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Abstract. A number of mathematical models of the human respiratory control system have
been developed since 1940 to study a wide range of features of this complex system. Among
them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is
a collection of regular but involuntary breathing patterns that have important medical impli-
cations. The hypothesis that periodic breathing is the result of delay in the feedback signals
to the respiratory control system has been studied since the work of Grodins et al. in the
early 1950’s [12]. The purpose of this paper is to study the stability characteristics of a feed-
back control system of five differential equations with delays in both the state and control
variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper
is divided in two parts. Part I studies a simplified mathematical model of two nonlinear
state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller.
Analysis was done on this model to illuminate the effect of delay on the stability. It shows
that delay dependent stability is affected by the controller gain, compartmental volumes and
the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or
faster breathing). In addition, numerical simulations were performed to validate analytical
results. Part II extends the model in Part I to include both peripheral and central controllers.
This, however, necessitates the introduction of a third state equation modeling CO2 levels
in the brain. In addition to analytical studies on delay dependent stability, it shows that the
decreased cardiac output (and hence increased delay) resulting from the congestive heart
condition can induce instability at certain control gain levels. These analytical results were
also confirmed by numerical simulations.

1. Introduction and modeling considerations

The human respiratory system acts to exchange carbon dioxide, CO2, which is the
unwanted gas byproduct of metabolism for oxygen, O2, which is necessary for
metabolism. The control mechanism which responds to the changing needs of the
body to acquire oxygen, O2 and to expel carbon dioxide, CO2, acts to modulate
the ventilation rate, which will be denoted byV̇I , in a manner designed to maintain
normal levels of these gases. In the absence of voluntary control of breathing or
neurological induced changes in breathing, the respiratory control system varies
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the ventilation rate in response to the levels of CO2 and O2. We refer to this sys-
tem as the chemical control system and will consider its dynamics. Furthermore,
chemical control is the only control regulating respiration during sleep, a state in
which involuntary cessation of breathing (referred to as apnea) can occur.

There are two sites where CO2 and O2 levels are measured:

• The peripheral controller consists of the carotid receptors found in the angle of
the bifurcation of the common carotid arteries, as well as chemoreceptors in the
aortic arch. They respond to both O2 and CO2 via the partial pressures Paco2
and Pao2

[20].
• The central controller responds exclusively to the partial pressure of carbon

dioxide in the brain, PBco2
[20]. PBco2

stimulates certain brain cells in the me-
dulla responsible for the control of ventilation [13]. Of course, PBco2

is related
to Paco2

and the metabolic rate of CO2 production in the brain. For the two
dimensional model considered in Part I of this paper, the controlling quantity
is Paco2

.

These two sensor sites are located a physical distance from the lungs which is the
site at which CO2 and O2 levels can be altered by means of varying the ventilation
rate. Consequently, the feedback controller in the mathematical model will consist
of two transport delays. In general, our analysis below does not depend on the
actual form of the control equation so that different controls may be analyzed. We
do, however, assume that the ventilation function,V̇I , satisfies:

(i) V̇I ≥ 0;
(ii) V̇I = V̇I(Paco2

,Pao2
) is an increasing function with respect to Paco2

and
decreasing in Pao2

;

(iii) V̇I has continuous partial derivatives except perhaps atV̇I = 0.

A number of minimal models have been devised to study stability of the respi-
ratory system. Glass and Mackey [11,19] and Carley and Shannon [3] considered
a one-dimensional state space model. Cleave et al. [4] studied a two-dimensional
model. ElHefnawy et al. [9] considered a three-dimensional model for simulations
which they reduced to a one-dimensional model for stability analysis. Each model
mentioned above had strong points and weaknesses. When considering minimal
models several features of the respiratory system in steady state need to be kept in
mind.

(i) Peripheral ventilatory control response is 25% of the total response.
(ii) CO2 sensitivity is around 2 liters/min/mmHg.
(iii) Total ventilation is 7 liters/min approximately.
(iv) Paco2

= 40 mmHg and Pao2
= 95 to 100 mmHg approximately.

(v) V̇I increases linearly with CO2 and decreases exponentially with O2.
(vi) The central control responds to the CO2 in the brain which varies less than the

arterial level of CO2.

For minimal models it is difficult to satisfy all of these criteria simultaneously.
For example, Glass and Mackey matched items (iii) and (iv) above but CO2
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sensitivity could vary by as much as 100% during oscillatory behavior. We note
that Glass and Mackey, ElHefnawy et al. and Carley and Shannon considered only
CO2 control of ventilation. There are trade-offs in steady state values for Paco2

,

V̇I and control gain. For example, if one considers only Paco2
control then a con-

trol gain level sufficient to produce the correct steady state value of Paco2
andV̇I

might make the control hypersensitive to changing Paco2
levels. Cooke and Turi

[5] considered a two-dimensional extension of the Glass and Mackey model which
included a control responsive to both peripheral Paco2

and Pao2
. They acknowl-

edged that the system would be more unstable than the physiological system as the
peripheral control responds rapidly to arterial gas levels. Our model, however, in-
cludes a more physiologically correct control equation and physiologically correct
relation between arterial and venous levels of Paco2

and Pao2
based on the model

in [17].
The purpose of this paper is twofold. First, we want to understand how the delay

inherent in the respiratory control system affects the stability of the system. Second,
we analyze some of the structure of the physiological control to see how this struc-
ture works to maintain stability. We begin in Section 2 describing the Khoo et al.
model [17] which consists of a nonlinear system of five delay differential equations
with multiple delays modeling human respiration. This model was later extended
by Batzel and Tran [1] to include variable cardiac output and to study infant sleep
respiratory patterns including obstructive apnea and central apnea which may play
a role in sudden infant death syndrome (SIDS). However, this model is too compli-
cated for a stability study. Section 3.1 describes a simplified mathematical model
consisting of two state variables modeling arterial partial pressures of CO2 and
O2 and a peripheral controller. Analytical results and numerical studies on delay
dependent stability analysis are given in Section 3.2 and Section 3.3, respectively.
Section 3.4 describes a modified control model to include a central control compo-
nent and its analytical and numerical results. Section 3.5 contains some parameter
studies which are used in the discussion of stability results (see remarks following
theorem 3.8). Additional discussions of our analysis are given in Section 4 and
Section 5 contains our concluding remarks.

2. The five-dimensional state space model

In this section we briefly describe the five-dimensional model developed in [17].
This section forms the basis for the simplified model developed and analyzed in
Section 3. The following symbol sets will be used throughout the paper.

Primary symbols
M = effective volume in compartment
MR = metabolic rate
P = partial pressure
Q = volume of blood
Q̇ = volume of blood per unit time
V = volume of gas
V̇ = volume of gas per unit time
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Subscripts for gas or compartment phase
A = alveolar
AT = sea level air pressure
B = brain
C = carbon dioxide
D = dead space
E = expired
I = inspired
L = lung
O = oxygen
T = tissue

Subscripts for blood phase
a = mixed arterial
c = capillary
ĉ = end-capillary
i = ideal
m = mixed
v = mixed venous

For example, Pao2
indicates arterial partial pressure of O2 leaving the lungs and

V̇I represents the inspired ventilation rate. The equations for the model studied arise
from straightforward development of mass balance equations utilizing Fick’s law,
Boyle’s law and variations of Henry’s law relating the concentration of a gas in the
solution to the partial pressure of the gas interfacing with the solution. The model
describes three compartments: the lung compartment, a general tissue compartment
and a brain compartment. A block diagram describing the the relationships between
the three compartments and transport delays is shown in Figure 1.

The equations describing the dynamics between the three compartments are
given by:

dPaco2
(t)

dt
=

863Q̇Kco2[PVco2
(t − τV)− Paco2

(t)] + EFV̇I[PIco2
− Paco2

(t)]

MLco2

,

(1)

dPao2
(t)

dt
=

863Q̇[mvPvo2
(t − τV)− maPao2

(t)+ Bv − Ba]

MLo2

+
EFV̇I[PIo2

− Pao2
(t)]

MLo2

, (2)

dPBco2
(t)

dt
=

MRBco2

MBco2
KBco2

+
[Q̇B(Paco2

(t − τB)− PBco2
(t))]

MBco2

, (3)

dPVco2
(t)

dt
=

MRTco2

MTco2
Kco2

+
[Q̇T(Paco2

(t − τT)− PVco2
(t))]

MTco2

, (4)
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Fig. 1.Block diagram of the respiratory system model.

dPVo2
(t)

dt
=

Q̇T[maPao2
(t − τT)− mvPVo2

(t)+ Ba − Bv] − MRTo2

MTo2
mv

. (5)

Equations (1) and (2) describe the lung compartment partial pressures of CO2 and
O2 respectively. Equations (4) and (5) describe the tissue compartment (includ-
ing also brain tissue) partial pressures of CO2 and O2 respectively. Equation (3)
describes the brain compartment CO2 partial pressure. EF,PIo2

,Kco2,ma,mv,Ba

and Bv are constants. The constants Kco2,ma,mv,Ba and Bv occur in the so-called
dissociation laws relating gas concentrations to partial pressures. PIo2

represents
inspired oxygen. We include an alveolar arterial gradient of 4 mmHg (unless oth-
erwise indicated) by reducing PIo2

by this amount [20]. The CO2 dissociation law
is assumed linear while the O2 dissociation law is nonlinear but approximately
piecewise linear. In the above model, it was assumed that the O2 partial pressures
stay within one band of the piecewise linear representation thus making it linear.
Furthermore, the metabolic rates and compartment volumes are assumed constant.
EF reduces the effectiveness of ventilation and is used to model the effects of the
ventilatory dead space. Ventilatory dead space refers to the fact that, on inspiration,
one first brings into the alveoli air from the upper conducting airways (where no
gas exchange occurs) left over from expiration. This air is fully equilibrated with
the venous partial pressures of CO2 and O2 and hence does not contribute to the
ventilation process. This dead space represents approximately 25–30% of the air
moved during inspiration.
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The ventilation rateV̇I depends on the signals sent from the peripheral and
central sensors and the peripheral and central control effects are additive [7]. Thus

V̇I = V̇periph+ V̇cent, (6)

where

V̇cent = ventilation due to the central control signal,

V̇periph = ventilation due to the peripheral control signal.

Physiologically, we do not assign any meaning to a negativeV̇I , V̇periph or V̇cent.
Let V̇P be the function defining ventilation due to the peripheral control signal and
V̇C be the function defining ventilation due to the central control signal. Then, we
setV̇P andV̇C equal to zero should these functions become negative. Using the
following notation

[[x]] =
{
x for x ≥ 0
0 for x < 0

.

the control equation actually takes the form

V̇I = [[ V̇P]] + [[ V̇C]]

where

V̇P = GP exp(−.05Pao2
(t − τa))(Paco2

(t − τa)− IP)

and

V̇C = GC(PBco2
(t)−

MRBco2

Kco2Q̇B

− IC).

Here, GC and GP are control gains and IC and IP are cutoff thresholds. However, to
simplify our discussion, we will omit this notation while always maintaining that
the peripheral and central ventilation rates will be greater than or equal to zero.

The control equation describing the rate of ventilationV̇I is thus [17]

V̇I = GP exp(−.05Pao2
(t − τa))(Paco2

(t − τa)− IP)

+ GC(PBco2
(t)−

MRBco2

Kco2Q̇B

− IC). (7)

The first term in (7) describeṡVperiph and the second term describesV̇cent.

3. A simplified two-dimensional state space model

3.1. Model equations

The mathematical model described in Section 2 has been used to study the mecha-
nisms producing unstable patterns of breathing such as periodic breathing and ap-
nea, and specifically to investigate numerically the hypothesis that such phenomena
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represent the manifestation of feedback-induced instabilities in the respiratory con-
trol system (see e.g. [15], [16], [17]). This model was later extended by Batzel and
Tran [1] to include variable state dependent delay in the feedback control loop and
to study the phenomena of periodic breathing and apnea as they occur during quiet
sleep in infant sleep respiration at around 4 months of age. Although this model
captures many physiological aspects of human respiration, it is very complex for
a rigorous analytical study of the effect of delay on the stability. In this section,
we simplified the model presented in Section 2 to include only two state variables:
Paco2

and Pao2
. We make the following simplifying assumptions:

(i) PVco2
= constant.

(ii) PVo2
= constant.

(iii) Q̇ = constant.
(iv) O2 values stay within one section of the dissociation piecewise function.
(v) The only delay is to the peripheral control.

(vi) Only the peripheral control is modeled.
(vii) The one delay to peripheral control is constant sinceQ̇ is constant.

(viii) There is no modeling of breath by breath changes (constant flow model).
(ix) Dead space ventilation is represented by the ventilation factor EF.

Assumptions (i) and (ii) above are fairly reasonable (even during oscillations) as
can be seen in the full model simulations of adult Cheyne Stokes respiration shown
in Figure 2 [1]. Specifically, the simulations were obtained by reducing the cardiac
output by 50% from the normal case and thus doubling all transport delays in the
full model (1)–(5).

This reduces the model to 3 state equations for Paco2
, Pao2

and PBco2
. We

first consider only peripheral control (consequently, there is one transport delay).
This eliminates the need for the equation for PBco2

. The reduced model will exhibit
greater instability than would be the case for the full system (see section 3.4 for
further discussion). We are left with the 2 equations describing Paco2

and Pao2
and

a control equation responsive to arterial Paco2
and Pao2

with one transport delay
to the peripheral controller. The system, with these assumptions, is a nonlinear,
autonomous, two-dimensional system of ordinary differential equations with one
constant delay. The state equations are:

dPaco2
(t)

dt
=

863Q̇Kco2[PVco2
− Paco2

(t)]

MLco2

+
EFV̇I[PIco2

− Paco2
(t)]

MLco2

, (8)

dPao2
(t)

dt
=

863Q̇[mvPVo2
− maPao2

(t)+ Bv − Ba]

MLo2

+
EFV̇I[PIo2

− Pao2
(t)]

MLo2

. (9)
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Fig. 2.Full model simulations of adult congestive heart case: periodic breathing.

Recalling the bracket notation from Section 2, the control equation is described as
follows.

V̇I = [[ GP exp(−.05Pao2
(t − τa))(Paco2

(t − τa)− IP) ]] .

Again, for simplicity of notation, we will drop the double brackets and simply write
the control equation as

V̇I = GP exp(−.05Pao2
(t − τa))(Paco2

(t − τa)− IP),

Table 7 at the appendix section of this paper gives parameter values used in our
simulation studies of this simplified model for human respiration.

3.2. Stability analysis of the two-dimensional state space model

Let r ≥ 0 andC([a, b],Rn) be the Banach space of continuous functions map-
ping [a, b] into R

n with the sup norm| · |∞. For simplicity of notation, we will
denoteC([−r,0],Rn) by C. For φ ∈ C, define|φ| = sup−r≤θ≤0 |φ(θ)|. Let
B(0, b) = {x| |x| ≤ b} for x in a normed space with norm| · |. Forσ ∈ R, A ≥
0, x ∈ C([σ − r, σ + A], R

n) andt ∈ [σ, σ + A] definext ∈ C by

xt (θ) = x(t + θ).

We recall the following definitions of stability which will be needed in this section.
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Supposef : R × C → R
n with the sup norm| · |∞ and consider the retarded

functional differential equation

ẋ(t) = f (t, xt ). (10)

For a givenσ ∈ R andφ ∈ C we sayx(σ, φ) is a solution of (10) with initial data
φ ∈ C atσ if there is anA > 0 such thatx(σ, φ)(t) satisfies (10) on [σ − r, σ +A]
andxσ (σ, φ) = φ.

Definition 3.1. Supposef (t,0) = 0 for all t ∈ R. The solutionx = 0 of equation
(10) is said to bestable if for any σ ∈ R, ε > 0, there is aδ = δ(ε, σ ) such
thatφ ∈ B(0, δ) ⊂ C impliesxt (σ, φ) ∈ B(0, ε) for t ≥ σ . The solutionx = 0
of equation (10) is said to beasymptotically stableif it is stable and there is a
bo = bo(σ ) > 0 such thatφ ∈ B(0, bo) impliesx(σ, φ)(t) → 0 ast → ∞.

To study the stability properties of the nonlinear system (8) and (9), we will
apply the following well-known theorems. A proof may be found in [10] (see The-
orems (3.7.1) and (3.7.2)). Consider the system

ẋi (t) =
n∑
j=1

m∑
k=1

aijkxj (t − τk)

+ Ri(t, x1(t), x2(t − τ1), ...xn(t − τm)), i = 1,2, . . . , n (11)

and define the characteristic equation for this system as

|
m∑
k=1

Ak exp(−λτk)− λI | = 0,

whereAk = (aijk) are matrices andI is the identity matrix.

Theorem 3.1. The null solution of the n dimensional system defined by (11) is
asymptotically stable if :

1. all the roots of the characteristic equation for the first approximation system
for (11) have negative real parts;

2. |Ri(t, u1, u2, ...un(m+1))| ≤ α
∑n(m+1)
j=1 |ui |, whereα is a sufficiently small

constant, all|ui | are sufficiently small, i.e.|ui | ≤ H , whereH is a sufficiently
small positive constant andt ≥ t0.

Theorem 3.2. If at least one root of the characteristic equation has a positive real
part, and condition (2) in Theorem 3.1 is satisfied, then the null solution of (11) is
unstable.

For the stability study of system (8) and (9), we will rewrite the system as:

dX(t)

dt
= K1[K2 − X(t)] − K3V(X(t)− PIco2

), (12)

dY(t)

dt
= K4[K5 − K6Y(t)− K7] + K8V(PIo2

− Y(t)), (13)
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where

X(t) = Paco2
,

Y(t) = Pao2
,

V = V̇I(X(t − τ),Y(t − τ)),

τ = τa,

K1 = 863
Q̇Kco2

MLco2

,

K2 = PVco2
,

K3 = EF

MLco2

,

K4 = 863
Q̇

MLo2

,

K5 = mvPVo2
+ Bv,

K6 = ma,

K7 = Ba,

K8 = EF

MLo2

.

Note that V is increasing inX(·)and decreasing inY (·). Simplifying these equations
gives

dX(t)

dt
= K11 − K1X(t)− K3V(X(t)− PIco2

), (14)

dY(t)

dt
= K12 − K13Y(t)+ K8V(PIo2

− Y(t)), (15)

where

K11 = K1K2,

K12 = K4K5 − K7K4,

K13 = K4K6.

Let

x(t) = X(t)− PIco2
,

y(t) = PIo2
− Y(t),

so that x(t) represents the difference in inspired CO2 and arterial CO2 and y(t)
represents the difference in inspired O2 and arterial O2. We note that PIco2

≈ 0.
After some substitutions and simplifications, we obtain

dx(t)

dt
= a1 − a2x(t)− a3Vx(t), (16)
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dy(t)

dt
= b1 − b2y(t)− b3Vy(t), (17)

where

a1 = K11 − K1PIco2
,

a2 = K1,

a3 = K3,

b1 = −K12 + K13PIo2
,

b2 = K13,

b3 = K8.

The PIco2
level in ambient air is very small and we will assume that it is zero. It

should be noted that the control function V has the following properties:

(i) V = V(x(t − τ), y(t − τ)), is now increasing in bothx andy,
(ii) V ( IP, y) = 0,

(iii) V is differentiable forx 6= IP,
(iv) Vx > 0, Vy > 0, for x > IP, y > 0.

The above system (16) and (17) is of the form

ẋ(t) = f (xt ).

wheref : C → R
2 andC = C([−r,0],R2). f (xt ) takes the form

f (xt ) =
(
f1(xt )

f2(xt )

)

andx(t) takes the form(x1(t), x2(t)). We first observe the following:

Theorem 3.3. The system (16) and (17) has a unique solution forσ ∈ R and
φ ∈ C.

Proof. We will show thatf is continuous onC and locally Lipschitz on compact
sets ofC. Recall that the norm onC is defined as follows. Forφ ∈ C,

|φ|∞ = sup−r≤θ≤0

√
(φ1(θ))2 + (φ2(θ))2,

It is clear that if eachfi is continuous and locally Lipschitz, fori = 1,2, thenf is
continuous and we can find a Lipschitz constant K forf .

Let Ew = (Eu, Ev) ∈ R
2 × R

2, whereEu = (u1, u2), Ev = (v1, v2) and with norm
defined by|(Eu, Ev)|

R2×R2 = |Eu|
R2 + |Ev|

R2. Considerf1 as a function defined on
R

2 × R
2 by

f1(Eu, Ev) = a1 − a2u1 − a3V(v1, v2)u1, (18)

where

V(v1, v2) = GP exp(−0.05v2)(v1 − IP).
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SinceR
2 × R

2 ∼= R
4, it is clear that (18) is continuous onR2 × R

2. From
now on| · | will represent the appropriate norm when no confusion will occur. Let
φ = (φ1, φ2) ∈ C be chosen and letEw = (Eu, Ev) ∈ R

2 × R
2 where(Eu, Ev) is defined

as:

Eu =
(
u1
u2

)
=

(
φ1(0)
φ2(0)

)
, Ev =

(
v1
v2

)
=

(
φ1(−τ)
φ2(−τ)

)
.

Thus Ew = (φ(0), φ(−τ)) is a given element inR2 × R
2. Considering the right-

hand side of (18) as a mapping onR
2 × R

2, and for Ew defined above, for every
ε = ε( Ew) > 0 there is aδ > 0 such that|f1(Ex)− f1( Ew)| < ε when|Ex − Ew| < δ.
Let |φ − ψ | < δ/2 forψ ∈ C. Then it follows that

|φ(0)− ψ(0)| < δ/2 and |φ(−τ)− ψ(−τ)| < δ/2.

For anyψ , let Ex = (ψ(0), ψ(−τ)). We have

|f1(ψ)− f1(φ)| = |f1(Ex)− f1( Ew)|
and

|f1(Ex)− f1( Ew)| < ε

when

|Ex − Ew| =
√
(φ1(0)− ψ1(0))2 + (φ2(0)− ψ2(0))2

+
√
(φ1(−τ)− ψ1(−τ))2 + (φ2(−τ)− ψ2(−τ))2

< δ.

That is, when|φ − ψ | < δ/2. We conclude thatf1 is continuous onC. A similar
argument can be given forf2 and thusf is continuous onC.

Again regardingf1 as a mapping onR2 × R
2, it is clear that the exponential

factor in V has continuous partial derivatives and will be locally Lipschitz on com-
pact sets. Also, the second factor in V defined by the mapf : (Eu, Ev) → [(v1 − IP)]
is Lipschitz. Furthermore, sums and products of Lipschitz maps on compact sets
will be Lipschitz. Therefore, the above mapping (18) will be locally Lipschitz on
compact sets ofR2 × R

2. Thus, if Ex, Ey ∈ R
2 × R

2 are contained in a compact set,
then there exists aK > 0 such that

|f1(Ex)− f1(Ey)| < K|Ex − Ey|. (19)

Now, let D be a compact set inC. Hence, forφ = (φ1, φ2) ∈ D, we have|φ| < b

for someb > 0. Thus the set{φ(t)|φ ∈ D, t ∈ [−r,0]} will be contained in the
closed ballB(0, b), a compact set inR2 and so pairs of the form(φ(0), φ(−τ))will
be contained in the closed ballB(0,2b) in R

2 × R
2. This ball is compact andf1

will be Lipschitz onB(0,2b) with Lipschitz constant K. Consider, forφ, ψ ∈ D,

f1(φ)− f1(ψ) = −a2(φ1(0)− ψ1(0))

−a3(V(φ1(−τ), φ2(−τ))φ1(0)− V(ψ1(−τ), ψ2(−τ))ψ1(0)).
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Again considering the right-hand side of (18) as a mapping fromR
2 × R

2, and
making the identification

(
u1
u2

)
=

(
φ1(0)
φ2(0)

)
,

(
v1
v2

)
=

(
φ1(−τ)
φ2(−τ)

)
,

(similarly forψ) we have

|f1(φ)− f1(ψ)| < K

√
(φ1(0)− ψ1(0))2 + (φ2(0)− ψ2(0))2

+ K

√
(φ1(−τ)− ψ1(−τ))2 + (φ2(−τ)− ψ2(−τ))2

< 2K|φ − ψ |.

Thusf1 is locally Lipschitz on compact sets. A similar argument can be given forf2
and thusf is locally Lipschitz. From well known results (see, e.g., [14] Theorems
(2.2.1) and (2.2.3)) it follows that the system (16) and (17) has a unique solution
for σ ∈ R andφ ∈ C. This ends the proof. 2

Note that by introducing added components to the product spaceR
2 × R

2 to
account for the brain transport delay and tissue transport delays, we can establish
the same results for the five-dimensional state space model presented in Section
2. We further note that from Theorem 2.2.2 in [14] we are also guaranteed that
the solutions are continuously dependent on initial data so that the models are
well-posed.

We now will show that the system (16) and (17) has a unique positive
equilibrium.

Theorem 3.4. The above system (16) and (17) has a unique positive equilibrium
(x̄, ȳ) wherex̄> IP andȳ> 0.

Proof. The equilibrium solution(x̄, ȳ) satisfies

0 = a1 − a2x̄ − a3V̄x̄, (20)

0 = b1 − b2ȳ − b3V̄ȳ, (21)

whereV̄ = V(x̄, ȳ). Note thata1
a2

= PVco2
and will always be physiologically much

larger than IP, the threshold level for zero ventilation. This implies thatV̄ = 0 is
impossible at equilibrium. For then,V̄ = 0 ⇒ x̄ ≤ IP but V̄ = 0 ⇒ x̄ = a1

a2
from

solving (20) forx̄ and this contradicts thata1
a2
>> IP. Now (20) gives

x̄ = a1

a2 + a3V̄
(22)

and (21) implies

V̄ = b1

b3ȳ
− b2

b3
. (23)
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Note that this equation gives the value forV̄ at equilibrium and is not meant as a
formula forV̄ in terms ofȳ. Substituting (23) into (22) gives

x̄ = a1

a2 + a3(
b1
b3ȳ

− b2
b3
)
. (24)

At equilibrium,ȳ ≥ b1
b2

⇔ V̄ ≤ 0. This is impossible at equilibrium so thatȳ < b1
b2

.

Now using (24), we see thatx̄ = x(ȳ) is monotonically increasing in̄y andx̄ → 0
monotonically as̄y → 0. Thus we may find a uniquēy such that̄x is as close to
(but greater than)̄x = IP as we wish. Furthermore, from the equation for V we

may bound the exponential factor involvingy on the interval 0< y < b1
b2

by a

positive value M. Thus

V ≤ M(x − IP).

We can choosēx so that V is as small as we wish and find a correspondingȳ using
(24). We also note that

g(y) = b1

b3y
− b2

b3

is decreasing in̄y. By choosinḡx sufficiently close to x= IP (call it x̄ IP) we can find
a pair(x̄ IP, ȳ IP

) so that

V̄(x̄ IP, ȳ IP
) < g(ȳ IP

) (25)

whereȳ IP
< b1

b2
.

Now V is monotonically increasing in x and y andx̄ = x(ȳ) is monotonically

increasing in̄y from (24). ThusV̄(x̄(ȳ), ȳ) is increasing in̄y whereȳ IP
< b1

b2
. Also

g(y) = b1

b3y
− b2

b3
is decreasing in y andg(b1

b2
) = 0. Thus if we begin with the

relation (25) there will be a unique solutionȳ∗ of

V̄(x̄(ȳ), ȳ) = b1

b3ȳ
− b2

b3

whereȳ IP
< ȳ∗ < b1

b2
. Using the solution̄y∗ to definex̄∗ we get upon substituting

ȳ∗ into (24) the corresponding uniquely definedx̄∗:

x̄∗ = a1

a2 + a3(
b1

b3ȳ∗ − b2
b3
)
.

Note that IP < x̄∗ < a1
a2

. Solving forV̄ in (20) at equilibrium we see that

V̄ = a1

a3x̄
− a2

a3
(26)



Stability of the human respiratory control system. I 59

and substitutinḡx∗ defined above we get

V̄(x̄∗(ȳ∗), ȳ∗) = a1

a3


 a1

a2+a3(
b1
b3

ȳ∗−b2
b3
)




− a2

a3
= b1

b3ȳ∗ − b2

b3
.

ThusV̄ as defined by (23) and (26) are equal at(x̄∗, ȳ∗) and so(x̄∗, ȳ∗) is indeed
a positive equilibrium and is unique by the above argument. This completes our
proof. 2

We will now consider the stability of the above nonlinear system of delay
differential equations (16) and (17). Let

ξ(t) = x(t)− x̄,

η(t) = y(t)− ȳ.

The linearized system of (16) and (17) is given by

dξ(t)

dt
= (−a2 − a3V̄)ξ(t)− a3x̄V̄xξ(t − τ)− a3x̄V̄yη(t − τ), (27)

dη(t)

dt
= (−b2 − b3V̄)η(t)− b3ȳV̄xξ(t − τ)− b3ȳV̄yη(t − τ). (28)

Writing in matrix form

d

dt

(
ξ(t)

η(t)

)
= A

(
ξ(t)

η(t)

)
+ B

(
ξ(t − τ)

η(t − τ)

)
,

where

A =
(−a2 − a3V̄ 0

0 −b2 − b3V̄

)
, B =

( −a3x̄V̄x −a3x̄V̄y
−b3ȳV̄x −b3ȳV̄y

)
.

The characteristic equation is

det(λI − A− Be−τλ)2x2 = 0. (29)

Upon substituting the matrix A and B we get

det



λ+ (a2 + a3V̄)+ a3x̄V̄xe−τλ a3x̄V̄ye−τλ

b3ȳV̄x e−τλ λ+ (b2 + b3V̄)+ b3ȳV̄ye−τλ


 = 0.

Expanding this determinant gives

1(λ, τ) = P(λ)+ Q(λ)e−τλ = 0 (30)
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where

P(λ) = λ2 + (b2 + b3V̄ + a2 + a3V̄)λ+ (a2 + a3V̄)(b2 + b3V̄) (31)

and

Q(λ) = [(b3ȳV̄y + a3x̄V̄x)λ+ (a2 + a3V̄)b3ȳV̄y + (b2 + b3V̄)a3x̄V̄x)].

(32)

Notice that

1(λ,0) = λ2 + (b2 + b3V̄ + a2 + a3V̄ + b3ȳV̄y + a3x̄V̄x)λ

+ (a2 + a3V̄)(b2 + b3V̄)+ (a2 + a3V̄)b3ȳV̄y

+ (b2 + b3V̄)a3x̄V̄x (33)

has all positive coefficients so that the roots to the characteristic equation have
negative real parts when no delay is present. Also

1(0, τ ) = (a2 + a3V̄)(b2 + b3V̄)

+ (a2 + a3V̄)b3ȳV̄y + a3x̄V̄x(b2 + b3V̄) 6= 0. (34)

To simplify subsequent calculations we will use the following notation:

A1 = a2 + a3V̄,

A2 = a3x̄V̄x,

B1 = b2 + b3V̄,

B2 = b3ȳV̄y.

In the simpler model analyzed by Cooke and Turi [5] they developed stability cri-
teria based on the relation between the valueV̄ and the valuēxV̄x + ȳV̄y. We will
find that in our model the situation is more complicated. We establish the following
lemmas which will be needed to analyze the stability properties of the above system
(27) and (28).

Lemma 3.1. If V̄ ≥ x̄V̄x + ȳV̄y then1(iω, τ) 6= 0 for ω ∈ R/{0}, τ ≥ 0.

Proof. As noted above1(0, τ ) 6= 0. Also forω ∈ R, we have

|P(iω)|2 − |Q(iω)|2 = ω4 + k1ω
2 + k2 (35)

where

k1 = A2
1 + B2

1 − (A2 + B2)
2,

k2 = A2
1B2

1 − (A1B2 + A2B1)
2.

Consider

A1B1 − (A1B2 + A2B1) = (a2 + a3V̄)(b2 + b3V̄)

−[(a2 + a3V̄)b3ȳV̄y + (b2 + b3V̄)a3x̄V̄x]. (36)
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If V̄ ≥ x̄V̄x + ȳV̄y and a2 = 0 = b2, then

A1B1 − (A1B2 + A2B1) = a3V̄b3V̄ − (a3V̄b3ȳV̄y + b3V̄a3x̄V̄x)

= a3b3V̄(V̄ − (ȳV̄y + x̄V̄x)) ≥ 0. (37)

Also givenV̄ ≥ x̄V̄x + ȳV̄y it follows that

b2a3V̄ > b2a3x̄V̄x and a2b3V̄ > a2b3ȳV̄y. (38)

Now, as a2 increases, the first term on the right hand side of (36) increases by
a2b2 + a2b3V̄ while the second term increases by a2b3ȳV̄y. From inequality (38)
we see that the first term is larger than the second so that (37) still holds for non-
negative a2. The same is true as b2 increases. Therefore, for a2 ≥ 0, b2 ≥ 0, we
have that

A1B1 − (A1B2 + A2B1) ≥ 0.

This implies that

k2 = A2
1B2

1 − (A1B2 + A2B1)
2 ≥ 0.

Also, if V̄ ≥ x̄V̄x + ȳV̄y and a2 = 0 = b2, then

A2
1 + B2

1 = (a2
3 + b2

3)V̄
2 ≥ (a2

3 + b2
3)(x̄V̄x + ȳV̄y)

2

= (a2
3 + b2

3)(x̄
2V̄

2
x + 2x̄ȳV̄xV̄y + ȳ2V̄

2
y)

= a2
3x̄2V̄

2
x + (a2

3 + b2
3)(2x̄ȳV̄xV̄y)+ a2

3ȳ2V̄
2
y + b2

3x̄2V̄
2
x + b2

3ȳ2V̄
2
y)

> a2
3x̄2V̄

2
x + 2a3b3x̄ȳV̄xV̄y + b2

3ȳ2V̄
2
y

= (a3x̄V̄x + b3ȳV̄y)
2

= (A2 + B2)
2

where we have used(a2
3+b2

3) ≥ 2a3b3 ≥ a3b3 since a3 and b3 are positive constants.
So we have

A2
1 + B2

1 − (A2 + B2)
2 > 0.

Since only A1 and B1 increase as a2 and b2 increase it follows that

A2
1 + B2

1 > (A2 + B2)
2

for a2 and b2 positive constants. Thus k1 > 0 and

|P(iω)|2 − |Q(iω)|2 = ω4 + k1ω
2 + k2 6= 0 forω ∈ R/{0}.

This implies
(|P(iω)| − |Q(iω)|)(|P(iω)| + |Q(iω)|) 6= 0.

Thus
|P(iω)| − |Q(iω)| 6= 0.
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This gives
|1(iω, τ)| ≥ ||P(iω)| − |Q(iω)|| > 0.

Hence,

1(iω, τ) = P(iω)+ Q(iω)e−τ iω 6= 0, ω ∈ R/{0} , τ ≥ 0.

This ends the proof. 2

WhenV̄ < x̄V̄x + ȳV̄y the conditions which determine the signs of k1 and k2
are not so transparent and we will consider several cases.

Lemma 3.2. IF A1B1 < A1B2 + A2B1 then there is a unique pair ofωo, τo with
ωo > 0, τo > 0, andωoτo < 2π such that1(iωo, τo) = 0 .

Proof. If A 1B1 − (A1B2 + A2B1) < 0 or equivalently k2 < 0, we have that

|P(iω)|2 − |Q(iω)|2 = ω4 + k1ω
2 + k2 = v2 + k1v + k2 = F̂ (v)

wherev = ω2. ThenF̂ (v) has a unique positive rootv = vo

vo = 1/2(−k1 +
√

k2
1 − 4k2) > 0.

Thus
|P(iω)|2 − |Q(iω)|2 = 0

if and only ifω = ±ωo whereωo = √
vo ∈ R. The condition

|P(iωo)|2 − |Q(iωo)|2 = 0

implies that
|P(iωo)| = |Q(iωo)|

and thus P(iωo)
Q(iωo)

lies on the unit circle. Note that|Q(iωo)| 6= 0 since it is linear

with real coefficients. This means that there exist a uniqueτo such thatτo > 0,
ωo > 0, τoωo < 2π and

e−iτoωo = − P(iωo)

Q(iωo)
. (39)

Consequently,τn = τo + 2nπ
ωo
, n = 0,1,2, ..., also satisfies

e−iτnωo = − P(iωo)

Q(iωo)
. (40)

Thus the characteristic equation

1(z, τ) = P(z)+ Q(z)e−τz = 0

has conjugate pairs of imaginary rootsωτn where

ω = ±ωo and τn = τo + 2nπ

ωo
n = 0,1,2, ... (41)

and a unique positive pairτo, ωo whereτoωo < 2π . This completes the proof.2
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Lemma 3.3. IF A1B1 ≥ A1B2 + A2B1 then the following is true:

1. If A1B1 = A1B2 + A2B1 then there is at most a unique pair ofωo, τo with
ωo > 0, τo > 0, ωoτo < 2π such that1(iωo, τo) = 0.

2. If A1B1 > A1B2 + A2B1 then there are at most two pairs ofωi , τi withωi > 0,
τi > 0, andωiτi < 2π for i = 1,2.

Proof. (1) If A1B1 = A1B2 + A2B1 so that k2 = 0 then

|P(iω)|2 − |Q(iω)|2 = ω4 + k1ω
2 + k2 = v(v + k1) = F̂ (v)

which has at most one positive solution if k1 < 0. Statement (1) follows from using
similar arguments as in Lemma 3.1.
(2) If A1B1 > A1B2 + A2B1 so that k2 > 0 then

ω4 + k1ω
2 + k2 = v2 + k1v + k2 = 0

will have no positive root if k1 ≥ 0 and two positive roots if k1 < 0 and k21 − 4k2 >

0. Again the conclusions aboutω andτ follow as above. This ends the proof.2

Notice that the condition A1B1 > A1B2 + A2B1 and its variations reflects
physiological considerations. The parameters a2,b2 are linear functions oḟQ (they

depend on compartment volumes also) so that A1B1 varies with o(Q̇
2
)while A1B2+

A2B1 varies with o(Q̇). k2 will cross to nonnegative values for a2,b2 sufficiently
large (assuminḡV, V̄x andV̄y are fixed). The above condition reflects the interac-
tion of Q̇, V̄, V̄x andV̄y and GP. Steady state values do change as GP andQ̇ change
but larger values foṙQ (together with reasonable assumptions on other parameters)
does move the system into more stable configurations. Larger GP values, on the
other hand, tend to destabilize the system. The parameter values reflected in a3
and b3 correspond to compartment volumes and the respiratory efficiency factor
EF which mimics the effects of dead space ventilation and diffusion inefficiencies.
In the two-dimensional model manipulating EF acts to change controller gain. The
factors we can manipulate are GP, Q̇, compartment volumes and EF. We refer the
reader simulation studies in Section 3.3 for additional discussion.

Before we state the main results of this section which give stability results in
terms of the delay variableτ , we recall the following theorem that originally is due
to Cooke and van den Driessche [5]. The version given below is a corrected version
proposed by Boese [2] (see also Theorem 4.1 on page 83 in [18]). Let the general
characteristic equation to a linear system of differential equations with one delay
be given as

1(z, τ) = P(z)+ Q(z)e−τz = 0. (42)

Theorem 3.5. Consider (42) where P and Q are analytic functions in a right half
plane Rez > −δ, δ > 0 which satisfies the following conditions

(i) P(z) and Q(z) have no common imaginary zeroes;
(ii) P(−iy) = P(iy),Q(−iy) = Q(iy) for real y;
(iii) P(0)+Q(0) 6= 0;
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(iv) lim sup{|Q(λ)/P(λ)| : |λ| → ∞, Reλ ≥ 0} < 1;
(v) F(y) = |P(iy)|2 − |Q(iy)|2 has at most a finite number of real zeroes.

Then the following statements are true.

1. IfF(y) = 0 has no positive roots then if (42) is stable atτ = 0 it remains stable
for all τ ≥ 0. If (42) is unstable forτ = 0 then it remains unstable forτ ≥ 0.

2. If F(y) = 0 has at least one positive root and each such root is simple then
asτ increases stability switches may occur. There exists a positive numberτ ∗
such that (42) is unstable for allτ > τ ∗. Asτ varies from 0 toτ ∗ at most a
finite number of stability switches occur.

The proof of this theorem is given in the above cited paper. The idea behind the
theorem is that roots of

1(z, τ) = P(z)+ Q(z)e−τz = 0

vary continuously withτ . We may consider a root of the characteristic equation
to be a function ofτ in the sense that a small change in the parameterτ produces
a small change in any root to the characteristic equation. We writez = z(τ ). The
justification for this follows from Rouche’s Theorem and a proof may be found in
[8]. Thus if there exists aτ1 for which all roots have negative real part and aτ2 > τ1
for which there are roots with positive real part then there must be aτ ∗ such that
τ1 < τ ∗ < τ2 for which there is an imaginary root to (42). Informally, we say that
if a root crosses from the negative complex half plane to the positive half plane as
τ increases then for someτ ∗ there must be a crossover point on the imaginary axis,
i.e. an imaginary rootiyτ∗ to the characteristic equation for thatτ ∗.

The equationF(y) = 0 is used to find the crossover points on the imaginary
axis. Without loss of generality, we considery > 0. It is established in the proof of
Theorem 3.5 that the statement thaty is a simple root ofF(y) = 0 is equivalent to
the statement that there are an infinite number ofτ ∗ for which iy is a root of (42)
and for each suchτ ∗ we have thatiy is a simple root of (42). We denote this relation
betweeniy andτ ∗ by iyτ∗ . Now, if a positive rooty of F(y) = 0 is simple, we
may apply the Inverse Function Theorem for complex variables using this simple
imaginary rootiy andτ ∗ (42). Using this theorem, we may actually solve for roots
z in terms ofτ in a neighborhood of aτ ∗ for which iyτ∗ is a simple root of (42).
Furthermore,z = z(τ ) will be differentiable (with derivativez

′
(τ ) 6= 0) atτ ∗.

It can further be shown that, at such rootsy of F(y) = 0 andτ ∗ for which iyτ∗
is a simple root of (42), thesign{Re z

′
(τ )|τ∗} = sign{F ′

(y)|yτ∗ }. Thus the change
in the real part of the roots can be calculated and it can be determined whether roots
move from the left half plane to the right half plane asτ varies throughτ ∗. That is,
the crossing direction of the roots can be ascertained. Note also that from the above
equation we see that thesign{Re z

′
(τ )|τ∗} is independent ofτ ∗ at these simple

imaginary roots. If there is only one simple rooty to F(y) = 0 andz
′
(τ ) > 0 for

this iyτ∗ then roots may only cross from the negative to the positive half plane.
Furthermore, ifP andQ are polynomials with real coefficients wheren is the

degree ofP ,m is the degree ofQ andn > m, thenF(y) is an even polynomial of
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degree 2n. By settingx = y2, y > 0, we define a new function̂F(x) which will be
a polynomial of degree n.̂F(x) can be factored as

F̂ (x) =
n∏
j=1

(x − rj ).

In the following corollary it is shown how the crossing directions may be calculated
in this case.

Corollary 3.1. If P andQ are polynomials with real coefficients wheren is the de-
gree ofP ,m is the degree ofQ andn > m and wherer1 > r2 > r3 > ... > rp > 0
are the distinct roots of̂F(x), then±iyk = ±√

rk(k = 1,2, ..., p) are the possible
roots of (42) on the imaginary axis. Assume that these roots are simple. Then the
crossing directionsk at iyk is given by

sk = sign{
p∏
j=1
j 6=k

(rk − rj )}.

If there is only one rooty then the sign must be positive so that roots may only
cross from the negative to positive half plane. We are thus led to the following:

Theorem 3.6. For the above defined system (16) and (17), ifV̄ ≥ x̄V̄x + ȳV̄y then
the equilibrium(x̄, ȳ) is asymptotically stable for allτ ≥ 0.

Proof.This result follows from Lemma 3.1, and Theorem 3.5. We note that P and
Q for our system satisfy the conditions (i), (ii) (iv) and (v) required by Theorem 3.5
since they are polynomials with real coefficients and can have no common imagi-
nary root since Q is linear. Also as noted above, (33) establishes that, forτ = 0, all
roots of1(λ,0) = 0 have negative real part so that the system is stable atτ = 0.
(34) established that1(0, τ ) 6= 0 so that (iii) is satisfied. Lemma 3.1 establishes
that there is no positive root to (35). Hence the result follows from conclusion 1 in
Theorem 3.5. Note that all the rootsωo in the above lemmas are simple. This ends
the proof. 2

Using the results from (3.1) and (3.5) we have:

Theorem 3.7. For the above defined system, (16) and (17), if A1B1 − (A1B2 +
A2B1) < 0 then there exists aτ ∗ > 0 such that the equilibrium(x̄, ȳ) is asymptoti-
cally stable forτ < τ ∗ and unstable forτ > τ ∗.

Proof.This result follows immediately from Lemma 3.2, conclusion 2 in Theorem
3.5, Corollary 3.1 and the comments in Theorem 3.6. The crossing direction is
guaranteed to be from the negative to positive half plane as there is only one simple
root. This ends the proof. 2

We may findτ ∗ by solving (35) forω and then solving forτ ∗ in equation (39).
That is,τ ∗ is a solution to

e−τ
∗iωo = − P(iωo)

Q(iωo)

andτ ∗ is such thatωoτ ∗ < 2π .
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Theorem 3.8. For the above defined system (16) and (17), if A1B1 − (A1B2 +
A2B1) > 0 and A2

1 + B2
1 − (A2 + B2)

2 = k1 > 0 then the equilibrium(x̄, ȳ) is
asymptotically stable for allτ ≥ 0 .

Proof. This follows exactly as in Theorem 3.6. 2

We point out here that similar results may be stated for the other conditions in
Lemma 3.3 but numerical studies indicate that k1 > 0 will not occur given rea-
sonable physiological values for the parameters unless k2 > 0 so that we will not
consider these cases. Even should this condition be satisfied we see that the system
will eventually become unstable after a finite number of stability switches (there are
then at most two positive roots). From a physiological perspective, later switches
will require delay times probably too long to be physiologically meaningful. Two
numerical studies are included in section 3.5 below indicating the relationships
between k1 and k2 for various parameter values.

3.3. Numerical simulation studies

In this section, numerical simulations on the simplified two-dimensional state space
model described in Section 3.1 were carried out to verify the stability analysis pre-
sented in Section 3.2. All steady state and stability calculations were done using
Maple 5 release 3. In addition, the initial conditions are chosen to be small offsets
from the steady state values. We plot Paco2

, Pao2
, and ventilation rate denoted by

Ve.
Table 1 (and other tables) gives the steady state values forx̄, ȳ, x̄V̄x + ȳV̄y, GP,

Q̇, V̄, k2 and k2 (where appropriate). All tables are found at the end of the paper.
The table also gives the natural delay timeτnorm as defined by the vascular volumes
andQ̇ andQ̇B as well as aτ ∗ multiplier for τnorm which indicates when instability
sets in. Theτ ∗ multiplier describes by what factor the normal delayτnorm must be
increased to produce instability in the system. Figure 3 shows simulation results
for a moderate controller gain andτ < τ ∗. Figure 4 represents the situation when
τ > τ ∗.

Figure 5 gives the simulation results for a larger controller gain GP andτ < τ ∗.
Figure 6 represents the situation whenτ > τ ∗.

The parameter values and stability calculations for Figures 5 and 6 are given
in Table 2. We note that parameters in Table 2 are such that A2

1B2
1 − (A2B1 +

A1B2)
2 << 0 andV̄ << x̄V̄x + ȳV̄y than was the case in Figures 3 and 4 so

that the system will have delay related instability for all parameter values in the
physiological range. The ratioτ

∗
τnorm

is approximately 2:1 which is much lower than
is to be expected in real individuals. However, we are only modeling the peripheral
control system which, it is believed, is responsible for the unstable phenomena in
respiratory physiology. Thus, the model supports this idea.

We see that larger controller gain produces a smallerτ ∗ indicating that the con-
troller gain level is important for stability properties. One reason that the peripheral
controller contributes so much to instability characteristics is that it responds to
Paco2

and Pao2
which (as can be seen in the five-dimensional model simulations,

Figure 2) varies much more than the other state variables. Also, it is known that
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Fig. 3.Stable two-dimensional basic model with moderate gain.

Fig. 4.Unstable two-dimensional basic model with moderate gain.



68 J.J. Batzel, H.T. Tran

Fig. 5.Stable two-dimensional basic model with high gain.

Fig. 6.Unstable two-dimensional basic model with high gain.
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the carotid bodies are extremely well supplied with capillaries and thus very ef-
ficiently perfused with arterial blood. They are thus able to respond quickly and
proportionately to changes in arterial Paco2

and Pao2
.

3.4. A modified control equation for the two-dimensional model

To compensate for this heightened sensitivity to Paco2
and Pao2

we can amend the
two-dimensional model presented in Section 3.1 in the following way. Notice that
in the five-dimensional model the brain PBco2

level varies much less than Paco2
.

Therefore the central control response varies less. We can modify the control equa-
tion by including a central control component as follows:

VC = [[ Kvc1 + Kvc2(x(t − τ)− IC) ]] ,

where Kvc1 and Kvc2 are constants. Again, the double bracket notation indicates
that VC will be greater than or equal to zero. What we have done is to introduce a
second control component which varies much less than the peripheral control for
x(t) (i.e. Paco2

) levels. In the steady state this would act similarly to the central
control. Of course, this setup does not allow VC to become zero and we assume the
same delay but we are concerned here only with a qualitative look at the effects on
the steady state calculations. A more correct formulation requires a three-dimen-
sional state space model to allow for a correct formulation of the central control
V̇cent. We have analyzed this case in Part II of this paper. Table 3 and Figures 7 and
8 give calculated parameter values and simulations results, respectively. In Table
4, we compare the stability conditions as predicted by the model with a peripheral
control only versus one with a variable central control component added. We note
Table 4 shows that the system with a central control component will be much more
stable than one with a peripheral control alone.

3.5. Parameter interaction

The following graphs illustrate the relation between several important determiners
of stability versus changing control gain. Figure 9 illustrates how the coefficients
k1 and k2 from (35) vary versus control gain. We use the modified control equa-
tion in Section 3.4 with central drive constant Kvc1 set at 3.0 l/min. In this graph
k2 moves from positive to negative values while k1 remains positive. One reason
for this is thatx̄ andȳ do not vary much with controller gain as can be seen in
Figure 10 thus stabilizing k1. Over a very large set of variations in parameter values
it has been the case that k1 will not be negative unless k2 is also. Thus it appears
that multiple switching in stability does not occur when reasonable physiological
parameter values are used.

4. Discussions

It is clear that the central control contributes much to the stable behavior of the hu-
man respiratory control system. We can compare the results of the stability analysis
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Fig. 7.Stable two-dimensional model with a modified control and moderate gain.

Fig. 8.Unstable two-dimensional model with a modified control and high gain.
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Fig. 9.k1 andk2 versus control gain.

for the two-dimensional and five-dimensional models. We compare the two-dimen-
sional model with the modified control equation and varying central gain. Using the
parameter values indicated, we see from Table 5 that there is a reasonable correlation
in the predictions about stability. Note that for normal control gain the two-dimen-
sional model predicted instability at aτ multiplier of 10.54 while simulations of
the five-dimensional gives 14.1. State variables also correlate very well.

We see that the overall structure of instability was illuminated by the small-
er models and the actual state variables were in good agreement for the modified
central control component. Theτ multiplier necessary for instability for the five-
dimensional model was about 28% higher than predicted by the smaller models
indicating that the tissue compartments add to the stability of the system. Figure 11
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Fig. 10.Two-dimensional steady state values versus control gain.

represents the five-dimensional model simulation at instability. Note that PVco2
and PVo2

do not vary much even in unstable situations.
Finally, we will present calculations comparing the effects produced by varying

different parameters. We will introduce one further parameter in this analysis. We
have heretofore used EF set at 0.7 to reflect dead space ventilation VD and diffusion
inefficiencies. This factor reduces each breath by a certain percentage. In this case,
we are assuming that an increase in ventilation rate is produced by increased breath-
ing rate and thus each breath is reduced by the same dead space volume percentage.
We might also assume that breathing rate is held constant and depth of breathing
is varied. In this case there will be a fixed dead space volume subtracted from each
breath. We, therefore, have Veff = V − VD. EF will be set at 1.0. Notice that in this
case VD serves to reduce V by a fixed amount in each breath.
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Fig. 11.Unstable simulation of the five-dimensional state space model.

Table 6 presents the results obtained by varying different parameters and their
effects on stability. We compile the results for both of the versions of modeling
dead space ventilation just described. To develop this table we start with the stan-
dard parameter values and the calculatedτ ∗ multiplier for these parameters. Some
changes in the steady state values for PVco2

and PVo2
are to be expected when large

changes in parameters are made. We have kept the levels of PVco2
and PVo2

fixed at
the values found in Table 5 for comparison purposes. Column 1 gives the parameter
which is changed while others are held fixed. Column 2 gives the change in that
parameter by a certain factor. Column 3 gives the factor by which the standard value
for theτ ∗ multiplier is increased or decreased when this parameter change occurs.
We see that an increase in lung compartment volumes tends to stabilize the system
which agrees with [17]. It is interesting to note that using Veff = V − VD to repre-
sent dead space ventilation acts to reduce the stability of the system more than the
factor EF does. This makes sense if we consider that EF acts to reduce the effective-
ness of the control signal by a certain constant percentage while in the expression
Veff = V − VD the useless volume VD becomes a smaller percentage as deeper
breaths are taken and hence increasing the efficacy of the control. In actuality, the
control signal modulates both rate and depth of breathing.

The analytical methods described above can predict the effects of any combi-
nation of factors as well. From Table 6, one can ascertain the general effects of any
combination of factors.
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5. Conclusions

We now conclude this paper with some observations based on the foregoing
analysis.

1. We have looked at the behavior of the model when only peripheral control is
utilized. In this case, the delay needed to produce instability is much smaller
than is expected from observations and experiments. Introducing a second term
to mimic the central control near steady state dramatically increases the stability
of the system. This form of central control is not physiologically correct but in-
dicates the role played by the actual central control in stabilizing the respiratory
control system.

2. Further analysis with modified controls which mimic both central and periph-
eral control can be combined with the above two-dimensional model to study
stability properties. Such a control might be as is given in [3] where a con-
volution was used to smooth out the instability of a peripheral control which
responds instantaneously to variations in arterial blood gas levels. A control
which incorporates the effects of both Paco2

and Pao2
(such as suggested in

[5]) can also be analyzed using the above described results.
3. The central control acts to reduce the instability inherent in the peripheral control

mechanism. One might be tempted to believe that the central control evolved for
this purpose. The peripheral control responds quickly to changes in the blood
gases while the central control responds more slowly and with less variation
due to the process of transforming Paco2

levels into PBco2
levels. Peripheral

response is most critical during hypoxia and in such cases quick changes in ven-
tilation are necessary. Quick changes to increased Paco2

and hence decreases
in pH levels are also important. The price paid for this response is instability
and the central control acts to mitigate this factor.

4. The tissue compartments act to dampen oscillations and contribute to stability
as Table 5 indicates. Notice that the five-dimensional model seems to be more
stable than the two-dimensional model. Also, Table 6 indicated an increase
in lung compartment volumes acts to stabilize the system. However, with the
controls presented the effects of changes in lung volumes are much larger than
predicted in [16].

5. Variations in controller gain are critical to the stability of the system.
6. A control which varies depth of breathing is more unstable than one which

varies rate of breathing.
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Appendix

Table 1.Stability calculation parameters for Figures 3 and 4.

Quantity Unit Value

GP l/min/mmHg 45.0
Q̇ l/min 6.0
ωo ...... 7.47
Normalτ sec 8.5
Unstableτ multiplier ...... 2.02
x̄ mmHg 41.48
ȳ mmHg 66.9
V̄ l/min 4.59
x̄V̄x + ȳV̄y ..... 44.7
A2

1B
2
1 − (A2B1 + A1B2)

2 ...... −2738.8

PVco2
= 46.0 PVo2

= 40.9 PIo2
= 150.0

Table 2.Stability calculation parameters for Figures 5 and 6.

Quantity Unit Value

GP l/min/mmHg 90.0
Q̇ l/min 6.0
ωo ...... 9.7
Normalτ sec 8.5
Unstableτ multiplier .... 1.54
x̄ mmHg 40.7
ȳ mmHg 59.0
V̄ l/min 5.45
x̄V̄x + ȳV̄y ..... 54.8
A2

1B
2
1 − (A2B1 + A1B2)

2 ...... −3667.3

PVco2
= 46.0 PVo2

= 40.9 PIo2
= 150.0
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Table 3.Stability calculation parameters for Figures 7 and 8.

Quantity Unit Value

Figure 7
GP l/min/mmHg 45.0
Kvc1 l/min 3.0
Kvc2 .... 0.5
Q̇ l/min 6.0
ωo ...... 1.765
Normalτ sec 8.5
Unstableτ multiplier ... 11.27
x̄ mmHg 39.57
ȳ mmHg 48.46
V̄ l/min 6.85
PVco2

l/min 46.0
PVo2

l/min 41.0
PIco2

l/min 146.0

x̄V̄x + ȳV̄y ..... 37.14
A2

1B
2
1 − (A2B1 + A1B2)

2 ...... −168.62
A2

1 + B2
1 − (A2 + B2)

2 ...... 51.03

Figure 8
GP l/min/mmHg 90.0
Kvc1 l/min 3.0
Kvc2 .... 0.5
Q̇ l/min 6.0
ωo ...... 5.08
Normalτ sec 8.5
Unstableτ multiplier .... 3.524
x̄ mmHg 39.09
ȳ mmHg 45.36
V̄ l/min 7.5
PVco2

l/min 46.0
PVo2

l/min 41.0
PIco2

l/min 146.0

x̄V̄x + ȳV̄y ..... 47.93
A2

1B
2
1 − (A2B1 + A1B2)

2 ...... −862.24
A2

1 + B2
1 − (A2 + B2)

2 ...... 7.49
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Table 4.Stability comparison for 2-D model: different control equations.

Moderate GP comparisons
Quantity Peripheral control only Varying VC

GP 45 45.0
Kvc1 .... 3.0
Kvc2 .... 0.5
ωo 7.69 1.76
Normalτ 8.5 8.5
Unstableτ multiplier 1.97 11.27
x̄ 41.35 39.57
ȳ 64.0 48.46
V̄ 4.74 6.85
PVo2

41.0 41.0
PVco2

46.0 46.0
PIo2

146.0 146.0

High GP comparisons
Quantity Peripheral control only Varying VC

GP 90 90.0
Kvc1 .... 3.0
Kvc2 .... 0.5
ωo 10.2 5.1
Normalτ 8.5 8.5
Unstableτ multiplier 1.47 3.53
x̄ 40.6 39.09
ȳ 56.2 45.35
V̄ 5.6 7.45
PVo2

41.0 41.0
PVco2

46.0 46.0
PIo2

146.0 146.0

Table 5.Stability calculation comparisons for 2-D and 5-D models.

Quantity 2-D 5-D

GC ... 1.2
GP 45.0 45.0
VC added term 3+ 0.5x̄ ....
Q̇ 6.0 6.0
ωo 1.88 ...
Normalτ 8.5 8.5
Unstableτ multiplier 10.54 14.1*
x̄ 39.45 39.46
ȳ 48.98 48.53
V̄ 6.78 6.12
PVco2

45.8 45.8
PVo2

40.9 40.9
PIo2

146.0 146.0

* numerical estimate
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Table 6.Stability results of parameter changes: 2-D model with modified control.

2-D with EF = 0.7
Quantity Parameter multiplier τ ∗ multiplier

GP 1.0 11.27 x
GP 2.0 3.53 x

MLco2
and MLo2

0.5 5.60 x
MLco2

and MLo2
2.0 22.6 x

2-D with VD = 2.0 l/min
Quantity Parameter multiplier τ ∗ multiplier

GP 1.0 2.63 x
GP 2.0 1.43 x

MLco2
and MLo2

0.5 1.3 x
MLco2

and MLo2
2.0 5.27 x

PVco2
= 46.0 PVo2

= 41.0 PIo2
= 146.0

Table 7.Parameter values for 2-D model.

Quantity Unit Value

GP l/min/mmHg 45.0
Q̇ l/min 6.0
Q̇B l/min 0.75
PVco2

mmHg 46.0
PVo2

mmHg 41.0
PIo2

mmHg 146.0a

IP, IC mmHg 35.0
MLco2

liter 3.2
MLo2

l/min 2.5
EF ..... 0.7
Kco2 lSTPD/(l mmHg) 0.0057
ma lSTPD/(l mmHg) 0.00025
Ba lSTPD/l 0.1728
mv lSTPD/(l mmHg) 0.0021
Bv lSTPD/l 0.0662
a includes 4 mmHg alveolar arterial gradient


