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Mathematical models of the human respiratory control system have been developed
since 1940 to study a wide range of features of this complex system. In the absence
of voluntary or neurological control, the respiratory control system in which we are
concerned, varies the ventilation rate in response to the levels of COy and O in the
body (chemical control). The model we are studying was proposed by Khoo et al.
(1983) [9] and consists of a nonlinear system of delay differential equations with multiple
delays building on the work of Grodins et al in 1954 [6]. Into this basic model we have:

e incorporated variable cardiac output using a model given in [5] thereby allowing the in-
clusion of variable delay in the feedback control loop;

o extended the model to study infant sleep respiratory patterns including apnea apnea which
may play a role in sudden infant death syndrome (SIDS);

e studied stability analytically using a submodel criteria for delay induced instability.

The respiratory control system mechanism acts by means of negative feedback. De-
viations in blood gas partial pressures Pco,, Po,, from their physiological set points
induce changes in ventilation rates which tend to compensate for these deviations. As
chemosensors are a physical distance from the lungs, delays in this feedback can induce
instabilities.

Periodic breathing (PB) is the generic name given to a number of breathing patterns
which are involuntary and have a regular pattern. These patterns appear in patients
with brain stem lesions, patients with congestive heart problems, normal individuals
during sleep and at high altitudes, and newborn infants (which may be related to SIDS).

Perhaps the most widely held theory, introduced by Haldane and Douglas in 1909
holds that PB is caused by instability in the respiratory control system. It appears that
PB is mediated by the peripheral sensory mechanism and is effected by delay in the
feedback control loop and large deviations in controller gain. Furthermore, apnea (lack
of ventilation) can occur when the oscillations in the ventilatory control signal drive the
signal to the cutoff point.

Delay is introduced into the control system due to the physical distance which CO,

and Oy levels must be transported to the sensory sites before the ventilatory response
can be adjusted. The delay in transfer of partial pressure information for carbondioxide
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(Pco,) and oxygen (Pg,) from lung to chemosensors depends on cardiac output Q in
general and blood flow rate to the brain Qp in particular. Considered as a dynamical
system with delay, well known mathematical results such as given in [3] show that
long delay times in the feedback control loop will destabilize a system and produce
oscillations. Figure (1) shows a schematic diagram of three compartments with the delays
incorporated into the model. These delays vary with blood flow. The compartments
track arterial and venous partial pressures (Paco2, PaOQ, PVCO2 PVO2, and P13002 ). Hence
this model represents a system of five nonlinear differential equations with four delays
which are state dependent and distributed. Such a system can be studied numerically -
analytical results for such are difficult to obtain. See, e.g., [11]. The equations arise from
straight-forward development of mass balance equations which are rearranged through
the application of basic physical laws and are given by:
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The control equation is derived based on the following observations (among others):

e The central controller responds exclusively to Pco, [12].

The peripheral controller responds to Pco, and Po, [12].
The effect of Po, on Vi for fixed Pco, is exponential [12].

Berger and West [2, 12] indicate that the peripheral Pq, interacts multiplicatively with
the peripheral Pco, effect.

e The peripheral and central control effects are additive [4].

Reflecting these facts, the control takes the form:

Vi = Gpexp(—.05Pag (t — 7)) (Paco, (t — 7a) — Ip)
MRg
+Go(Ppyy, () — ——=2 — Ig).
€02 Kco, QB

where Vi is minute ventilation, Ic and Ip are apneic thresholds, G¢ and Gp are
controller gains. See [1] for more details on this and other aspects of the model.
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The sleep condition involves a number of different states and stages with different
physiological profiles. As one passes from stage 1 sleep (S1) to stage 4 sleep (S4) non-
rem sleep the COy response curve shifts rightward, response to overall ventilatory drive
diminishes, and muscle resistance to the upper airways and other muscle groups related
to breathing increases. These effects are referred to as loss of the ”wakefulness stimulus”
[8]. Metabolic rates and cardiac output are also diminished. Once stage 4 is reached the
sleeper shifts between non rapid eye movement sleep (NREM) and rapid eye movement
sleep (REM). These physiological changes affect the stability of the respiratory control
system. In 1991, Khoo [8] extended the basic model to simulate respiration during
sleep reflecting these transitional features. We use this model for infant sleep respiration
simulation.

The occurrence of PB and apnea during sleep is related to the number of changes in
the control response which occur during sleep as described above.

In this model we consider only the withdrawal of the wakefulness stimulus sufficient
to produce transient reduction in ventilatory drive past a minimal threshold. This will
be interpreted as a central apnea. We will assume that this apneic episode will terminate
only with arousal. Arousal will be triggered by the chemical ventilatory stimulus rising
above an arousal threshold level. Arousal will reset the control mechanism to its awake
parameter values.

In modeling the respiratory processes of full term infants in the age range of 3-4
months we use allometric scaling for physical parameters. Allowance is made for an
alveolar-capillary gradient Da_cap for Po, [10], shunted blood flow from the systemic
venous return to systemic arterial blood flow, and changes in hemoglobin loading char-
acteristics (via dissociation laws).

These modeling studies looked at the effects on respiratory stability of arousal thresh-
olds, rightward shifts in ventilatory drive due to the withdrawal of the awake stimulus,
increase in the minimal threshold for ventilation, and loss of ventilatory drive during
sleep.

Figure (2) reflects blood gas variation when apnea occurs due to ventilatory drive
dropping to a level sufficiently low such that respiratory muscle response is absent and
a central apneic episode begins. A fast transition time to the sleep state and increased
maximal shift Sy, (approximately equal to the awake ventilatory drive [8]) and an increase
in arousal threshold produces this case. The resulting apnea causes ventilatory drive to
rise until arousal occurs. The disturbance to blood gas levels is sufficient to produce new
cycles of apnea.

Three-Dimensional State Space Model Stability Analysis

To consider analytically the stability of this model we considered a three dimensional
submodel based on the following assumptions:

(i) Py¢p, = constant.

(ii) Py, = constant.

(iii) Q = constant.
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(iv) Only one constant delay is considered: Q is held constant, while the peripheral and central
delay are assumed equal.

The three equation represent lung and brain Pco, and Pg, as in equations (1)-(3)
while the tissue equations are replaced by assumptions (i) and (ii) above. With x(%)
and y(t) representing respectively Paco, and Pa, deviations from ambient level, 7(t)
representing PBCOZ, and V ventilation, the equations take the form:

dj;gt) = aj; — agx(t) —asgVx(t), (6)
dz_sf) — by — byy(t) — bsVy(#), (7)
dii(tt) c1 + cox(t — 7) — coz(t), (8)

where the a;, b;, and ¢;, are accumulated constants. Some analytical results are as
follows:

Theorem 1 The system (6), (7) and (8) has a unique solution for initial point o €
R and initial function ¢ € C. Furthermore, from Theorem 2.2.2 in [7], we are also
guaranteed that the solutions are continuously dependent on initial data so that the
model is well-posed.

Theorem 2 The above system described by (6),(7) and (8) has a unique positive equi-
librium (z*,y*,2*) .

We linearize equations (6),(7) and (8) about the equilibrium solution. and derive the
characteristic equation:

AN T) =P +QNe ™ =0 (9)

which will be very complicated. Solving numerically, we may apply Theorem 3.5 de-
scribed in Cooke and van den Driessche [3] to look for 7 which will produce instability.
There will be one cross over from stable to unstable behavior. The overall structure of
instability is illuminated by the three-dimensional model while the actual state variables
were in good agreement with the five-dimensional model.

Based on the foregoing development, we can show that:

1. The central control acts to reduce the instability inherent in the peripheral control
mechanism. The peripheral control responds quickly to changes in the blood gases
while the central control responds more slowly and with less variation due to the
process of transforming Pac02 levels into PBC% levels.

2. The lung compartments act to dampen oscillations and contribute to stability, as
Table 1 indicates.

3. Variations in controller gain are critical to the stability of the system.

4. A control which varies depth of breathing is more unstable than one which varies
rate of breathing.
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Tables (1) and (2) provide numerical results for this analysis. In these tables the crit-
ical values are defined as multiples of normal values which produce instablilty. For
example, ”control multipliers” refer to multiples of normal gains and ”7 multipliers”
represent multipliers of the nominal case delay time 7. Thus a 7 multiplier of 5.5 says
we must increase the normal case delay 7 five times for instability in the studied case.
Table 1 compares the impact of controlling minute ventilation by changes rate and depth
of breathing. Table 2 compares the impact of reduced cardiac output (increased delay)
as found in congestgive heart failure. Note that, as Figure (3) indicates, the increased
delay produces oscillations. For control gain 2.5 x normal, the destabilizing delay is less

than the normal delay. Chenyne-Stokes type respiration occurs.

Table 1: Stability results of parameter changes for 3-D model

3-D with Ep =0.7 (modulate rate of breathing)

Quantity parameter multiplier 7 multiplier
GP and GC ;.0 ;15.26 x
GP and GC .0 5 x
ML and ML 0.5 10.99 x
cog 09
MLCO2 and MLO2 2.0 12.6 x

3-D with VD = 2.0 1/min (modulate depth of breathing)

Quantity parameter multiplier 7 multiplier
GP and GC 1.0 5.67 x
GP and GC 2.0 3.09 x
M d M 0.5 4.5
MLCO2 alnd ML02 2.0 7 05x
- B xX
L002 an L02

Table 2: Stability calculation model parameter base values for Fig. 3

Figure 3 Quantity Unit

Value

Gp 1/min/mm Hg 112.5
G'C 1/min/mm Hg 3.0
Q 1/min 3.5
normal 7 sec 14.6
unstable 7 multiple at normal gain 1.76
unstable 7 multiple at 2.5 x normal gain - 0.77
Vp 1/min 2.00
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Figure 1: Block diagram of the respiratory system model
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Figure 2: Infant blood gas level destabilized by sleep transition

ADULT Congestive 3D MODEL VARIABLES (Q = 3.5)
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Figure 3: Congestive heart condition: cardiac output 3.5 I/min and high gain



