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Abstract. A global model of the human cardiovascular-respiratory control system
is presented and applied to modeling congestive heart failure. In the model, one
and two transport delays in the state equations of the respiratory system will be
included. The intricate relationships between heart rate, blood pressure, cardiac
output, and blood vessel resistance in the cardiovascular control process will be
integrated via an optimal control approach. The control will act to minimize de-
viations of certain state variables. The model will consider the congestive heart
condition where these transport delays are increased with consequences for stable
functioning of the system.

1 The Model

The model which is presented here focuses on several aspects of control of
the cardiovascular-respiratory system. System control is implemented via an
optimal control approach which specifies heart rate and ventilation. The asso-
ciated cost functional includes measurements of deviation in blood pressure,
and arterial partial pressures of C'Oz, and O» from a target steady state.
Transport delay is included in the state equations. In congestive heart fail-
ure increased transport delay caused by reduced cardiac output also reduces
the efficiency of the feedback control loop of ventilatory control resulting in
potential instabilities. This issue will be discussed further in Section 3.

The model consists of two respiratory compartments (lung and tissue
compartments) and four cardiovascular compartments (pulmonary and sys-
temic arterial and venous volumes). Cardiac output @ is modeled for both
left and right hearts. The model is represented by Figure 1 and equations
(1) to (14). Arterial blood gas pressures are assumed to be equilibrated with
alveolar pressures, the model is an average time model and non-pulsatile.

The system is described by 14 nonlinear ordinary differential equations re-
flecting, primarily, applications of mass balance relations. Equations (1)-(4)
include expressions for the partial pressures of arterial carbon dioxide and
oxygen (Py.0, and Py, ), and venous CO, and O concentrations (Cyco,
and Cy,, ). Concentrations can be related to partial pressures via dissociation
laws. Brain carbon dioxide concentration (Cp,,, ) is tracked via Equation 5.



Equations (6)-(8) include expressions for systemic arterial and venous pres-
sures (P,s and P,s) and pulmonary venous pressure P,,. Pulmonary arterial
pressure P, is found using these pressures assuming constant blood volume.
Equations (9)-(12) describe a relation between heart rate H and contractility
S (Bowditch effect). Equations (13)-(14) describe the controls influencing the
system and are represented by heart rate H and ventilation rate V.

Auxiliary equations relate systemic and pulmonary blood flow (F; and F},)
to systemic and pulmonary resistances (R, and R,) respectively. Further, a
relationship between stroke volume V., contractility S, and blood pressure
is given in Kappel and Peer 1993 [3] based on the Frank-Starling mechanism.
A relation between R, and venous oxygen concentration C,, describes the
local control of systemic resistance. All other control features are subsumed
under the action of the control equations which describe an optimal control
process. This mechanism is discussed in section 2. Given the limited space
available we refer the reader to Kappel and Peer 1993 [3] and Timischl et al.
2000 [8] for further details.

Delays 7y, and 71, occur because it takes time for the blood to transfer the
blood gases from the lungs to the tissue compartment and return from tissue
to lungs. We will assume the delays 7y and 71 are equal. In this model, the
brain is to be considered as part of the lumped tissue compartment in Figure 1
but it would not be difficult to model the brain as a separate compartment
if desired. The brain CO2 equation (5) merely tracks brain COy and will be
needed for the control equation in section 3.

Viaco, Paco, (t) = 863F,(£)(Cugo, (t = 7v) = Cago, (1)) (1)
+Va(t)(Pico, = Paco, (),

Vi, Pao, (t) = 863F,(t)(Cuo, (t — ) Cao, (1)) (2)

+Va(t)(Pro, = Pao, (1)),

Vico, Cuco, (t) = MRco, + Fy (t)(Cacog (t = 77) = Coco, ), (3)

V1o, Cuo, (t) = =M R0, + Fys(t)(Ca, (t) = Cuy, (t — 1)), (4)

VBco, CBoo, () = MRpeo, + F(t)(Caco, (t — 78) — CBeo, (1)), (5)

casPas(t) = Qu(t) — Fi(t), (6)

CosPos(t) = Fy(t) — Qr(t), (7)

copPop(t) = Fp(t) — Qu(t), (8)

Si(t) = au(t), 9)

S.(t) = op(t), (10)

o1(t) = —moi(t) — auSi(t) + BiH(t) (11)

0r(t) = —vr0r(t) — arSp(t) + BrH(t) (12)

E (t) = w(t), (13)

Va(t) = ua(t) (14)
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Fig. 1. Block diagram

2 Control mechanisms and optimal control

In this model the design of an optimal control determines control functions uq
and us that transfer the system from the steady initial condition quiet awake
to the equilibrium state (ES) NREM sleep such that the cost functional

| (00 Pustt) = PESY + aePaco, (0~ PES, ) (15)
+00(Pao, (1) = PES 2 + quun(1)? + qun(t)?) dt
is minimize subject to the constraints
&(t) = f(x(t),2(t —mr); W*) + Bu(t),  z0=¢. (16)

The cost functional measures deviations in P,, Paco2, Pa02; as well as de-
viations in the controls u; and wuy. The optimal control is designed and nu-
merically implemented using results found in Kappel and Propst 1984 [4]
for control systems with state delay. Delay in the optimal control is not in-
cluded. States quiet awake and NREM sleep are determined by parameters.
For further details see Timischl et al. 2000 [8]. For a survey of applications
of optimal control theory in biomedicine and motivations for this approach
see, e.g., Swan 1984 [7].

The cardiovascular control system is quite complicated and involves among
its features: the sympathetic and parasympathetic nervous systems influence



on H, S and systemic resistance; the baroreflex control of blood pressure;
and local control of systemic resistance. Except for local control of systemic
resistance, this model subsumes the cardiovascular control effects under the
optimal control approach.

Besides venous O influence on systemic resistance (local control), respi-
ration influences cardiac output and heart rate. Here, the cardiovascular and
respiratory systems can be linked via the cost function of the optimal control.

The mechanisms which control ventilation are somewhat simpler and bet-
ter understood than the more intricate interactions in cardiovascular control.
The ventilatory control system responds to deviations in partial pressures
Paco, and Py, at sensory sites in the carotid artery (= peripheral control)
as well as brain tissue Pp,, (= central control). These sensory sites send
data to the ventilatory control processor in the medulla which modulates
breathing. A reasonable descriptive representation of ventilatory control can
be given (see Khoo et al. 1991 [6]) by

Va(t) = Gpe %P0 (P, (4 —7,) — L) + Go(Ppoo, (1) — L)
(17)

In this equation the first term describes the peripheral control and the second
term the central control. G}, and G are control gains and I, and I, are cutoff
thresholds. The delay 7, is the transport delay from lung to peripheral control.

One way the cardiovascular and respiratory systems interact is through
cardiac output determination of the transport delay 7, in the respiratory feed
back control loop. This can effect the stability of the control (see, e.g., Batzel
and Tran 2000 [1]). In the optimal control above, no delay is included but we
will consider its implementation further below.

3 Application: congestive heart failure

Heart failure (HF) refers to the clinical condition of reduced heart pumping
efficiency. Forward failure refers to the reduction in ability to deliver blood
to the arterial system at a sufficient rate to meet metabolic needs and reflects
the direct pumping ability of the heart or increased after-load.

Each of the possible combinations of left and right, forward and back-
ward failure (systolic/diastolic) has different pressure implications as listed
in table 1 (see Katz 1992 [5]). When left forward failure occurs excess blood
accumulates in the pulmonary venous system because the left heart cannot
effectively push blood to the systemic arterial system. This can result in fluid
congestion in the lungs - hence the term congestive heart failure.

In heart failure there is progressive deterioration in heart function re-
sulting from compensatory but damaging adjustments to maintain sufficient
cardiac output via activity of the sympathetic system and fluid retention.

Cheyne-Stokes respiration (CSR) is common in heart failure patients dur-
ing sleep. CSR is an unstable breathing pattern which is non-voluntary and



oscillates between rising and falling breath volumes interspersed with apneas.
CSR is an important clinical condition because it contributes to the progres-
sive deterioration in heart function seen in heart failure. Among a number
of possible contributing factors to CSR is the increased delay in the respi-
ratory control loop which affects feedback loop efficiency. This is due to the
increased time needed for blood gases to move from the site where these blood
gas levels are adjusted (the lungs) to the sensory sites where these levels are
measured. Another factor may be increased control sensitivity to COs.

In the first simulation (Figure 2) we exhibit an optimal control defin-
ing both V4 and H and the system transition from quiet awake to NREM
sleep implemented by that control. Only one delay occurs in the lung to tis-
sue transport loop. Left forward heart failure is modeled by reducing the
parameters which effect contractility. Total blood volume is also increased
and systemic resistance is increased modeling compensatory behavior of the
system. Note that the awake to NREM V4 and H transition is smooth.

In the second simulation described by Table 2 and Figure 3 we alter the
model by taking V4 out of the optimal control and define V via Equation (17)
utilizing Equation (5). This introduces a second delay in the state equations
and implements a delay in the respiratory control loop (we assume 7, equals
7g). Table 2 and Figure 3 simulate severe left forward heart failure with some
right heart deterioration as well (as is commonly seen). Increased control gain
and rapid sleep transition are assumed (see Table 2) as well. Under these
conditions the respiratory function is driven to CSR-like instability.
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Fig. 2. Left heart failure transition to NREM sleep-optimal control

Table 1. Heart pressure changes

condition P, Pys Pap Py
left forward no change 7 moderately 1 moderately 1 significantly
left backward no change no change no change

Right forward no change % significantly small change small change
Right backward no change 1 significantly no change no change
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Fig. 3. Severe left-right Heart failure transition to NREM sleep

Table 2. Left-right forward failure sleep transition parameters and steady states

Parameter Awake Sleep Steady State Awake Sleep
Apesk 250.17 237.7 H 93.00 80.02
Bi 12.88 11.60 P,s 92.08 72.78
Br 1.46 1.31 P.p 26.80 25.17
R, 2.16  2.16 Pys 3.57 4.05
Vo 6.9 6.9 Py 19.58 19.14
H 93.02  80.02 Pago, 37.87 44.15
ﬁc ggg ggg Pag, 105.86 98.76
P . .
a, 1.60  0.480 Poco, 50.08 56.51
Kanise 0 5.9 Py, 25.92 25.49
- 11.6 116 Psgo, 45.95 51.81
T 36.0  36.0 QL Qn 3.35 2.79
S 4 transit - 2 min Rs 26.40 24.67
S 13.39 10.37
S, 4.76 3.69
Va 6.06 4.38
Vstr,t, Vstr,r 0.036 0.035
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