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Abstract. A number of mathematical models of the human respiratory control system have
been developed since 1940 to study a wide range of features of this complex system. Among
them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is
a collection of regular but involuntary breathing patterns that have important medical impli-
cations. The hypothesis that periodic breathing is the result of delay in the feedback signals
to the respiratory control system has been studied since the work of Grodins et al. in the
early 1950’s [1]. The purpose of this paper is to study the stability characteristics of a feed-
back control system of five differential equations with delays in both the state and control
variables presented by Khoo et al. [4] in 1991 for modeling human respiration. The paper
is divided in two parts. Part I studies a simplified mathematical model of two nonlinear
state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller.
Analysis was done on this model to illuminate the effect of delay on the stability. It shows
that delay dependent stability is affected by the controller gain, compartmental volumes and
the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing
or faster breathing). In adition, numerical simulations were performed to validate analytical
results. Part II extends the model in Part I to include both peripheral and central controllers.
This, however, necessitates the introduction of a third state equation modeling CO2 levels
in the brain. In addition to analytical studies on delay dependent stability, it shows that the
decreased cardiac output (and hence increased delay) resulting from the congestive heart
condition can induce instability at certain control gain levels. These analytical results were
also confirmed by numerical simulations.

1. Introduction

The present Part II is a continuation of our companion paper “Stability of the
Human Respiratory Control System. Part I: Analysis of a two-dimensional delay
state-space model”. The division in Parts I and II of this study is dictated by its
overall length. In fact, Part II should be viewed as a continued study of Part I. In
Part I, we have considered a two-dimensional model utilizing only the peripheral
control. It was seen that this produces a system which is much more unstable than
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the five-dimensional model in the sense that the delay needed to introduce instabili-
ty is only twice the normal delay of the system. Changes in control gain and cardiac
output can push the system to unstable configurations. A modified control which
included an approximation to the central control was also studied and it was found
that the central control is integral to the stability of the system. However this con-
trol was physiologically inexact. It was clear that a compartment to monitor brain
CO2 levels which is the input to the central controller was needed to adequately
model the respiratory control system. In Part II, we will look at the extension to the
two-dimensional state space model which incorporates the compartment designed
to model brain CO2 levels.

2. A three-dimensional state space model

2.1. Model Equations

The following assumptions will be made:

(i) PVco2
= constant.

(ii) PVo2
= constant.

(iii) Q̇ = constant.
(iv) O2 values stay within one section of the dissociation piecewise function.
(v) Only one delay is considered.

(vi) The delay to the brain compartment is the same as the peripheral delay.
(vii) The one delay is constant sinceQ̇ is constant.

(viii) There is no modeling of breath by breath changes (constant flow model).
(ix) Dead space ventilation is represented by the ventilation factor EF.

We note that these assumptions are the same as those used to derive the two-dimen-
sional state space model in Part I. That is, the mathematical model is a nonlinear,
autonomous system of three state equations modeling Paco2

, Pao2
and PBco2

with
one constant delay. However, Part I only considered the peripheral controller which,
consequently, eliminates the need for the equation for PBco2

. In Part II, we consider
both the central and peripheral controllers. Consequently, the state equations are:

dPaco2
(t)

dt
=

863Q̇Kco2[PVco2
(t − τV)−Paco2

(t)]+EFV̇I[PIco2
−Paco2

(t)]

MLco2

,

(1)

dPao2
(t)

dt
=

863Q̇[mvPvo2
(t − τV)− maPao2

(t)+ Bv − Ba]

MLo2

+
EFV̇I[PIo2

− Pao2
(t)]

MLo2

, (2)

dPBco2
(t)

dt
=

MRBco2

MBco2
KBco2

+
[Q̇B(Paco2

(t − τB)− PBco2
(t))]

MBco2

. (3)

Recalling Section 2 of Part I and dropping the dot notation used by physiologists
and refer toV̇I ,V̇C, andV̇P as V, VC and VP, the control equation is given by:
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V = [[V P]] + [[V C]]

where

VP = GP exp(−.05Pao2
(t − τa))(Paco2

(t − τa)− IP)

VC = GC(PBco2
(t)−

MRBco2

Kco2Q̇B

− IC)

The bracket notation indicates that VP and VC are greater than or equal to zero.
Note that VP depends on Pao2

and Paco2
while VC depends on PBco2

. Table 7 at
the end of this paper gives parameter values used in simulation studies of the model
(1)–(3) (unless otherwise noted).

2.2. Stability analysis of the three-dimensional state space model

For the stability analysis of system (1), (2) and (3), we will rewrite it as:

dX(t)

dt
= K1[K2 − X(t)] − K3V(X(t)− PIco2

), (4)

dY(t)

dt
= K4[K5 − K6Y(t)− K7] + K8V(PIo2

− Y(t)), (5)

dZ(t)

dt
= K9 + K10(X(t − τ)− Z(t)) (6)

where

X(t) = Paco2
,

Y(t) = Pao2
,

Z(t) = PBco2
,

V = V(X(t − τ),Y(t − τ),Z(t)),

τ = τa,

K1 = 863
Q̇Kco2

MLco2

,

K2 = PVco2
,

K3 = EF

MLco2

,

K4 = 863
Q̇

MLo2

,

K5 = mvPVo2
+ Bv,

K6 = ma,

K7 = Ba,

K8 = EF

MLo2

,
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K9 =
MRBco2

MBco2
KBco2

,

K10 = Q̇B

MBco2

.

Note that V is increasing in bothX(·) andZ(·) and decreasing inY (·). Simplifying
these equations gives

dX(t)

dt
= K11 − K1X(t)− K3V(X(t)− PIco2

), (7)

dY(t)

dt
= K12 − K13Y(t)+ K8V(PIo2

− Y(t)), (8)

dZ(t)

dt
= K9 + K10(X(t − τ)− Z(t)), (9)

where

K11 = K1K2,

K12 = K4K5 − K7K4,

K13 = K4K6.

Let

x(t) = X(t)− PIco2
,

y(t) = PIo2
− Y(t),

z(t) = Z(t),

so that x(t) represents the difference in inspired CO2 and arterial CO2 and y(t)
represents the difference in inspired O2 and arterial O2. We note that PIco2

≈ 0.
We get upon substituting and simplifying:

dx(t)

dt
= a1 − a2x(t)− a3Vx(t), (10)

dy(t)

dt
= b1 − b2y(t)− b3Vy(t), (11)

dz(t)

dt
= c1 + c2x(t − τ)− c2z(t), (12)

where

a1 = K11 − K1PIco2
,

a2 = K1,

a3 = K3,

b1 = −K12 + K13PIo2
,

b2 = K13,
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b3 = K8,

c1 =
MRBco2

MBco2
Kco2

,

c2 = Q̇B

MBco2

.

In the control equation, VC and VP take the form

VC = GC(z(t)− c1

c2
− IC),

VP = GP exp−0.05(PIo2
− y(t − τ))(x(t − τ)− IP).

Again, we have dropped the brackets while always maintaining that VP and VC will
be greater than or equal to zero. It should be noted that the control function V has
the following properties:

(i) V = V(x(t − τ), y(t − τ), z(t)) and is now increasing inx, y andz;
(ii) V P = VP(x, y), VC = VC(z);
(iii) V P( IP, y) = 0, VC(

c1
c2

+ IC) = 0;

(iv) V is differentiable forx 6= IP, z 6= c1
c2

+ IC;

(v) Vx > 0, Vy > 0, Vz > 0 for x > IP, y > 0 andz > c1
c2

+ IC.

The above system (10), (11) and (12) is of the form

ẋ(t) = f (xt ).

wheref : C → R
3 andC = C([−r,0],R3). f (xt ) takes the form

f (xt ) =


f1(xt )

f2(xt )

f3(xt )




andx(t) takes the form(x1(t), x2(t), x3(t)). We now obtain existence and unique-
ness of solutions to equations (10)–(12).

Theorem 2.1. The system (10), (11) and (12) has a unique solution forσ ∈ R and
φ ∈ C.

Proof. We will show thatf is continuous onC and locally Lipschitz on compact
sets ofC. Recall that the norm onC is defined as follows. Forφ ∈ C,

|φ|∞ = sup−r≤θ≤0

√
(φ1(θ))2 + (φ2(θ))2 + (φ3(θ))2,

It is clear that if eachfi is continuous and locally Lipschitz, fori = 1,2,3, thenf
is continuous and we can find a Lipschitz constant K forf .

Let Ew = (Eu, Ev) ∈ R
3 × R

3, whereEu = (u1, u2, u3), Ev = (v1, v2, v3) and with
norm defined by|(Eu, Ev)|

R3×R3 = |Eu|
R3 + |Ev|

R3. Considerf1 as a function defined
onR

3 × R
3 by

f1(Eu, Ev) = a1 − a2u1 − a3V(v1, v2, u3)u1, (13)

where
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V(v1, v2, u3) = GP exp(−0.05v2)(v1 − IP)+ GC(u3 − c1

c2
− IC).

SinceR
3 × R

3 ∼= R
6, it is clear that (13) is continuous onR3 × R

3. From now
on | · | will represent the appropriate norm when no confusion will occur. Let
φ = (φ1, φ2, φ3) ∈ C be chosen and letEw = (Eu, Ev) ∈ R

3 × R
3 where(Eu, Ev) is

defined as:

Eu =


u1
u2
u3


 =



φ1(0)
φ2(0)
φ3(0)


 , Ev =



v1
v2
v3


 =



φ1(−τ)
φ2(−τ)
φ3(−τ)


 .

Thus Ew = (φ(0), φ(−τ)) is a given element inR3 × R
3. Considering the right-

hand side of (13) as a mapping onR
3 × R

3, and for Ew defined above, for every
ε = ε( Ew) > 0 there is aδ > 0 such that|f1(Ex)− f1( Ew)| < ε when|Ex − Ew| < δ.
Let |φ − ψ | < δ/2 forψ ∈ C. Then it follows that

|φ(0)− ψ(0)| < δ/2 and |φ(−τ)− ψ(−τ)| < δ/2.

For anyψ , let Ex = (ψ(0), ψ(−τ)). We have

|f1(ψ)− f1(φ)| = |f1(Ex)− f1( Ew)|
and

|f1(Ex)− f1( Ew)| < ε

when

|Ex − Ew| =
√
(φ1(0)− ψ1(0))2 + (φ2(0)− ψ2(0))2 + (φ3(0)− ψ3(0))2

+
√
(φ1(−τ)−ψ1(−τ))2+(φ2(−τ)−ψ2(−τ))2 + (φ3(−τ)− ψ3(−τ))2

< δ.

That is, when|φ − ψ | < δ/2. We conclude thatf1 is continuous onC. A similar
argument can be given forf2 andf2 and thusf is continuous onC.

Again regardingf1 as a mapping onR3×R
3, it is clear that the exponential fac-

tor in VP has continuous partial derivatives and will be locally Lipschitz on compact
sets. Also, the second factor in VP defined by the mapf : (Eu, Ev) → [(v1 − IP)]
is Lipschitz as is the mapping defining VC. Furthermore, sums and products of
Lipschitz maps on compact sets will be Lipschitz. Therefore, the above mapping
(13) will be locally Lipschitz on compact sets ofR

3 × R
3. Thus, if Ex, Ey ∈ R

3 × R
3

are contained in a compact set, then there exists aK > 0 such that

|f1(Ex)− f1(Ey)| < K|Ex − Ey| (14)

Now, let D be a compact set inC. Hence, forφ = (φ1, φ2, φ3) ∈ D, we have
|φ| < b for someb > 0. Thus the set{φ(t)|φ ∈ D, t ∈ [−r,0]} will be contained in
the closed ballB(0, b), a compact set inR3 and so pairs of the form(φ(0), φ(−τ))
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will be contained in the closed ballB(0,2b) in R
3×R

3. This ball is compact andf1
will be Lipschitz onB(0,2b) with Lipschitz constant K. Consider, forφ, ψ ∈ D,

f1(φ)− f1(ψ) = −a2(φ1(0)− ψ1(0))

−a3(V(φ1(−τ), φ2(−τ), φ3(0))φ1(0)

−V(ψ1(−τ), ψ2(−τ), ψ3(0))ψ1(0)).

Again considering the right-hand side of (13) as a mapping fromR
3 × R

3, and
making the identification



u1
u2
u3


 =



φ1(0)
φ2(0)
φ3(0)


 ,



v1
v2
v3


 =



φ1(−τ)
φ2(−τ)
φ3(−τ)


 ,

(similarly forψ) we have

|f1(φ)−f1(ψ)| <K
√
(φ1(0)− ψ1(0))2 + (φ2(0)− ψ2(0))2 + (φ3(0)− ψ3(0))2

+K
√
(φ1(−τ)− ψ1(−τ))2 + (φ2(−τ)− ψ2(−τ))2 + (φ3(−τ)− ψ3(−τ))2

< 2K|φ − ψ |.
Thusf1 is locally Lipschitz on compact sets. A similar argument can be given for
f2 andf3 and thusf is locally Lipschitz. From well known results (see, e.g., [2]
Theorems (2.2.1) and (2.2.3)) it follows that the system (10), (11) and (12) has a
unique solution forσ ∈ R andφ ∈ C. This ends the proof. 2

Furthermore, from Theorem 2.2.2 in [2], we are also guaranteed that the solu-
tions are continuously dependent on initial data so that the model is well-posed.

We now will show that the above system (10)–(12) has a unique positive
equilibrium.

Theorem 2.2. The above system described by (10), (11) and (12) has a unique
positive equilibrium(x̄∗, ȳ∗, z̄∗) .

Proof. At equilibrium, we have

0 = a1 − a2x(t)− a3Vx(t), (15)

0 = b1 − b2y(t)− b3Vy(t), (16)

0 = c1 + c2x(t)− c2z(t). (17)

whereV̄ = V(x̄, ȳ). Note thata1
a2

= PVco2
and will always be physiologically much

larger than IP, the threshold level for zero ventilation. This implies thatV̄ = 0 is
impossible at equilibrium. For then,̄V = 0 ⇒ x̄ ≤ IP but V̄ = 0 ⇒ x̄ = a1

a2

from solving (15) forx̄ and this contradicts thata1
a2

� IP. We get from the above
at equilibrium relationships:

x̄ = a1

a2 + a3V̄
, (18)
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z̄ = x̄ + c1

c2
, (19)

V̄ = b1

b3ȳ
− b2

b3
. (20)

Note that this equation gives the value forV̄ at equilibrium and is not meant as a
formula forV̄ in terms ofȳ. Substituting (20) into (18) gives

x̄ = a1

a2 + a3(
b1
b3ȳ

− b2
b3
)
. (21)

At equilibrium,ȳ ≥ b1
b2

⇔ V̄ ≤ 0. This is impossible at equilibrium so thatȳ < b1
b2

.

Now using (21),we see thatx̄ = x(ȳ) is monotonically increasing in̄y andx̄ → 0
monotonically as̄y → 0. Thus we may find a uniquēy such that̄x is as close to
(but greater than)̄x = IP as we wish. Furthermore, from the equation for VP we

may bound the exponential factor involvingy on the interval 0< y < b1
b2

by a

positive value M. Thus

VP ≤ M(x − IP).

We can choosēx so that VP is as small as we wish and find a correspondingȳ using
(21). Furthermore, in the expression for VC if we setKTC = c1

c2
then

V = 0 ⇒ VC = VP = 0

⇒ x̄ ≤ IP and z̄ ≤ IC + KTC.

Since the parameters IP and IC are chosen (see [3]) so that IP = IC, from (19) we
see that̄x ≤ IP ⇒ z̄ ≤ IC + KTC ⇒ V = 0. We also note that

g(y) = b1

b3y
− b2

b3

is decreasing iny. By choosingx̄ sufficiently close to x= IP (call it x̄ IP) we may
find a triple (̄x IP, ȳ IP

, z̄ IP) such thatV̄(x̄ IP, ȳ IP
, z̄ IP) is as small as we like and set

up the relation

V̄(x̄ IP, ȳ IP
, z̄ IP) < g(ȳ IP

). (22)

whereȳ IP
< b1

b2
(but close tob1

b2
).

From (18), (19) and (20) we see thatx̄ is monotonically increasing in̄y and
z̄ is monotonically increasing in̄x and hencēy. V̄ is increasing inx̄, ȳ andz̄ so

that we may consider̄V as an increasing function in̄y, whereȳ IP
< b1

b2
. Also

g(y) = b1

b3y
− b2

b3
is decreasing in y andg(b1

b2
) = 0. Thus if we begin with the

relation (22) there will be a unique solutionȳ∗ of

V̄(x̄(ȳ), ȳ) = b1

b3ȳ
− b2

b3
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whereȳ IP
< ȳ∗ < b1

b2
. Using the solution̄y∗ to definex̄∗ we get upon substituting

ȳ∗ into (21) the corresponding uniquely definedx̄∗:

x̄∗ = a1

a2 + a3(
b1

b3ȳ∗ − b2
b3
)
.

Note that IP < x̄∗ < a1
a2

. Usingx̄∗ and (19) we find̄z∗. Solving forV̄ in (18) at

equilibrium we see that

V̄ = a1

a3x̄
− a2

a3
(23)

and substitutinḡx∗ defined above we get

V̄(x̄∗(ȳ∗), ȳ∗, z̄∗(ȳ∗)) = a1

a3


 a1

a2+a3(
b1
b3

ȳ∗−b2
b3
)




− a2

a3
= b1

b3ȳ∗ − b2

b3
.

ThusV̄ as defined by (20) and (18) are equal at(x̄∗, ȳ∗, z̄∗) wherez̄∗ is defined by
x̄∗. We may conclude that there is a positive equilibrium(x̄∗, ȳ∗, z̄∗) to the above
system and it is unique. In addition, we havex̄∗ > IP andz̄∗ > IC + KTC. This
completes our proof. 2

We will now consider the stability of the above nonlinear system of delay differ-
ential equations. To this end, we first linearize equations (10), (11) and (12) about
the equilibrium solutions. Let:

ξ(t) = x(t)− x̄,

η(t) = y(t)− ȳ,

ν(t) = z(t)− z̄.

We get

dξ(t)

dt
= (−a2 − a3V̄)ξ(t)− a3x̄V̄xξ(t − τ)− a3x̄V̄yη(t − τ)− a3x̄V̄zν(t),

dη(t)

dt
= (−b2 − b3V̄)η(t)− b3ȳV̄xξ(t − τ)− b3ȳV̄yη(t − τ)− b3ȳV̄zν(t),

dν(t)

dt
= +c2ξ(t − τ)− c2ν(t).

Again writing in matrix form we get

d

dt



ξ(t)

η(t)

ν(t)


 = A



ξ(t)

η(t)

ν(t)


 + B



ξ(t − τ)

η(t − τ)

ν(t − τ)


 .
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Matrix A takes the form

A =



−a2 − a3V̄ 0 −a3x̄V̄z
0 −b2 − b3V̄ −b3ȳV̄z
0 0 −c2




and matrix B has the form

B =



−a3x̄V̄x −a3x̄V̄y 0
−b3ȳV̄x −b3ȳV̄y 0

c2 0 0


 .

The characteristic equation is

1(λ, τ) = P(λ)+ Q(λ)e−τλ = 0 (24)

where

P(λ) = λ3 + (A1 + B1 + C1)λ
2 + (A1C1 + A1B1 + B1C1 + A1C1)λ+ A1B1C1

Q(λ) = (A2 + B2)λ
2 + (B2C1 + A1B2 + A2C1 + A2B1 + C2C1)λ+ A1B2C1

+A2B1C1 + C2C1B1,

and where

A1 = a2 + a3V̄,

A2 = a3x̄V̄x,

B1 = b2 + b3V̄,

B2 = b3ȳV̄y,

C1 = c2,

C2 = a3x̄V̄z.

Clearly|P(iω)|2 − |Q(iω)|2 will take a complicated form from which it is difficult
to extract a simple condition for stability. However, we can study the stability for
parameter values which are physiologically meaningful. These parameters can be
found in Table 7 at the end of the Appendix. The expression

F(ω) = |P(iω)|2 − |Q(iω)|2

is a six degree polynomial of the form

F(ω) = ω6 + k1ω
4 + k2ω

2 + k3.

Now, we letω2 = v and define

F̂ (v) = v3 + k1v
2 + k2v + k3.

We find, for our parameters, that this cubic has two negative roots and one
positive rootvo so thatωo = √

vo is the only (simple) positive root ofF(ω) (see
Figure 1). Also we see that for these parameters:
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Fig. 1. Roots ofF̂ (v) for the three-dimensional system.

• 1(0, τ ) 6= 0;
• 1(λ,0) = 0 is a cubic with 3 negative roots (see Figure 2).

Extensive numerical tests varying control gain, cardiac output and threshold levels
indicate that the graphs in Figures 1 and 2 shift somewhat as changes in the above
mentioned parameters are made but the number and the nature of the roots do not
change. In all of the simulations to be discussed below we have that:

• there are three negative roots of1(λ,0);
• there is exactly one positive root forF(ω).

For the range between the most destabilizing combination ofQ̇, controller gain and
lung compartment volumes and the most stabilizing combination, the two condi-
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Fig. 2. Roots of characteristic equation withτ = 0 for the three-dimensional system.

tions listed above are satisfied. These conditions, together with the fact that P and
Q are polynomials with real coefficients guarantees that the conditions required by
Theorem 3.5 in Part I are satisfied.

Hence we may apply Theorem 3.5 described in Part I to look forτ which will
produce instability. Once again there will be one cross over from stable to unstable
behavior. Figure 3 shows the stable solutions for the system (10), (11) and (12)
and Figure 4 exhibits the unstable ones. In Figures 3 and 4, we also include the
constant values for PVco2

and PVo2
. Ventilation rate is denoted by Ve. Table 1 gives

the parameter values and stability calculations for the numerical solutions shown
in Figures 3 and 4. We can compare the results of the stability analysis for the two-
dimensional model studied in Part I and the three-dimensional model presented
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Fig. 3.Three-dimensional model stability simulation.

Fig. 4.Three-dimensional model unstable simulation.
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Fig. 5. Five-dimensional model unstable simulation.

here. We compare the two-dimensional model with the peripheral control only.
Using the same parameter values (from the three-dimensional model parameters,
Table 7) we see from Table 2 that a model with the peripheral control only is much
more unstable than the three-dimensional model incorporating both a peripheral
control and central control. Note that for normal control gain the two-dimensional
model predicted instability at aτ multiplier of 1.94 while the three-dimensional
model gives 11.26. We can also test these predictions against the five-dimension-
al model. Using the five-dimensional model (without breath by breath variation),
numerical simulations indicated that instability occurs when theτ multiplier was
14.1 (see Table 2).

We see that the overall structure of instability was illuminated by the three-
dimensional model and the actual state variables were in good agreement with
the five-dimensional model. Theτ multiplier necessary for instability for the five-
dimensional model was about 28% higher than predicted by the smaller models
indicating that the tissue compartments add to the stability of the system. Figure
5 represents the five-dimensional model simulation at instability. Note that PVco2
and PVo2

do not vary much even in unstable situations.
Finally, we will present calculations comparing the effects produced by vary-

ing different parameters. We will introduce one further parameter in this analysis.
We have heretofore used EF set at 0.7 to reflect dead space ventilation VD. This
factor reduces each breath by a certain percentage. In this case, we are assuming
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that an increase in the ventilation rate is produced by increased breathing rate and
thus each breath is reduced by the same dead space volume percentage. We might
also assume that breathing rate is held constant and depth of breathing is varied. In
this case there will be a fixed dead space volume subtracted from each breath as
discussed in Section 2 of Part I. We then have Veff = V − VD. EF will be set at 1.0.
Notice that in this case VD serves to reduce V by a fixed amount in each breath.

Table 3 presents the results obtained by varying different parameters and their
effects on stability. We compile the results for both of the versions of modeling
dead space ventilation just described. To develop this table we start with the stan-
dard parameter values and the calculatedτ ∗ multiplier for these parameters. Small
changes in the constant values for PVco2

and PVo2
are included as predicted by the

five-dimensional model for large parameter changes. Column 1 gives the parameter
which is changed while others are held fixed. Column 2 gives the change in that
parameter by a certain factor. Column 3 gives the factor by which the standard
value for theτ ∗ multiplier is increased or decreased when this parameter change
occurs. Changes in cardiac output are considered below. We see that an increase in
lung compartment volumes tends to stabilize the system which agrees with [4]. It
is interesting to note that using Veff = V − VD to represent dead space ventilation
acts to reduce the stability of the system more than the factor EF does. This makes
sense if we consider that EF acts to reduce the effectiveness of the control signal by
a certain constant percent while in the expression Veff = V −VD the useless volume
VD becomes a smaller percentage as deeper breaths are taken and hence increasing
the efficacy of the control. In actuality, the control signal modulates both rate and
depth of breathing.

The analytical methods described above can predict the effects of any combi-
nation of factors as well. From Table 3, one can ascertain the general effects of any
combination of factors. We will look at the effect of varying cardiac output in the
next section.

2.3. Congestive heart condition

HereQ̇ is reduced to reflect the inefficient flow of blood. Tables 4 and 5 give the
congestive heart condition calculations for stability. Figures 6 to 8 show simulation
results for this case. Figure 6 and Table 4 look at the case whereQ̇ is reduced to
4.5 liters/min. Notice that the delay time for instability is much lower than is the
case for a normal adult as depicted in Table 3. Figures 7 and 8, and Table 5 reflect
the condition wherėQ is reduced to 3.5 liters/minute. Here Paco2

is increased and
Pao2

is reduced as is seen in the clinical setting.
In Figure 7, instability occurs atτ ∗ > 2.8τnorm whereτnorm is now much larger

due to the lowered blood flow rate. For higher control gain of 2.5 times normal gain
the system is nearly unstable at the normal delay time for this case. Figure 8 reflects
the state where the constant VD replaces EF in the system. Here the system is driv-
en by the oscillations to apneic periods with cycle time approximately 45 seconds
which is in the range of clinical observations (cycle time average 1 minute) [4].
At 2.5 times normal gain the system is already unstable at the normal delay time.
Table 6 gives the parameter base values for the congestive heart case simulations.
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Fig. 6.Congestive heart condition: cardiac output 4.5 l/min.

3. Conclusions

Based on the foregoing analysis, we conclude that:

1. The central control acts to reduce the instability inherent in the peripheral control
mechanism. One might be tempted to believe that the central control evolved for
this purpose. The peripheral control responds quickly to changes in the blood
gases while the central control responds more slowly and with less variation
due to the process of transforming Paco2

levels into PBco2
levels. Peripheral

response is most critical during hypoxia and in such cases quick changes in ven-
tilation are necessary. Quick changes to increased Paco2

and hence decreases
in pH levels are also important. The price paid for this response is instability
and the central control acts to mitigate this factor.

2. The tissue compartments act to dampen oscillations and contribute to stability
as Table 2 indicates. Notice that the five-dimensional model seems to be more
stable than the three-dimensional model. Also, Table 3 indicated an increase in
lung compartment volumes tends to stabilize the system.

3. Cardiac output increases PVco2
and PVo2

levels and can create conditions where
the delay is small enough for the system to be driven to apneic episodes. This
can happen if the controller gain is higher than normal. Note that we did not
have to reducėQ as drastically as was done in [4] to produce these instabilities.

4. Variations in controller gain are critical to the stability of the system.
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Fig. 7.Congestive heart condition: cardiac output 3.5 l/min and high gain.

Fig. 8.Congestive heart condition: cardiac output 3.5 l/min and high gain.
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5. A control which varies depth of breathing is more unstable than one which
varies rate of breathing.

6. Khoo et al [4] analyzed a similar reduced model using Laplace transform and
transfer functions. Stability characteristics were represented via Nyquist plots.
Normal loop gain was given as 0.17 and instability begins when loop gain equals
1. They found that increasing controller gain by 25% increased loop gain by the
same amount. Extrapolating from this one would expect that instability would
occur when controller gain was increased by about 5.5 times. This correlates
with our results that found the delay time for instability was 6.3 times normal
delay when a constant dead space was used. We also found that doubling con-
troller gain reduced the delay necessary for instability by not quite one half. Of
course, it is important to keep in mind that changing controller gain changes the
steady state values and we modified the levels of PVco2

and PVo2
to reflect this

fact. We used the full model to calculate reasonable values for these quantities.
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Appendix

Table 1. Stability calculation parameters for Figures 3 and 4.

Quantity Unit Value

GC l/min/mmHg 1.2
GP l/min/mmHg 45.0
Q̇ l/min 6.0
PVco2

mmHg 45.8
PVo2

mmHg 40.9
ωo ...... 1.51
Normalτ sec 8.5
Unstableτ multiplier ... 11.26
x̄ mmHg 39.41
ȳ mmHg 48.74
z̄ mmHg 49.23
V̄ l/min 6.83
VP l/min 1.54
VC l/min 5.29

Table 2. Stability calculation comparisons for 2-D, 3-D,and 5-D models.

Quantity 2-D 3-D 5-D

GC ... 1.2 1.2
GP 45.0 45.0 45.0
Q̇ 6.0 6.0 6.0
ωo 7.82 1.51 ...
Normalτ 8.5 8.5 8.5
Unstableτ multiplier 1.94 11.26 14.1 estimate
x̄ 41.19 39.41 39.46
ȳ 64.44 48.75 48.53
z̄ ... 49.23 49.28
V̄ 4.70 6.83 6.12
PVco2

45.8 45.8 45.8
PVo2

40.9 40.9 40.9



Stability of the human respiratory control system. II 99

Table 3. Stability results of parameter changes for 3-D model.

Quantity Parameter multiplier τ ∗ multiplier

3-D with EF = 0.7
GP and GC 1.0 11.26 x
GP and GC 2.0 5.5 x
MLco2

and MLo2
0.5 10.99 x

MLco2
and MLo2

2.0 12.6 x

3-D with VD = 2.0 l/min
GP and GC 1.0 5.67 x
GP and GC 2.0 3.09 x
MLco2

and MLo2
0.5 4.5 x

MLco2
and MLo2

2.0 7.05 x

Table 4. Stability calculation parameters for Figure 6.

Quantity Unit Value

GP l/min/mmHg 112.5
GC l/min/mmHg 3.0
Q̇ l/min 4.5
ωo at normal gain ...... 2.58
ωo at 2.5× normal gain ...... 6.14
Normalτ sec 11.3
Unstableτ multiple at normal gain .... 4.63
Unstableτ multiple at 2.5× normal gain .... 1.79
x̄ mmHg 39.76
ȳ mmHg 48.79
z̄ mmHg 49.59
V̄p l/min 1.53
V̄c l/min 5.29
PVco2

mmHg 48.34
PVo2

mmHg 33.76
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Table 5. Stability calculation parameters for Figures 7 to 8.

Quantity Unit Value

Figure 7
GP l/min/mmHg 112.5
GC l/min/mmHg 3.0
Q̇ l/min 3.5
ωo at normal gain ...... 3.15
ωo at 2.5× normal gain ...... 7.10
Normalτ sec 14.6
Unstableτ multiple at normal gain ... 2.82
Unstableτ multiple at 2.5× normal gain .... 1.14
x̄ mmHg 39.76
ȳ mmHg 48.79
z̄ mmHg 49.58
V̄p l/min 1.54
V̄c l/min 5.29
PVco2

mmHg 50.79
PVo2

mmHg 25.57

Figure 8
GP l/min/mmHg 112.5
GC l/min/mmHg 3.0
Q̇ l/min 3.5
ωo at normal gain ...... 4.91
ωo at 2.5× normal gain ...... 10.04
Normalτ sec 14.6
Unstableτ multiple at normal gain ... 1.76
Unstableτ multiple at 2.5× normal gain .... 0.77
x̄ mmHg 39.87
ȳ mmHg 48.95
z̄ mmHg 49.70
V̄p l/min 1.65
V̄c l/min 5.63
V̇D l/min 2.00
PVco2

mmHg 50.91
PVo2

mmHg 25.56
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Table 6. Stability calculation model parameter base values for Fig. 6–8.

Quantity Unit Value

Figure 6
GP l/min/mmHg 45.0
GC l/min/mmHg 1.2
Q̇ l/min 4.5
x̄ at normal gain mmHg 42.03
ȳ at normal gain mmHg 51.57
z̄ at normal gain mmHg 51.86
PVco2

at normal gain mmHg 50.60
PVo2

at normal gain mmHg 33.43

V̄p at normal gain l/min 1.61
V̄c at normal gain l/min 4.83
IP mmHg 38.0
IC mmHg 38.0
EF ... 0.7

Figure 7
GP l/min/mmHg 45.0
GC l/min/mmHg 1.2
Q̇ l/min 3.5
x̄ at normal gain mmHg 42.07
ȳ at normal gain mmHg 51.60
z̄ at normal gain mmHg 51.85
PVco2

at normal gain mmHg 53.06
PVo2

at normal gain mmHg 25.25

V̄p at normal gain l/min 1.62
V̄c at normal gain l/min 4.83
IP mmHg 38.0
IC mmHg 38.0
EF ... 0.7

Figure 8
GP l/min/mmHg 45.0
GC l/min/mmHg 1.2
Q̇ l/min 3.5
x̄ at normal gain mmHg 42.34
ȳ at normal gain mmHg 51.99
z̄ at normal gain mmHg 52.16
PVco2

at normal gain mmHg 53.37
PVo2

at normal gain mmHg 25.19

V̄p at normal gain l/min 1.77
V̄c at normal gain l/min 5.20
IP mmHg 38.0
IC mmHg 38.0
EF ... 0.9
V̇D l/min 2.0
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Table 7. Parameter values for 3-D model.

Quantity Unit Value

GC l/min/mmHg 1.2
GP l/min/mmHg 45.0
Q̇ l/min 6.0
Q̇B l/min 0.75
PVco2

mmHg 45.8
PVo2

mmHg 40.9
IP mmHg 35.0
IC mmHg 35.0
MLco2

liter 3.2
MLo2

liter 2.5
EF ... 0.7
PIo2

mmHg 146.0
Kco2 lSTPD/(l mmHg) 0.0057
ma lSTPD/(l mmHg) 0.00025
Ba lSTPD/l 0.1728
mv lSTPD/(l mmHg) 0.0021
Bv lSTPD/l 0.0662
MRBco2

ml / min STPD 0.042
MBco2

mmHg 0.9
VD l/min 2.0


