about 15 % of lost volume and raise blood pressure.

• The simulations indicate that with the model as presented, the control H can act more
effectively than data suggests ([7]). The recovery time in the simulations is much faster
than it appears to be in reality suggesting that further mechanisms need to be included
such as inefficiency in filling at high H , increased ventricular viscouse resistance, or some
manifestation of the Betzold-Jarisch reflex responsible for paradoxical bradychardia when
the filling volume is very low.
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• Comparison data from humans is hard to come by in this area and animal experiments
often include denervation of feedback circuits. It is important also to consider where blood
pressure is measured (aortic or femoral pressure) when comparing dynamics. The model
generates MAP for a single mixed arterial compartment.

• Blood loss should be proportional to blood pressure (lower pressure reduces the flow out of
the body). Transfusion will be modeled intravenously.
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Symbol Meaning Unit

α coefficient of S in the differential equation for σ min−2

Apesk Rs = ApeskCv,O2 mmHg ·min ·l−1

β coefficient of H in the differential equation for σ mmHg ·min−1

frac upper compartment fraction of basic total prone systemic volume 1
cas capacitance of the arterial part of the systemic circuit l ·mmHg−1

cap capacitance of the arterial part of the pulmonary circuit l ·mmHg−1

cvs capacitance of the venous part of the systemic circuit l ·mmHg−1

cvp capacitance of the venous part of the pulmonary circuit l ·mmHg−1

Fp blood flow perfusing the lung compartment l ·min−1

Fs blood flow perfusing the tissue compartment l ·min−1

H heart rate min−1

γ coefficient of σ in the differential equation for σ min−1

Pas mean blood pressure in arterial region: systemic circuit mmHg
Pap mean blood pressure in arterial region: pulmonary circuit mmHg
Pvs mean blood pressure in venous region: systemic circuit mmHg
Pvp mean blood pressure in venous region: pulmonary circuit mmHg

Q cardiac output l ·min−1

Rp resistance in the peripheral region of the pulmonary circuit mmHg ·min ·l−1

Rs peripheral resistance in the systemic circuit mmHg ·min ·l−1

S contractility of the ventricle mmHg

c`,r compliance of the respective relaxed ventricle l ·mmHg−1

R`,r total viscous resistance of the respective ventricle mmHg ·min ·l−1

σ derivative of S mmHg ·min−1

u control function
Vstr stroke volume of the ventricle l
V0 total blood volume l
V U total unstressed volume l
`, r left, right heart circuit respectively

Table 1: Cardiovascular parameters

Parameter Value

V0 5.0–2.712
Hmax 100
cas 0.01002
cvs 0.643
cap 0.03557
cvp 0.1394
Rs 18.41
Rp 1.965
κ 0.4

Parameter Value

α` 89.47
αr 28.46
β` 68.71
βr 1.66
γ` 37.33
γr 11.88
c` 0.01289
cr 0.06077
R` 11.350
Rr 4.158

Table 2: Basic parameter values unchanged for all cases – Parameters were taken from [8] and
[14].

State variable Rest Supine Hemorrhage

Pas 100.00 71.08
Pvs 3.72 1.66
Pap 17.28 11.23
Pvp 7.33 3.82
S` 67.00 76.77
Sr 5.11 5.85
σ` 0.00 0.00
σr 0.00 0.00
H 87.23 100.00

Auxiliary variable Rest Supine LBNP

Q 5.06 3.77
Fs 5.06 3.77
Fp 5.06 3.77
Vstrl 0.058 0.0377

Table 3: Steady states and auxiliary values

State variable WeightsX

Pas 5.0
Pvs 1.0

Control variable WeightsU

u1 1.000

Table 4: Weights for the cost function
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