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Abstract

This report discusses modeling efforts designed to study the phenomenon of orthostatic
stress. Orthostatic stress refers to stress placed on the cardiovascular system when the body
is in the upright position as compared to the supine position. This report introduces a model
of the cardiovascular and respiratory system which is used to simulate orthostatic stress.
The model consists of cardiovascular and respiratory components and includes cardiovascular
auto-regulation, ventilation control, and the baroreflex loop. Instead of an explicit formula
for calculating the control response (sympathetic and parasympathetic response) from the
pressures and blood gases, we use an inherent optimized control. Steady state analysis is
given and model simulation is compared to experimental data we have collected using head up
tilt (HUT) experiments. The simulations fit the measured data well and represent reasonable
physiological values.

This work has led us to examine and report on several issues relating to orthostatic stress
experiments. The head up tilt experiment (where gravity creates extra pressure stress on the
lower body) is to be distinguished from the lower body negative pressure (LBNP) experiment
where the lower body is subject to reduced exterior air pressure thus effectively increasing the
venous capacitance due to less counteracting outside pressure. Both tests create blood volume
shift to the lower body but the two physiological conditions are not equivalent. Because of
some confusion created by mixing HUT and LBNP in the modeling literature, we compare two
modeling representations and show that one implementation represents LBNP better while
the other represents HUT better. We will present extended analysis in a later paper.

∗in collaboration with Prof. Schneditz and Prof. Rössler, Universität Graz
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1 Physiology

1.1 General cardiovascular and respiratory system function

Cardiovascular subsystem

The cardiovascular system (CVS) can be divided into two main circuits: the pul-
monary and the systemic circuit. These circuits can be subdivided into four main
vascular circuit components: pulmonary arterial, pulmonary venous, systemic arterial
and systemic venous. The pulmonary system circuit connects the heart with the lung
compartment, while the systemic system connects the heart to the tissue compart-
ments where metabolism takes place. The lungs and the tissue compartments act as
resistances in the flow of blood. An intricate control system acts to vary blood flow be-
tween tissue and lungs so as to maintain appropriate levels of nutrients, carbon dioxide
CO2, and oxygen O2. Figure 1 provides a block diagram representation of this system.
State variables for the CVS consist mainly of vascular pressures Pas, Pvs, Pap, and Pvp
where Pas represents arterial systemic pressure and the other quantities are similarly
defined. Respiratory state variables are partial pressures for CO2, and oxygen O2 in
the lungs and tissues.
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PaCO2
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Controller
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Figure 1: Basic CVS block diagram

A main function of the CVS control system is to maintain arterial blood pressure Pas at
appropriate levels by varying cardiac output Q (via variation in heart rate H and heart
contraction) and vascular systemic resistance and venous compliance. The steady state
for various physiological conditions such as supine or standing is maintained by negative
feedback loops which depend on sensing arterial and venous blood pressure at several
sites. These steady states are most likely optimal for the system, although the nature of
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this optimality is still debated. The short term control of Pas depends on global control
mechanisms mediated by the sympathetic and parasympathetic nervous systems which
modulate heart rate, contractility, systemic arterial resistance, and systemic venous
compliance. There are also local control mechanisms for controlling vasodilation and
resistance to insure that enough blood is delivered to organs when needed and which
depend on local O2 and CO2 concentration. Longer term control mechanisms involve
control of blood volume via the kidney and hormonal controls which also have other
influences.

Respiratory subsystem

The respiratory system acts to exchange O2 which is needed by the various tissues for
metabolism for CO2 which is produced by metabolic activity. Efficient exchange of
these gases in the lungs depends on the ventilation rate V̇A which is controlled by a
negative feedback loop depending on sensors for CO2 and O2 located in the carotid
artery and also sensors for brain tissue CO2. A significant delay occurs in this feedback
loop which can effect stability. This delay is caused by the time needed for the blood to
transport these gases from the lungs to the sensory sites and hence this delay depends
on Q. There are certain conditions where hypoxia can impact response to orthostatic
stress which are not examined in this paper. In the tilt table experiment, which we
will study, there is little deviation in blood gases and hence the transport delays are
ignored.

The respiratory system in turn influences CVS resistance via oxygen concentration
(brain and heart tissue also respond to CO2 concentration) and there are also other
mechanisms which act to match ventilation and cardiac output as well as synchronize
respiratory and heart rate frequencies.

Modeling aspects, mass balance

These system components and their relation are depicted in Figure 1. Descriptions of
blood flow depend on mass balance equations which are set up for the inflow and outflow
of blood from these four main vascular compartments. Inflow comes from cardiac
outputQ while outflow denotes the blood flow (F ) out of the vascular compartment and
through the lung or tissue compartment considered as resistances. Auxiliary equations
relating pressure, flow and resistance are essentially the same as Ohm’s law. The
following equations describe these flows for the arterial systemic, venous systemic, and
venous pulmonary circuits.

casṖas(t) = Ql(t)− Fs(t),
cvsṖvs(t) = Fs(t)−Qr(t),
cvpṖvp(t) = Fp(t)−Ql(t),

Pulmonary arterial pressure Pap is derived utilizing the assumption of fixed total blood
volume V0.

Pap(t) =
1

cap

(
V0 − casPas(t)− cvsPvs(t)− cvpPvp(t)

)
.

The respiratory equations are developed in a similar way. Mass balance equations are
set up for the inflow and outflow of CO2 and O2 from the lung and tissue compartments
as transported by the pulmonary blood flow Fp and systemic tissue blood flow Fs.

Ventilation V̇A exchanges these gases in the lungs and metabolic rates MR create the
opposite exchange in the tissue compartment.
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VACO2
ṖaCO2

(t) = 863Fp(t)
(
CvCO2

(t− τV )− CaCO2
(t)
)

+ V̇A(t)
(
PICO2

− PaCO2
(t)
)
,

VAO2
ṖaO2

(t) = 863Fp(t)
(
CvO2

(t− τV )− CaO2
(t)
)

+ V̇A(t)
(
PIO2

− PaO2
(t)
)
,

VTCO2
ĊvCO2

(t) = MRCO2
+ Fs(t)

(
CaCO2

(t− τT )− CvCO2
(t)
)
,

VTO2
ĊvO2

(t) = −MRO2
+ Fs(t)

(
CaO2

(t)− CvO2
(t− τT )

)
,

VBCO2
ĊBCO2

(t) = MRBCO2
+ FB(t)

(
CaCO2

(t− τB)− CBCO2
(t)
)
,

Section A in the appendix contains all symbol definitions. Control issues will be further
discussed in Section 2 where the full model is described.

1.2 Orthostatic stress

Orthostatic stress refers to the stress induced on the cardiovascular system due to
gravitational effects produced in the upright position as compared to the supine po-
sition. The main gravitational effect is the pooling of blood in the compliant venous
compartment of + the lower body. This induces a fall in blood pressure which must be
counteracted by the baroreflex which senses this drop. Heart rate and contractility are
increased to raise the blood pressure and sympathetic activity responds by decreasing
the capacitance in the venous compartment and also influences systemic resistance.
The net result is that, while there is a shift of about 500 ml of blood to the venous
compartment, mean arterial blood pressure remains unchanged while heart rate H is
increased. The overall short term response depends on a combination of physiological
reactions which may vary greatly between individuals. In some individuals, blood pres-
sure is maintained by a large increase in contractility, small increase in H, and decrease
in venous capacitance while in other individuals other combinations of change in H,
contractility, and venous capacitance can occur.

Figure 2 illustrates the tilt table test which is used to study the effect of orthostatic
stress. This effect takes on medical significance in those individuals who have inade-
quate transient response to orthostatic stress (such as the elderly) and in astronauts
who exhibit orthostatic intolerance upon return to normal gravity.

According to the Textbook of Physiology (TP) [Pat89] the change in arterial resistance
can be quite significant as sympathetic activity increases. As sympathetic activity
increases from 0 to 10 Hz, the resistance increases up to 100 times for cutaneous
arteries, 10 times in muscle and 5 times in renal arteries (p. 857 TP).

To see the impact of the gravitational force on blood pressure, note that transmural
pressure increases in the feet from 98 mmHg in supine position to 198 mmHg in upright
position. The difference of 100 mmHg equals a blood column of 130 cm (p. 776 TP). As
mentioned above, the result is an increase in venous blood volume in upright position
of 500 ml (p. 881 TP) as compared to the supine position. On the other hand Rowell
[Row86] mentions a shift of 500–700 ml to the lower limbs and 200–300 ml to the pelvic
region.

Among other orthostatic changes which occur between the supine and standing posi-
tions, there is general agreement that:

• venous capacitance decreases in upright position.

• Q decreases in upright position.

• H is generally higher in upright position.
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• central venous pressure CV P is higher in supine position.

• stroke volume VStr is higher in the supine position.

G

Tilt Table Test

Figure 2: Orthostatic stress diagram

Figure 3 represents a system block diagram which introduces a division of the systemic
vascular system into upper and lower systemic compartments and should be compared
with Figure 1. Using this division, it is possible to distinguish between the upper and
lower body and describe the influence of orthostatic stress and gravitational pressure
on the lower compartment.

1.3 Control loops

Control loops are shown in block diagram Figure 3 for the respiratory and cardiovas-
cular systems and represent the short term control response to perturbations in the
steady state of the system. System control depends on sensory mechanisms which
monitor critical state variables and respond to changes in these variables via negative
feedback loops. The two main short term system loops represented in the diagram and
which will be implemented in the model consist of the baroreflex loop which stabilizes
arterial blood pressure and the respiratory control loop which controls levels of CO2

(and indirectly pH) and O2.

The baroreflex depends on arterial blood pressure sensors in the carotid and aortic
bodies. These sensors send signals to the central control in the brain which responds
via the sympathetic and parasympathetic systems to vary H, contractility, systemic
resistance R, and venous compliance all of which influence arterial blood pressure
Pas. There are also cardiopulmonary sensors (low pressure sensors) which respond to
pressure changes in the right atrium and pulmonary arteries.

Another important control loop consists of the local autoregulation of tissue vascular
resistance which responds to concentrations of O2 (and in some cases CO2 as well).
This response reflects the changing needs of the tissues due to metabolic activity. The
effect of O2 concentration on vasodilation in muscle tissue is important for overall
systemic resistance.

The respiratory peripheral chemosensors located in the carotid bodies respond to CO2

and O2 while the central chemosensors in the brain responds to CO2. These sensors
send information to the the central control processor in the medulla which varies the
ventilatory rate VA.
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Implementation of the control processes which are represented in Figure 3 will be
discussed in the next section.
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2 Orthostatic stress model

In this section we present the model equations which will be used to study orthostatic
stress. The equations are adapted from earlier work of Kappel and Peer [Kap93] and
Timischl [Tim98]. The model is augmented by two lower systemic vascular compart-
ments where gravitation effects are introduced. The model consists of a set of nonlinear
ordinary differential equations, auxiliary equations, and an optimal control mechanism.
Model equations refer to states represented in block diagram Figure 3. Comparison of
this Figure with Figure 1 shows how the original model has been adapted. There are
now six vascular compartments and two respiratory compartments.

2.1 The basic ODEs

The basic model differential equations represent mass balance equations for blood
flow (Eq. 2.1 to Eq. 2.5) and mass balance for blood gases (Eq. 2.6 to Eq. 2.10) as
discussed in the last section. Equations 2.11 to 2.14 represent a model for contractility
as influenced by H (Bowditch effect) while Equations 2.15 to 2.17 represent the control.

casUpṖasUp = Ql − Fa − FsUp (2.1)

casLoṖasLo = Fa − FsLo (2.2)

cvsLoṖvsLo = FsLo − Fv − ċvsLoPvsLo (2.3)

cvsUpṖvsUp = Fv −Qr + FsUp (2.4)

cvpṖvp = Fp −Ql (2.5)

VACO2
ṖaCO2

= 863Fp
(
CvCO2

− CaCO2

)
+ V̇A

(
PICO2

− PaCO2

)
(2.6)

VAO2
ṖaO2

= 863Fp
(
CvO2

− CaO2

)
+ V̇A

(
PIO2

− PaO2

)
(2.7)

VBCO2
ĊBCO2

= MRBCO2
+ FB

(
CaCO2

− CBCO2

)
(2.8)

VTCO2
ĊvCO2

= MRCO2
+ Fs

(
CaCO2

− CvCO2

)
(2.9)

VTO2
ĊvO2

= −MRO2
+ Fs

(
CaO2

− CvO2

)
(2.10)

Ṡl = σl (2.11)

Ṡr = σr (2.12)

σ̇l = −γlσl − αlSl + βlH (2.13)

σ̇r = −γrσr − αrSr + βrH (2.14)

Ḣ = u1 (2.15)

V̈A = u2 (2.16)

ċvsLo = u3. (2.17)

Section A in the appendix contains all symbol definitions. Control issues will be further
discussed below in Section 2.5.

2.2 Cardiovascular auxiliary equations

The first auxiliary cardiovascular equation (Eq. 2.18) describes pulmonary arterial
pressure in terms of the other cardiovascular pressures. Equations 2.19 and 2.20 de-
scribe relations for Q in terms of stroke volume, preload and afterload (see [Kap93] for
details). Equation 2.21 implements a maximum condition so that stroke volume does
not exceed the filling volume. Equation 2.22 describes the time of diastole in terms of
H.
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Pap(t) =
1

cap

(
V0 − casUpPasUp(t)− casLoPasLo(t)− cvsUpPvsUp(t)

− cvsLo(t)PvsLo(t)− cvpPvp(t)
)
. (2.18)

Ql(t) = H
clPvp(t)f

(
Sl(t), PasUp(t)

)(
1− e−td/(Rlcl)

)

PasUp(t)
(

1− e−td/(Rlcl)
)

+ f
(
Sl(t), PasUp(t)

)
e−td/(Rlcl)

, (2.19)

Qr(t) = H
crPvsUp(t)f

(
Sr(t), Pap(t)

)(
1− e−td/(Rrcr)

)

Pap(t)
(

1− e−td/(Rrcr)
)

+ f
(
Sr(t), Pap(t)

)
e−td/(Rrcr)

. (2.20)

f(s, p) = 0.5(s+ p)− 0.5
(
(p− s)2 + 0.01

)1/2
(2.21)

td =
60

H
− κ

(
60

H

)1/2

, (2.22)

2.3 Respiratory auxiliary equations

Auxiliary equations for the respiratory system consist of an equation for cerebral blood
flow (Eq. 2.23), and dissociation equations (Eq. 2.24 to Eq. 2.28) relating partial pres-
sures and concentrations of blood gases. Equation 2.29 represents a physiological
formula for minute ventilation to be used for reference. Minute ventilation (V̇E) is
the air actually entering or leaving the body and is to be distinguished from alveolar
ventilation V̇A which is the volume of air actually involved in exchange of blood gases
in the alveoli (and in some of the small airways). The difference (see Eq. 2.30) is the
dead space volume V̇D which represents the volume of air within the larger conducting
tubes of the lungs which do not exchange gases with blood. We will model V̇A using
an optimal control approach (See Subsection 2.5).

FB(t) = FB0

(
1 + 0.03

(
PaCO2

(t)− 40
))
. (2.23)

CaO2
(t) = K1

(
1− e−K2PaO2

(t)
)2

, (2.24)

CvO2
(t) = K1

(
1− e−K2PvO2

(t)
)2

, (2.25)

CaCO2
(t) = KCO2

PaCO2
(t) + kCO2

, (2.26)

CvCO2
(t) = KCO2

PvCO2
(t) + kCO2

, (2.27)

CBCO2
(t) = KCO2

PBCO2
(t) + kCO2

. (2.28)

V̇E = Gpe
−0.05PaO2

(
PaCO2

− Ip
)

+Gc
(
PaCO2

− Ic
)
, (2.29)

V̇A = V̇E − V̇D. (2.30)
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2.4 The flows

The inter-compartment blood flows are defined by

Fv = max
(
0;PvsLo − PvsUp − Pgrav

)
/Rv (2.31)

Fa = (PasUp − PasLo + Pgrav) /Ra (2.32)

FsUp = (PasUp − PvsUp) /Rs (2.33)

FsLo = (PasLo − PvsLo) /Rs (2.34)

Fp = (Pap − Pvp) /Rp (2.35)

where the max function implements the action of the venous valves to avoid backflow.
Pgrav represents the hydrostatic pressure induced on the lower compartments. The
derivation of this implementation will be discussed in Section 4.

Also

Rs = ApeskPvO2
(2.36)

Fs = FsUp + FsLo (2.37)

Pgrav = cρgh sin(T iltingAngle) (2.38)

where ρ = 1.05 mg/mm3 = 1050 kg/m3 and c = 1/133.322 mmHg/Pa. Eq. 2.36 de-
scribes the effect of oxygen concentration on systemic resistance. Mechanisms which
act to match ventilation and cardiac output as well as synchronize respiratory and
heart rate frequencies are ignored. Eq. 2.37 describes the flow through the tisue com-
partment. Eq. 2.38 describes the dependency of the gravitation effect on the degree of
tilt.

2.5 The optimal control

The control functions u1, u2, and u3 represent the variations in heart rateH, ventilation
rate V̇A, and venous capacitance cvsLo. The control of venous capacitance includes the
baroreflex and may reflect the nonlinearity in the pressure-volume relation. There is
disagreement over the degree to which the change in capacitance is active or passive
(e.g. [Ste01]), which can be reflected by the weights of the control. Changes in systemic
resistance and contractility are modeled via parameter changes.

We model the control action as an optimal control via a cost functional. The transition
from an initial (steady state) disturbance to the final steady state is optimal in the sense
that controlled values Pas, Pvs, PaCO2

, and PaO2
are stabilized such that deviations

from their final steady state values are as small as possible. Furthermore, H, V̇A, and
cvsLo are prevented from changing too fast or too extensively.

The stationary equations for the system (Eq. 2.1) to (Eq. 2.17) determine a two-
parameter set of steady states. Therefore we need to choose the steady state values of
two state variables as parameters. In general we choose values for PaCO2

and H.

Mathematically, this can be formulated in the following way. To transfer the system
to the final or target steady state, we determine control functions such that the cost
functional
∫ ∞

0

qa

(
PasUp − P fasUp

)2

+ qv

(
PvsUp − P fvsUp

)2

+ qCO

(
PaCO2

− P faCO2

)2

+ qO

(
PaO2

− P faO2

)2

+ q1 (u1)
2

+ q2 (u2)
2

+ q3 (u3)
2
dt (2.39)

is minimized under the restriction

ẋ(t) = g
(
x(t)

)
+B u(t), x(0) = xi. (2.40)
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The values qi are weights defining the degree of influence of quantities on the cost. qa
represents the influence of the arterial baroreceptor loop and qv the influence of the
cardio-pulmonary baroreceptor loop.

In modeling the transition from the initial ”resting supine” steady state to the final
”head up tilt” state the following steps are carried out:

• Compute the steady states ”resting supine”, xs, and ”head up tilt”, xh.
Here the steady state ”head up tilt” is defined by parameter changes:

– Pgrav increased based on the degree of tilt and Eq. 2.38,

– higher heart rate H,

– lowered capacitance, higher resistance, and increase contractility.

• The control functions u1, u2, and u3 which transfer the system (Eq. 2.1 to
Eq. 2.17) from the initial steady state ”supine”, xs, to the final steady state ”head
up tilt”, xh, are found as follows. We consider the linearized system around xh

with initial condition x(0) = xs, and the cost functional (2.39).

∫ ∞

0

qa

(
PasUp − PhasUp

)2

+ qv

(
PvsUp − PhvsUp

)2

+ qCO

(
PaCO2

− PhaCO2

)2

+ qO

(
PaO2

− PhaO2

)2

+ q1 (u1)
2

+ q2 (u2)
2

+ q3 (u3)
2
dt

Here, superscript ”s” and superscript ”h” will refer to the steady state values
”supine” and ”head up tilt” respectively. These states are defined by parame-
ter choices defining these states. We then compute the control functions u1, u2,
and u3 such that the cost functional is minimized subject to the linearized sys-
tem. This is accomplished by solving an algebraic matrix-Riccati equation. In
particular, u1, u2 and u3 are given as feedback control functions.

• This control is used to stabilize the nonlinear system (2.1) to (2.17). This control
will be suboptimal in the sense of Russell [Rus79].

We may implement step changes in Pgrav, systemic resistance, and contractility, or
introduce smooth changes over a short tilt time. In the later case, though the system is
now nonautonomous, we still implement the control functions u1, u2, and u3 calculated
for a time-independent linear system around the final steady state ”head up tilt”.
This further reduces the optimality but the thereby obtained (suboptimal) control still
stabilizes the system and is useful for dynamic studies.



12 3 MODELING HISTORY

3 Modeling history

Several articles have been published, which describe models including orthostatic stress
– either head up tilt (HUT) or lower body negative pressure (LBNP). See for instance
[Boy72], [Cro74], [Leo79], [Whi83], [Mel92], [Sud93], [Kar94], [Mel94], [Bur00], [Pet02],
[Wal01], [Hel02], and [Hao03].

LBNP modifies the impact internal blood pressure has on the volume V of a com-
partment by varying the transmural pressure Ptrans. Even though some models change
the compliance c, too.

V = f(c, Ptrans), Ptrans = P − PLBNP (3.1)

HUT models most often change the blood flow q into, out of, or through the com-
partment according to the tilting angle Θ.

q = q0 +G sin Θ (3.2)

[Sud93] LBNP

qi = (pl − pm)× ci
where pl and pm are pressures at beginning and end of tube, qi is the flow through the
i-th tube. Sud et al. approximated the compliance ci by a polynomial of pl, pm, pext
(pext=̂PLBNP ).

[Mel94] LBNP

Melchior et al. consider deviations from ’normal’.

∆Ptrans = ∆CV P −KtransPLBNP

∆V =
2Vm
π

arctan

(
πC0

∆Ptrans
2Vm

)

The volume increments ∆V tend to 0 when ∆Ptrans tends to 0, and they approach
Vm for large values of ∆Ptrans. (Blood shifts to lower limbs in HUT 500–700 ml and
in pelvic region 200–300 ml according to a citation of Rowell)

By using a nonlinear compliance they include the effect of an unstressed volume.

[Wal01] HUT and LBNP

∂A

∂t
+
∂(AU)

∂x
= 0

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂Pt
∂x
− FU −G cos(Θ)

Pt = P − Pe = K Φ(A/A0)

where Pe external pressure, P fluid pressure, A cross section (A0 unstressed), U flow
speed, ρ density, F friction, K stiffness, and Φ(·) tube law. The LBNP is implemented
modifying the transmural pressure Pt and gravity is changing the flow directly.

[Pet01] HUT

Peterson et al. don’t give a single equation in this article, so it is difficult to tell how
they implemented the pressure changes because of the gravity, but as they refer to
hydrostatic pressure one may assume something similar as Walsh et al. and we did.
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[Hel02] HUT and LBNP

d

dt

(
c (Pn − Pbias)

)
=
Pn−1 − Pn

Rn
− Pn − Pn+1

Rn+1

Heldt uses the same implementation for HUT and LBNP, what brought us to our
considerations in Section 5. Pi are compartmental pressures and Pbias represents the
orthostatic stress (either HUT or LBNP).

[Hao03] LBNP

The model of Hao et al. is directly derived from [Mel94]. The add on consists of the
extension of the model for negative Ptrans which leads to negative volume change and
at last to collapse of the vessels (using the same equations with different parameters).

4 Derivation of orthostatic effects

There are different ways to view the action of the gravitational force on the system of
blood vessels, which are discussed in this section.

In supine position the gravitational force is perpendicular to the body and thus doesn’t
have significant influence on the cardiovascular system and in particular the flows.
When standing the direction of gravitation is parallel to the body and thus it acts on
the blood cells in the direction of the arteries and veins. – The weight of the upper
blood cells presses on the lower cells.

Hydrostatic theory shows, that the pressure occurring at a certain hight is independent
of the form of the vessels above, it only depends on the height of the column, because
all other forces are compensated by the vessel walls.

In our model we split the arterial and venous systemic compartments in an upper and
a lower part, for distinction of vessels and tissue at about heart level and at a much
lower level. The pressures at heart level (PasUp and PvsUp) are the pressures we always
measure when visiting the doctor. These pressures act on the lower compartments and
influence the flow into or out of them, and, as mentioned before, in tilt there is an
additional pressure (here called Pbias), depending on the tilting angle, which comes
from the weight of blood in the upper compartments acting on the lower ones.

In general the flow between two compartments is defined by Ohm’s law

F =
Pin − Pout

R
.

Focusing for a moment only on the upper and lower compartments on the arterial
side, the pressure-flow relationship would be given by

Fa =
(PasUp + Pbias)− PasLo

Ra
. (4.1)

The pressures in this approach reflect the actual pressures inside the compartments,
thus PasLo is a combination of the dynamic pressure and the hydrostatic or tilting
pressure (i.e. PasLo = P dynasLo + Pbias, but PasUp = P dynasUp).

Note that substituting the expression for PasLo the hydrostatic and gravitational effects
cancel.
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Similarly on the venous side (including the maximum function representing the venous
valves) we have

Fv =
1

Ra
max

(
0;PvsLo − (PvsUp + Pbias)

)
(4.2)

and between the lower compartments we have the ”normal” flow

FsLo =
PasLo − PvsLo

Rs
. (4.3)

Starting from the view that the kinetic energy and thus the flow is independent
of hydrostatic effects (see Berne&Levy [Ber97] and Rowell [Row93]) we develop the
following relation.

If the flow is given by just the dynamical pressures and noting that PasLo = P dynasLo +

Pbias and PasUp = P dynasUp, we derive that

Fa =
P dynasUp − P dynasLo

Ra
=
PasUp − (PasLo − Pbias)

Ra
(4.4)

Fv =
1

Ra
max

(
0;P dynvsLo − P dynvsUp

)
=

1

Ra
max

(
0; (PvsLo − Pbias)− PvsUp

)
(4.5)

FsLo =
(PasLo − Pbias)− (PvsLo − Pbias)

Rs
, (4.6)

which are equivalent to the flows given above.

Starting from the viewpoint of compartment volumes, VasLo for example
increases if there is more inflow than outflow and vice versa, that is

d VasLo
dt

= Fa − FsLo. (4.7)

The volume of a compartment is related to the overall pressure inside the compartment
(hydrostatic plus dynamic). Simplified this function can be assumed to be linear.

VasLo = casLo(P
dyn
asLo + Pbias) (4.8)

Differentiating Eq. (4.8) and combining it with Eq. (4.7) we get

d

dt

(
casLo(P

dyn
asLo + Pbias)

)
= Fa − FsLo

=
PasUp − P dynasLo

Ra
− P dynasLo − P dynvsLo

Rs
(4.9)

and similarly

d

dt

(
cvsLo(P

dyn
vsLo + Pbias)

)
=
P dynasLo − P dynvsLo

Rs
− P dynvsLo − PvsUp

Rv
. (4.10)

The hydrostatic pressure increases the volume of the lower compartments, which indi-
rectly influences the flows and the dynamical pressures of the system, which all happens
simultaneously.

To get the actual pressures (including the hydrostatic pressure) inside the compart-

ments (e.q. PasLo = P dynasLo + Pbias), we plug in P dynasLo = PasLo − Pbias and P dynvsLo =
PvsLo − Pbias.
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We find that

d

dt

(
casLoPasLo

)
=
PasUp − (PasLo − Pbias)

Ra
− (PasLo − Pbias)− (PvsLo − Pbias)

Rs
d

dt

(
cvsLoPvsLo

)
=

(PasLo − Pbias)− (PvsLo − Pbias)
Rs

− (PvsLo − Pbias)− PvsUp
Rv

which is again equivalent to the two approaches from before and our model equations:

d

dt

(
casLoPasLo

)
=
PasUp − (PasLo − Pbias)

Ra
− PasLo − PvsLo

Rs
(4.11)

d

dt

(
cvsLoPvsLo

)
=
PasLo − PvsLo

Rs
− (PvsLo − Pbias)− PvsUp

Rv
(4.12)

Note: Equations (4.9) and (4.10) can also be derived from the viewpoint of lower
body negative pressure with Pbias the absolute value of the applied pressure (see
[Hel02]).
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5 Comparison of two models of orthostatic stress

As mentioned above, the head up tilt (HUT) experiment involves tilting a resting
supine subject to varying degrees of head up orthostasis (in varying amounts of time)
using a tilt table. Cardiovascular steady state and dynamic response are measured
for various quantities. The stress is induced by gravitational effects on blood flow
and distribution. Lower body negative pressure tests involve reducing the exterior air
pressure on the lower torso which results in changing effective venous compliance.

There are a number of ways to implement the effects produced by these experiments
depending on the different points of action on the system (see Section 3). There are
examples in the literature of modeling efforts which use a single basic implementation to
represent HUT and LBNP (e.g. [Hel02]). Furthermore, these two conditions are often
treated as representing the same physiological situation. The degree to which one
implementation can represent both cases has not been fully discussed in the literature.

To clarify these issues and find some conditions under which HUT and LBNP can be
treated as the same effect and when it is necessary to make a distinction, we take
a closer look at the modeling aspects by comparing two models, on which directly
implements LBNP and the other implementing HUT.

5.1 LBNP model

As proposed in [Hel02], orthostatic stress is modeled by the variable Pbias, changing
the external and thus transmural pressure and the pressure-volume characteristics. See
Figure 4 LBNP case.

q1 = (Pn−1 − Pn) /Rn

q2 = (Pn − Pn+1) /Rn+1

q3 =
d

dt

(
Cn (Pn − Pbias)

)

This clearly models the LBNP case but does it also implement HUT with the same
degree of physiological fidelity?

5.2 HUT model

For HUT we introduced in our model, the variable Pgrav to model gravitational hydro-
static pressure, as discussed in Section 2, which changes the flow between compartments
of different heights. See Figure 4 HUT case.

q1 = (Pn−1 + Pgrav − Pn) /Rn

q2 = (Pn − Pn+1) /Rn+1

q3 =
d

dt

(
CnPn

)

5.3 Comparison

In this section we take a look at the steady state and the dynamic responses of the two
models consisting of two (e.g. leg) compartments at the same height as represented in
the two cases of Fig. 4. The application of lower body negative pressure stress and tilt
stress will be referred to as orthostatic stress.

We keep the pressures at the inflow and outflow of the system constant to get a clearer
picture of the orthostatic effects, which may be done in experiments with animals, too.
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Pgrav
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R3
q5
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P3P0

HUT

Figure 4: The structures of two compartment models: LBNP (left) and HUT (right)

For the simulations we use ramp functions for Pbias and Pgrav where Pbias = −Pgrav.
The pressure at the inflow P0 is held constant for the simulations, the first compartment
is represented by P1 (arterial compartment), the second by P2 (venous compartment)
and pressure P3 is held constant again.

The equations representing the two cases in Fig. 4 are given as:

LBNP model

d(c1P1)

dt
=
d(c1Pbias)

dt
+
P0 − P1

R1
− P1 − P2

R2
(5.1)

d(c2P2)

dt
=
d(c2Pbias)

dt
+
P1 − P2

R2
− P2 − P3

R3
(5.2)

HUT model

d(c1P1)

dt
=
Pgrav
R1

+
P0 − P1

R1
− P1 − P2

R2
(5.3)

d(c2P2)

dt
=
Pgrav
R3

+
P1 − P2

R2
− P2 − P3

R3
(5.4)

5.3.1 Steady states

The steady states are easy to calculate:

LBNP model

P1 =
P0(R2 +R3) + P3R1

R1 +R2 +R3

P2 =
P0R3 + P3(R1 +R2)

R1 +R2 +R3

HUT model

P1 =
P0(R2 +R3) + P3R1

R1 +R2 +R3
+ Pgrav

P2 =
P0R3 + P3(R1 +R2)

R1 +R2 +R3
+ Pgrav

The steady state of the LBNP model is independent of the degree of induced orthostatic
stress, which is reasonable for LBNP, but surely not for HUT. At application of LBNP
the pressure may decrease for a short while, but afterwards will be maintained at the
same level as the initial steady state (as long as the inflow and outflow pressures are
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kept constant). In HUT the hydrostatic pressure change due to gravity must be added
to the normal (supine) pressure, which is reflected in the HUT equations, but not in
the LBNP model.

So the pressure steady states are not identical for HUT and LBNP, but according to
the models the steady state flows through the compartments are the same

q =
P0 − P3

R1 +R2 +R3

which shows, that the steady state flows are independent of the way that orthostatic
stress is induced (treatment) – as long as inflow and outflow pressures are kept constant.

Also the steady state volumes in the compartments are the same

V L1 = c1(PL1 − Pbias) = c1(PL1 + Pgrav) = c1

(
P0(R2 +R3) + P3R1

R1 +R2 +R3
+ Pgrav

)
= c1P

H
1 = V H1

V L2 = c2(PL2 − Pbias) = c2(PL2 + Pgrav) = c2

(
P0R3 + P3(R1 +R2)

R1 +R2 +R3
+ Pgrav

)
= c2P

H
2 = V H2

Conclusion: The two models have different predictions for the compartment internal
pressures, but agree on flow and volume predictions for steady state. Viewed from the
outside (as black boxes) the flow behaviors in steady state are indistinguishable, even
though internal pressures are different.

5.3.2 Simulations

Fig. 5 shows that both models have different pressure dynamics for the two compart-
ments. The pressures P1 and P2 (in Fig. 4) act like arterial and venous pressures
because of the choices we make for the two compliance values (c1 = 0.01, c2 = 0.643)
and for the input and output pressures (P0 = 90, P3 = 10).

Pgrav = −Pbias goes from 0 to 50 mmHg and the resistances are set to R1 = 0.01,
R2 = 15, R3 = 0.01.
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Figure 5: Left: LBNP model pressure dynamics, right: HUT model pressure dynamics.

From physiology we expect, that in HUT the pressure in the lower parts increases to
a certain steady state – which is represented by HUT model.

The LBNP model shows different effects, which can be explained by taking a closer
look at the equations. – If we look again at the steady states before tilt and after tilt,
we notice that they are the same because d

dtPbias = 0 in both cases and thus the value
of Pbias is not relevant for the steady states. This is reasonable for LBNP, because the
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whole body is at one level – so after applying the LBNP the compartments have to
return to the same pressure steady states (assuming we keep the inflow and outflow
pressures constant).

The internal pressure dynamics are different for the two cases.

When we look at the net inflow (difference of inflow and outflow) for the two models
and for each compartment, we get graphs as in Fig. 6.
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Figure 6: Net inflow into each compartment. Left: LBNP model, right: HUT model.

We choose Pbias < 0 to get similar results as in HUT, leading to the results shown
here. Note that in the paper [Hel02] it seems that Heldt chose Pbias > 0, so the
flow characteristic would be reversed and the compartment would push blood into the
circulation instead of pulling it out. This appears to be a typographical error.

The dynamics of the net flows in Fig. 6 look identical, which is surprising given the
apparent difference in the model equations.

From Fig. 7 which represents the difference between the flows of the two models, we see
that the simulations do not give quite the same results, but the question is, whether
this is a numerical artifact or represents a real difference in the predictions of the
models.
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Figure 7: Difference in flows between LBNP and HUT

Since the capacitance plays an important role in orthostatic stress, we next examine
the effect of variable capacitance on the behavior of the two models.

In the following figures venous compliance c2 changes via a ramp function. ∆c repre-
sents the maximum change in the capacitance.
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Figure 8: Pressure dynamics in the compartments including capacitance change. Left: LBNP
model, right: HUT model.
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Figure 9: Net inflow into each compartment including capacitance change. Left: LBNP model,
right: HUT model.

Once again we see that the pressure dynamics (Fig. 8) are different between the models.
However, there again appears to be no significant difference in the net flows (Fig. 9).

Fig. 10 exhibits the difference between model flows with variable capacitance. It is
clear that the difference in behavior is greater than with fixed capacitance, but still
quite small.
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Figure 10: Difference in flows between LBNP and HUT including variable capacitance
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5.3.3 Analytical results

In Section 4 we alluded to the fact, that the equations incorporating lower body neg-
ative pressure can be transformed into equations representing orthostatic stress with
hydrostatic pressure.

The difference in the two-dimensional models discussed here is represented by trans-
formations in the pressure representations. Thus an implementation with a negative
external pressure implies a compartment pressure different from what is expected from
an additional hydrostatic component to the compartment pressure.

The transformation of Equations (4.9 and 4.10) to Equations (4.11 and 4.12) is equiv-
alent to the transformation of Equations (5.1 and 5.2) to Equations (5.3 and 5.4).

The transformations are accomplished by substitutions using the following equiva-
lences:

PHUT1 = PLBNP1 + Pbias PHUT2 = PLBNP2 + Pbias. (5.5)

Using the transformations above, the flows can be shown to be equivalent. For instance

qHUT1 =
P0 + Pbias − PHUT1

R1

=
P0 + Pbias − PHUT1

R1

=
P0 + Pbias − (PLBNP1 + Pbias)

R1

=
P0 − PLBNP1

R1

= qLBNP1 .

Conclusion: The following points summarize these results:

• The internal lower body pressures differ very much between models as between
LBNP and HUT.

• The dynamic flows are the same for both models. The differences in the simula-
tions represent numerical artifacts.

• These LBNP and HUT models are indistinguishable when only considering upper
body pressures, which illustrates the basis for using LBNP as an approximation
of HUT when restricted to certain physiological measurements.

• The actual pressures in the lower body can only be modeled using the associated
model. For modeling experiments with LBNP and HUT the model must consist
of both representations.

• There may be a difference of the controls of venous capacitance c2(t) between
LBNP and HUT, which was not addressed yet.
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6 Steady state analysis

At steady state there are no changes in time, thus the right-hand sides of the model
ODEs are equal to zero. So we can solve for the flows and for the state variables.

6.1 The flows at steady state

The following flow relations are given:

Fa = FsLo = Fv,

Fp = Ql = Qr = FsLo + FsUp = Fs.

. As expected the flows through the lower compartments are equal and the overall flow
is the same in the systemic, the pulmonary part, and the heart.

6.2 Derivation of equilibrium relations

To solve the ODE system with optimal control it is necessary to have the initial (steady)
state and the final steady state. Our first approach was using the Mathematica function
FindRoot, which uses a Newton method (which is a gradient routine) but got stuck
rather often, because of the bad condition of the Jacobian (cond(∇f) ≈ 106).

Since it is easier to debug Matlab programs compared to Mathematica programs, we
recoded the model using the Matlab function fsolve, which seems to be a more robust
scheme giving solutions in most cases. But a solution was not always found and the
level of accuracy was unclear when found in some cases.

Thus it was useful to analyze the steady state equations analytically. Furthermore
analysis is needed to investigate uniqueness of equilibrium points for a given parameter
set.

In the model there are 19 variables, but we have only 17 ODEs, thus two states have to
be picked to determine the steady state. We choose H, because it is easily accessible
in experiments, and PaCO2

, because we assume that it is held rather constant at a level
of 40 mmHg.

Our approach was to work separately with the cardiovascular and the respirator equa-
tions.

6.2.1 Solving the cardiovascular pressure equations (Eq. 2.1–2.5)

H and thus td are given. In Section 6.2.3 we derive Sl and Sr. We have thus the
following steady state equations to examine:

From Equation (2.1):

0 = Ql − Fa − FsUp = Ql −
PasUp − PasLo + Pgrav

Ra
− PasUp − PvsUp

Rs
= RaRsQl − (Ra +Rs)PasUp +RsPasLo +RaPvsUp −RsPgrav.

From Equation (2.2):

0 = Fa − FsLo =
PasUp − PasLo + Pgrav

Ra
− PasLo − PvsLo

Rs
= RsPasUp − (Ra +Rs)PasLo +RaPvsLo +RsPgrav.
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From Equation (2.3):

0 = FsLo − Fv =
PasLo − PvsLo

Rs
− PvsLo − PvsUp − Pgrav

Rv
= RvPasLo − (Rv +Rs)PvsLo +RsPvsUp +RsPgrav.

From Equation (2.4):

0 = Fv −Qr + FsUp =
PvsLo − PvsUp − Pgrav

Rv
+
PasUp − PvsUp

Rs
−Qr

= RvPasUp +RsPvsLo − (Rv +Rs)PvsUp −RsPgrav −RvRsQr.

From Equation (2.5):

0 = Fp −Ql =
Pap − Pvp

Rp
−Ql

= Pap − Pvp −RpQl.

So we then have the following five equations to work with:

0 = RaRsQl(Pvp, PasUp)− (Ra +Rs)PasUp +RsPasLo +RaPvsUp −RsPgrav (6.1)

0 = RsPasUp − (Ra +Rs)PasLo +RaPvsLo +RsPgrav (6.2)

0 = RvPasLo − (Rv +Rs)PvsLo +RsPvsUp +RsPgrav (6.3)

0 = −RvRsQr(Pap, PvsUp) +RvPasUp +RsPvsLo − (Rv +Rs)PvsUp −RsPgrav (6.4)

0 = Pap − Pvp −RpQl(Pvp, PasUp). (6.5)

From (6.3) dividing by Rv we derive a relation involving PasLo :

PasLo =
Rv +Rs
Rv

PvsLo −
Rs
Rv

(PvsUp + Pgrav)

=
Rv +Rs
Rv

Ra +Rs
Ra

PasLo −
Rv +Rs
Rv

Rs
Ra

(PasUp + Pgrav)− Rs
Rv

(PvsUp + Pgrav)

so that

PasLo

(
Rv +Rs
Rv

Ra +Rs
Ra

− 1

)
=
Rv +Rs
Rv

Rs
Ra

PasUp +
Rs
Rv

PvsUp +
Rs
Rv

(
1 +

Rv +Rs
Ra

)
Pgrav.

From (6.2) dividing by Ra we derive PvsLo :

0 =
Rs
Ra

PasUp −
Ra +Rs
Ra

PasLo + PvsLo +
Rs
Ra

Pgrav

implies

PvsLo =
Ra +Rs
Ra

PasLo −
Rs
Ra

(PasUp + Pgrav).

From (6.5) dividing by cap and adding Eq. (6.1) multiplied by
Rp
RaRs

we derive the
following relation involving Pvp :

0 =
V0

cap
− casUp

cap
PasUp −

casLo
cap

PasLo −
cvsLo
cap

PvsLo

− cvsUp
cap

PvsUp −
cvp
cap

Pvp − Pvp −RpQl
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implies

(
1 +

cvp
cap

)
Pvp =−

(
Rp

Ra +Rs
RaRs

+
casUp
cap

)
PasUp +

(
Rp
Ra
− casLo

cap

)
PasLo

+

(
Rp
Rs
− cvsUp

cap

)
PvsUp −

cvsLo
cap

PvsLo −
Rp
Ra

Pgrav +
V0

cap
.

Linear relations Thus the steady states of PasLo, PvsLo and Pvp can be related to
the steady states of PasUp, PvsUp, Pgrav, and to V0 as follows. Using the above three
relations involving PasLo, PvsLo and Pvp we have the following linear relations:

PasLo = k1PasUp + k2PvsUp + k3Pgrav (6.6)

PvsLo = k4PasUp + k5PvsUp + k6Pgrav (6.7)

Pvp = k7PasUp + k8PvsUp + k9Pgrav + k10V0, (6.8)

where the following parameters are given to simplify the equation format:

k1 =
Rv +Rs

Rv +Ra +Rs
⇒ 0 < k1 < 1 ⇒ −[Ra+Rs(1− k1)] < 0

k2 =
Ra

Rv +Ra +Rs
⇒ 0 < k2 < 1 k2 = 1− k1

k3 = 1 ⇒ k3 = 1

k4 =
Rv

Rv +Ra +Rs
⇒ 0 < k4 < 1

k5 =
Ra +Rs

Rv +Ra +Rs
⇒ 0 < k5 < 1 k5 = 1− k4

k6 = 1 ⇒ k6 = 1

k7 see def. below ⇒ k7 < 0

k8 see def. below ⇒ k8
?≈ 0

k9 = −casLo + cvsLo
cap + cvp

⇒ k9 < 0

k10 =
1

cap + cvp
⇒ 1 < k10

kk =
1

Rv +Ra +Rs
⇒ 0 < kk < 1

ks =
Rs

1 +Rskk
⇒ 1 < ks

kl = exp

(
− td
Rlcl

)
⇒ 0 < kl (0 < td < 1)

kr = exp

(
− td
Rrcr

)
⇒ 0 < kr.

Let us denote P effl = min(Sl, PasUp) P
eff
r = min(Sr, Pap).

Next, setting Ql =
k11Pvp

PasUp+k12
, Qr =

k13PvsUp
Pap+k14

, we have the following relations:

k11 = HclP
eff
l ⇒ 0 < k11 k13 = HcrP

eff
r ⇒ 0 < k13

k12 = P effl

kl
1− kl

⇒ 0 < k12 k14 = P effr

kr
1− kr

⇒ 0 < k14

.
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Finally we give k7 and k8 :

k7 =

(
1 +

cvp
cap

)−1

∗
[
−
(
Rp

Ra +Rs
RaRs

+
casUp
cap

)

+

(
Rp
Ra
− casLo

cap

)
Rv +Rs

Rv +Ra +Rs
− cvsLo

cap

Rv
Rv +Ra +Rs

]

=

(
cap

cap + cvp

)
∗
[
−
(
Rpcap

Ra +Rs
RaRscap

+
RacasUp
Racap

)

+

(
Rpcap
Racap

− RacasLo
Racap

)
Rv +Rs

Rv +Ra +Rs
− RacvsLo

Racap

Rv
Rv +Ra +Rs

]

=

(
1

RaRs(cap + cvp)

)
∗ [−Rp(Ra +Rs)cap −RaRscasUp

+ (RpRscap −RaRscasLo)
Rv +Rs

Rv +Ra +Rs
− RvRaRs
Rv +Ra +Rs

cvsLo

]

=

(
1

RaRs(cap + cvp)

)
∗ [−Rp(Ra + k2Rs)cap −RaRscasUp − k2Rs(Rv +Rs)casLo − k2RvRscvsLo]

= − 1

cap + cvp

[
Rp(

1

Rs
+ kk)cap + casUp + k1casLo + k4cvsLo

]
.

and

k8 =

(
1 +

cvp
cap

)−1

∗
[(

Rp
Rs
− cvsUp

cap

)

+

(
Rp
Ra
− casLo

cap

)
Ra

Rv +Ra +Rs
− cvsLo

cap

Ra +Rs
Rv +Ra +Rs

]

=

(
1

RaRs(cap + cvp)

)
∗ [RpRacap −RaRscvsUp

+ (RpRscap −RaRscasLo)
Ra

Rv +Ra +Rs
−RaRscvsLo

Ra +Rs
Rv +Ra +Rs

]

=
1

cap + cvp

[
Rp(

1

Rs
+ kk)cap − cvsUp − k2casLo − k5cvsLo

]
.

From (6.1) we derive PvsUp in terms of PasUp :

0 = −(Ra +Rs)PasUp +RsPasLo +RaPvsUp −RsPgrav +RaRsQl(Pvp, PasUp)

= −(Ra +Rs(1− k1))PasUp + (Ra +Rsk2)PvsUp −Rs(1− k3)Pgrav +RaRsk11
Pvp

PasUp + k12

= −(Ra +Rs(1− k1))PasUp + (Ra +Rsk2)PvsUp +RaRsk11
Pvp

PasUp + k12

= [PasUp + k12][−(Ra +Rsk2)PasUp + (Ra +Rsk2)PvsUp]

+RaRsk11(k7PasUp + k8PvsUp + k9Pgrav + k10V0).

implies

PvsUp = − [RaRsk7k11 − (PasUp + k12)(Ra +Rsk2)]PasUp +RaRsk11(k9Pgrav + k10V0)

(PasUp + k12)(Ra +Rsk2) +RaRsk8k11

=
P 2
asUp + (k12 − ksk7k11)PasUp − ksk11(k9Pgrav + k10V0)

PasUp + k12 + ksk8k11
.
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where ks = Rs
1+Rskk

is introduced for simplification of format. Introducing constants
b1, b2, and b3 defined in the obvious way to simplify the format we see that

PvsUp =
P 2
asUp + b1PasUp − b2

PasUp + b3
. (6.9)

From (6.4) we derive a relation involving PasUp :

0 = −RvRsQr(Pap, PvsUp) +RvPasUp +RsPvsLo − (Rv +Rs)PvsUp −RsPgrav

= −RvRsk13
PvsUp

Pap + k14
+ (Rv +Rsk4)PasUp − (Rv +Rs −Rsk5)PvsUp −Rs(1− k6)Pgrav

= RvRsk13
PvsUp

Pap + k14
− (Rv +Rsk4)PasUp + (Rv +Rsk4)PvsUp

= RvRsk13PvsUp − k14(Rv +Rsk4)(PasUp − PvsUp)

− 1

cap
[V0 − casUpPasUp − casLoPasLo − cvsLoPvsLo − cvsUpPvsUp − cvpPvp]

∗ (Rv +Rsk4)(PasUp − PvsUp)
= RvRsk13PvsUp − k14(Rv +Rsk4)(PasUp − PvsUp)

− 1

cap
[V0 − casUpPasUp − cvsUpPvsUp

− (k1casLo + k4cvsLo + k7cvp)PasUp − (k2casLo + k5cvsLo + k8cvp)PvsUp

− (k3casLo + k6cvsLo + k9cvp)Pgrav − k10V0] ∗ (Rv +Rsk4)(PasUp − PvsUp)

=
capksk13

(PasUp − PvsUp)
PvsUp

+ (casUp + k1casLo + k4cvsLo + k7cvp)PasUp

+ (cvsUp + k2casLo + k5cvsLo + k8cvp)PvsUp

+ (casLo + cvsLo + k9cvp)Pgrav − capk14 + (k10 − 1)V0

substituting the relation (6.9) for PvsUp we have:

0 = a1
PvsUp

PasUp − PvsUp
+ a2PasUp + a3PvsUp + a4

0 = a1

P 2
asUp + b1PasUp − b2

PasUp(PasUp + b3)− P 2
asUp + b1PasUp − b2

+ a2PasUp + a3

P 2
asUp + b1PasUp − b2

PasUp + b3
+ a4

0 = a1

P 2
asUp + b1PasUp − b2
(b1 + b3)PasUp − b2

+
(a2 + a3)P 2

asUp + (a2b3 + b1 + a4)PasUp + (a4b3 − b2)

PasUp + b3

0 = a1P
3
asUp + a1(b1 + b3)P 2

asUp + a1(b1b3 − b2)PasUp − a1b2b3

+ (b1 + b3)(a2 + a3)P 3
asUp + [(a2b3 + b1 + a4)(b1 + b3)− (a2 + a3)b2]P 2

asUp

+ [(a4b3 − b2)(b1 + b3)− b2(a2b3 + b1 + a4)PasUp − b2(a4b3 − b2)

This leads to:

0 = [a1 + (b1 + b3)(a2 + a3)]P 3
asUp + [(a1 + a2b3 + b1 + a4)(b1 + b3)− (a2 + a3)b2]P 2

asUp

+ [a1(b1b3 − b2) + (a4b3 − b2)(b1 + b3)− b2(a2b3 + b1 + a4)]PasUp

− [b2(a1b3 + a4b3 − b2)].

(6.10)

We thus derive the expression 6.10 for PasUp involving a cubic equation, which may
have either one real and two imaginary or three real solutions.
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6.2.2 Solving the respiratory equations (Eq. 2.6–2.10)

Plugging (2.9) divided by Fs into (2.6) we derive PaCO2
:

0 =
863FpMRCO2

Fs
+ V̇A

(
PICO2

− PaCO2

)

⇒ PaCO2
=

863FpMRCO2

FsV̇A
+ PICO2

. (6.11)

Plugging (2.10) divided by Fs into (2.7) we derive PaO2
:

0 = −863FpMRO2

Fs
+ V̇A

(
PIO2

− PaO2

)

⇒ PaO2
= −863FpMRO2

FsV̇A
+ PIO2

. (6.12)

From (2.8) we derive CBCO2
:

CBCO2
=
MRBCO2

FB
+ CaCO2

. (6.13)

From (2.9) we derive CvCO2
:

CvCO2
=
MRCO2

Fs
+ CaCO2

. (6.14)

From (2.10) we derive CvO2
:

CvO2
= −MRO2

Fs
+ CaO2

. (6.15)

6.2.3 Solving stroke volume and control equations (Eq. 2.11–2.17)

σl = 0 (6.16)

σr = 0 (6.17)

Sl =
βl
αl
H (6.18)

Sr =
βr
αr
H (6.19)

ui = 0 i = 1, 2, 3 (6.20)

6.2.4 Conclusion

From these calculations we see that all cardiovascular steady states can be solved
for in terms of PasUp while all respiratory steady states can be written in terms of
PvO2

(or equivalently CvO2
). Furthermore, PasUp and PvO2

are interdependent. PvO2

depends on Fs which depends on PasUp while PasUp depends on Rs which depends
on CvO2

and thus PvO2
. Simultaneously solving the equations Eq. 6.10 and Eq. 6.15

for PasUp and PvO2
will provide the steady state solutions for any parameter set. To

implement an efficient algorithm for finding equilibriums and testing these equilibriums
for uniqueness, we implement an algorithm presented in the next section.
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6.3 Program algorithm

For calculation of the steady state we use the Matlab function fsolve. Given the above
derived dependencies it is only necessary to search for values of PasUp and PvO2

to
derive the other state variables. Thus we proceed by minimizing the deviation from
zero of the system steady state equations based on searching candidate values of PasUp
and PvO2

. This scheme is equivalent to applying fsolve to the full system but is more
efficient and stable.

For the cardiovascular part of the scheme we have to distinguish between the cases
Sl < PasUp and Sl ≥ PasUp. This is easy to do as Sl can be easily calculated according
to Section 6.2.3 and PasUp is given.

Thus using P eff = min(Sl, PasUp) we find PvsUp:

PvsUp =
P 2
asUp + P eff (k12 − ksk7k11)PasUp − P effksk11(k9Pgrav + k10V0)

PasUp + P effk12 + P effksk8k11

where

ks =
Rs

1 +Rskk
k11 = cl ∗H

k12 =
kl

1− kl
.

We can then calculate

PasLo = k1PasUp + (1− k1)PvsUp + Pgrav

PvsLo = k4PasUp + (1− k4)PvsUp + Pgrav

Pvp = k7PasUp + k8PvsUp + k9Pgrav + k10V0

where

k1 =
Rv +Rs

Rv +Ra +Rs

k4 =
Rv

Rv +Ra +Rs

k7 = − 1

cap + cvp

(
Rp(

1

Rs
+ kk)cap + casUp + k1casLo + k4cvsLo

)

k8 =
1

cap + cvp

(
Rp(

1

Rs
+ kk)cap − cvsUp − (1− k1)casLo − (1− k4)cvsLo

)

k9 = −casLo + cvsLo
cap + cvp

k10 =
1

cap + cvp
.

Additionally using the solutions of Section 6.2.2 we get the respiratory states and then
can calculate the deviations of the steay state equations mentioned above.

Note This algorithm solves the steady states with exact maximum and minimum
functions, whereas the original implemented ODEs used smoothed max and min func-
tions and as a result we always have some small deviation between the calculated
steady states in the two formulation.
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7 Results

For comparison of simulations of the full model proposed in this report, we performed
HUT experiments measuring several quantities.

7.1 Data measurements

Fig. 11 shows a set of data measured at a HUT from 0o to 70o in 10 sec with
FinapresTM from a 25 year old male human.

Figure 11: Measurement of 70o tilt in 10 sec.

7.2 Fitting the data

In Fig. 12 we show the results of a parameter fit, which was done by first adjusting
some model parameters to fit the steady state and afterwards adjusting the weights
in the cost functional to fit the dynamics. (Steady state values and parameters in
Appendix B)

The volume shift of blood into the venous leg compartment was 800 ml.
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Figure 12: This is the model fitting the data

Fitting steady states

The variable TiltingAngle went from 0 to 70 degrees in 10 sec, heart rate went up from
59 to 90.6 and cvsLo and Apesk were set to match the Pasup steady state (cvsLo =
0.7∗(1−frac)∗(0.75→ 0.115) and Apesk = 131.61∗(0.95→ 1.08)). Rather important
is also the fact, that we had to adjust the fraction of upper and lower compartments
to frac = 0.3 to get reasonable results.

Fitting dynamics

To fit the dynamics we adjust the weights in the cost function for the optimal control.
There are two different weight-vectors: WeightsU and WeightsX.

WeightsU puts weights on changes of the control

WeightsX puts weights on deviations from the final steady state

The fit was done by estimating the weights for the control. We used all three control
weights and weights for Pasup and H, PaCO2

and PaO2
.

For this data set, the weights necessary to fit the data indicate a strong influence of
the cardio-pulmonary control loop.

7.3 Ongoing work

The model exhibits reasonable performance as compared against data. The next steps
are anticipated in terms of model development.
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Figure 13: Complete model output for the fitted data

• Analytical studies

1. The analytical results on steady state analysis will be further developed

2. Analytical results on the two dimensional model comparisons between LBNP
and HUT will be done to clarify the degree to which the two orthostatic stress
models are different, when they can be used interchangeably, and when they
must be distinguished.

• Physiological modeling

1. Further experimental data will be collected and analyzed. As well as param-
eter identification performed with test subjects.

2. There are physiological differences between fast and slow tilt, as well as be-
tween small and large tilt. In small tilt low pressure sensors play a more
prominent role and implementation of this control loop effect needs to be
studied. Fast tilt involves buffering by the lung blood volume and this needs
to be studied as well.

3. Implementation of sympathetic effect on contractility should be explored as
a control, currently implemented as a parameter change.

4. The baroreceptors in the carotid artery are situated above the heart and sense
a slightly different pressure from the aortic sensors (which measure PasUp).
The effects of this variation in pressure are not modeled.
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Figure 14: Flows between the systemic compartments for the fitted data
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A Symbol definitions

Respiratory parameters
Symbol Meaning unit

MRCO2
metabolic CO2 production rate lSTPD ·min−1

MRO2
metabolic O2 consumption rate lSTPD ·min−1

CaCO2
concentration of CO2 in arterial blood mmHg

CaO2
concentration of O2 in arterial blood mmHg

PaCO2
partial pressure of CO2 in arterial blood mmHg

PaO2
partial pressure of O2 in arterial blood mmHg

PvCO2
partial pressure of CO2 in mixed venous blood mmHg

PvO2
partial pressure of O2 in mixed venous blood mmHg

V̇A alveolar ventilation lBTPS ·min−1

VACO2
effective CO2 storage volume of the lung compartment lBTPS

VAO2
effective O2 storage volume of the lung compartment lBTPS

VTCO2
effective tissue storage volume for CO2 l

VTO2
effective tissue storage volume for O2 l

VBCO2
effective tissue storage volume for O2 l

K, k,m dissociation constants relating concen.to partial pressure
Gc central controller gain factor l/(min ·mmHg)
Gp peripheral controller gain factor l/(min ·mmHg)
Ic central drive threshold value mmHg
Ip peripheral drive threshold value mmHg

Cardiovascular parameters
Symbol Meaning Unit

αl coefficient of Sl in the differential equation for σl min−2

αr coefficient of Sr in the differential equation for σr min−2

Apesk Rs = ApeskCvO2
mmHg ·min ·l−1

βl coefficient of H in the differential equation for σl mmHg ·min−1

βr coefficient of H in the differential equation for σr mmHg ·min−1

frac upper compartment fraction of basic prone capacitance 1

cas compliance of the arterial part of the systemic circuit l ·mmHg−1

cap compliance of the arterial part of the pulmonary circuit l ·mmHg−1

cvs compliance of the venous part of the systemic circuit l ·mmHg−1

cvp compliance of the venous part of the pulmonary circuit l ·mmHg−1

Fp blood flow perfusing the lung compartment l ·min−1

Fs blood flow perfusing the tissue compartment l ·min−1

H heart rate min−1

γl coefficient of σl in the differential equation for σl min−1

γr coefficient of σr in the differential equation for σr min−1

Pas mean blood pressure in arterial region: systemic circuit mmHg
Pap mean blood pressure in arterial region: pulmonary circuit mmHg
Pvs mean blood pressure in venous region: systemic circuit mmHg
Pvp mean blood pressure in venous region: pulmonary circuit mmHg

Ql left cardiac output l ·min−1

Qr right cardiac output l ·min−1

Rp resistance in the peripheral region of the pulmonary circuit mmHg ·min ·l−1

Rs peripheral resistance in the systemic circuit mmHg ·min ·l−1

S contractility of the ventricle mmHg
σ derivative of S mmHg ·min−1

u control function
Vstr stroke volume of the ventricle l
V0 total blood volume l
l, r left, right heart circuit respectively
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B Values for the data fit

Steady state values

State variable Supine Tilt

Tilting Angle 0 70
PasUp 82.35 78.53
PasLo 82.12 121.88
PvsLo 4.89 45.45
PvsUp 4.66 1.69
Pvp 6.16 4.00
PaCO2

40.00 40.00
PaO2

102.46 102.46
PBCO2

48.08 48.08
PvCO2

48.14 48.08
PvO2

34.39 32.39

Sl 84.96 87.02
Sr 4.32 6.63
σl 0.00 0.00
σr 0.00 0.00
H 59.00 90.65

V̇A 5.26 5.26
cvsLo 0.368 0.056

Rs 16.79 18.22
Apesk 124.60 141.65
βl 128.83 85.89
Q 4.61 4.21

Weights for Riccati

State variable WeightsX

PasUp 0.015
PasLo 0
PvsLo 0
PvsUp 6.49
Pvp 0
PaCO2

1.07
PaO2

0.006
PBCO2

0
PvCO2

0
PvO2

0

Sl 0
Sr 0
σl 0
σr 0
H 0

V̇A 0
cvsLo 0

Control variable WeightsU

u1 0.0002
u2 0.0105
u3 8.3500
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Parameter values

Parameters were either taken from [Tim98] or fitted∗. Ra and Rv were chosen as small
as reasonable.

Parameter Value

V 5.0
frac 0.3
casUp 0.01002*frac
casLo 0.01002*(1-frac)
cvsUp 0.70*frac
cvsLo State dependent
cap 0.03557
cvp 0.1394
Apesk State dependent
MRO2

0.290
MRCO2

0.244
MRBCO2 0.042
FB 0.800
αl 89.47
αr 28.46
βl State dependent
βr 2.08
γl 37.33
γr 11.88
cl 0.01289
cr 0.06077
K1 0.2
K2 0.05
kCO2 0.244
KCO2 0.0065
PICO2

0.0
PIO2

150.0
Rl 11.35
Rr 4.158
Ra 0.1
Rv 0.1
VBCO2

0.900
VCO2

3.200
VO2

2.500
VTCO2

15.000
VTO2

6.000

For units refer to the previous section.
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