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Abstract. A number of mathematical models of the human respiratory control system have
been developed since 1940 to study a wide range of features of this complex system. Among
them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is
a collection of regular but involuntary breathing patterns that have important medical impli-
cations. The hypothesis that periodic breathing is the result of delay in the feedback signals
to the respiratory control system has been studied since the work of Grodins et al. in the
early 1950's [12]. The purpose of this paper is to study the stability characteristics of a feed-
back control system of five differential equations with delays in both the state and control
variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper
is divided in two parts. Part | studies a simplified mathematical model of two nonlinear
state equations modeling arterial partial pressures @@ CQ and a peripheral controller.
Analysis was done on this model to illuminate the effect of delay on the stability. It shows
that delay dependent stability is affected by the controller gain, compartmental volumes and
the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or
faster breathing). In addition, numerical simulations were performed to validate analytical
results. Part |l extends the model in Part | to include both peripheral and central controllers.
This, however, necessitates the introduction of a third state equation modelinpat

in the brain. In addition to analytical studies on delay dependent stability, it shows that the
decreased cardiac output (and hence increased delay) resulting from the congestive heart
condition can induce instability at certain control gain levels. These analytical results were
also confirmed by numerical simulations.

1. Introduction and modeling considerations

The human respiratory system acts to exchange carbon dioxide v@@h is the
unwanted gas byproduct of metabolism for oxygen, ®hich is necessary for
metabolism. The control mechanism which responds to the changing needs of the
body to acquire oxygen, £and to expel carbon dioxide, GQacts to modulate

the ventilation rate, which will be denoted by, in a manner designed to maintain
normal levels of these gases. In the absence of voluntary control of breathing or
neurological induced changes in breathing, the respiratory control system varies
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the ventilation rate in response to the levels of2Gd G. We refer to this sys-
tem as the chemical control system and will consider its dynamics. Furthermore,
chemical control is the only control regulating respiration during sleep, a state in
which involuntary cessation of breathing (referred to as apnea) can occur.

There are two sites where G@Qnd Q levels are measured:

e The peripheral controller consists of the carotid receptors found in the angle of
the bifurcation of the common carotid arteries, as well as chemoreceptors in the
aortic arch. They respond to both @nd CQ via the partial pressuresago2
and Ro, [20].

e The central controller responds exclusively to the partial pressure of carbon
dioxide in the brain, Ecoz [20]. PBcoz stimulates certain brain cells in the me-
dulla responsible for the control of ventilation [13]. Of coursgcg is related
to Pacoz and the metabolic rate of GQproduction in the brain. For the two
dimensional model considered in Part | of this paper, the controlling quantity
is PaCOZ'

These two sensor sites are located a physical distance from the lungs which is the
site at which CQ@ and G levels can be altered by means of varying the ventilation
rate. Consequently, the feedback controller in the mathematical model will consist
of two transport delays. In general, our analysis below does not depend on the
actual form of the control equation so that different controls may be analyzed. We
do, however, assume that the ventilation functidn,satisfies:

(i) Vi =0;
@iy vV, = VI.(Pa_cozv Paoz) is an increasing function with respect t@,CDO2 and
decreasing in %2;
(i) V, has continuous partial derivatives except perhaps at 0.

A number of minimal models have been devised to study stability of the respi-
ratory system. Glass and Mackey [11,19] and Carley and Shannon [3] considered
a one-dimensional state space model. Cleave et al. [4] studied a two-dimensional
model. EIHefnawy et al. [9] considered a three-dimensional model for simulations
which they reduced to a one-dimensional model for stability analysis. Each model
mentioned above had strong points and weaknesses. When considering minimal
models several features of the respiratory system in steady state need to be kept in
mind.

(i) Peripheral ventilatory control response is 25% of the total response.
(ii) CO2 sensitivity is around 2 liters/min/mmHg.
(iii) Total ventilation is 7 liters/min approximately.
(iv) Pacoz =40 mmHg and Bozz 95 to 100 mmHg approximately.
(v) V, increases linearly with Cand decreases exponentially with.O
(vi) The central control responds to the i@ the brain which varies less than the
arterial level of CQ.

For minimal models it is difficult to satisfy all of these criteria simultaneously.
For example, Glass and Mackey matched items (iii) and (iv) above byt CO
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sensitivity could vary by as much as 100% during oscillatory behavior. We note
that Glass and Mackey, EIHefnawy et al. and Carley and Shannon considered only
CO, control of ventilation. There are trade-offs in steady state vaIuesé&gzP

V| and control gain. For example, if one considers org&g’ control then a con-

trol gain level sufficient to produce the correct steady state valug&{zFand\'h

might make the control hypersensitive to changir@dz3 levels. Cooke and Turi

[5] considered a two-dimensional extension of the Glass and Mackey model which
included a control responsive to both peripherg&(g and P<902- They acknowl-

edged that the system would be more unstable than the physiological system as the
peripheral control responds rapidly to arterial gas levels. Our model, however, in-
cludes a more physiologically correct control equation and physiologically correct
relation between arterial and venous levels g&g and '%'02 based on the model
in[17].

The purpose of this paper is twofold. First, we want to understand how the delay
inherentin the respiratory control system affects the stability of the system. Second,
we analyze some of the structure of the physiological control to see how this struc-
ture works to maintain stability. We begin in Section 2 describing the Khoo et al.
model [17] which consists of a nonlinear system of five delay differential equations
with multiple delays modeling human respiration. This model was later extended
by Batzel and Tran [1] to include variable cardiac output and to study infant sleep
respiratory patterns including obstructive apnea and central apnea which may play
arole in sudden infant death syndrome (SIDS). However, this model is too compli-
cated for a stability study. Section 3.1 describes a simplified mathematical model
consisting of two state variables modeling arterial partial pressures gfedD@®
O2 and a peripheral controller. Analytical results and numerical studies on delay
dependent stability analysis are given in Section 3.2 and Section 3.3, respectively.
Section 3.4 describes a modified control model to include a central control compo-
nent and its analytical and numerical results. Section 3.5 contains some parameter
studies which are used in the discussion of stability results (see remarks following
theorem 3.8). Additional discussions of our analysis are given in Section 4 and
Section 5 contains our concluding remarks.

2. The five-dimensional state space model

In this section we briefly describe the five-dimensional model developed in [17].
This section forms the basis for the simplified model developed and analyzed in
Section 3. The following symbol sets will be used throughout the paper.

Primary symbols
M = effective volume in compartment
MR = metabolic rate
P = partial pressure
Q = volume of blood
Q = volume of blood per unit time
V = volume of gas
V = volume of gas per unit time
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Subscripts for gas or compartment phase
A = alveolar
AT = sea level air pressure
B = brain
C = carbon dioxide
D = dead space
E = expired
| = inspired
L =lung
O = oxygen
T =tissue
Subscripts for blood phase
a = mixed arterial
¢ = capillary
¢ = end-capillary
i = ideal
m = mixed
v = mixed venous

For example, 802 indicates arterial partial pressure of [@aving the lungs and

V| represents the inspired ventilation rate. The equations for the model studied arise
from straightforward development of mass balance equations utilizing Fick’s law,
Boyle’s law and variations of Henry’s law relating the concentration of a gas in the
solution to the partial pressure of the gas interfacing with the solution. The model
describes three compartments: the lung compartment, a general tissue compartment
and a brain compartment. A block diagram describing the the relationships between
the three compartments and transport delays is shown in Figure 1.

The equations describing the dynamics between the three compartments are
given by:

dPaco, (1) 863QKco,[Puco,  — ™) — Pagg, (] + EVi[Pigo, — Paco, (1]

dt M'—COZ
(1)
dPag, (1) 863AMPyg, (1 — 7)) — MaPag, (1) + By — By
dt MLO2
EFVI[Pl:\)Z — Pag, (f)]’ @
Lo2
Poco,) _ MRegy, [Qs(Pacg, (t — 75) — Pacg, ()] -
dt Mo, Keco, Meco, ’
Pugo, () _ MRrco, [Qr(Pacq, (t — ) — Pucg, ) I

di M7gg Keo, M1co,
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Fig. 1. Block diagram of the respiratory system model.

dR/oz (®) _ QT[maF){:l(_)2 t—1)— mVPVOZ (t)+Ba—By] — MRTQ2
dr Mg, My '

(®)

Equations (1) and (2) describe the lung compartment partial pressures@r@O

O> respectively. Equations (4) and (5) describe the tissue compartment (includ-
ing also brain tissue) partial pressures of C&hd & respectively. Equation (3)
describes the brain compartment £fartial pressure. £P|02, Kcoy Ma, My, By

and B, are constants. The constantgd{, m,, my, B and B, occur in the so-called
dissociation laws relating gas concentrations to partial pressu@srdbresents
inspired oxygen. We include an alveolar arterial gradient of 4 mmHg (unless oth-
erwise indicated) by reducing(g; by this amount [20]. The C&dissociation law

is assumed linear while the,Q@lissociation law is nonlinear but approximately
piecewise linear. In the above model, it was assumed that stpa@ial pressures

stay within one band of the piecewise linear representation thus making it linear.
Furthermore, the metabolic rates and compartment volumes are assumed constant.
Er reduces the effectiveness of ventilation and is used to model the effects of the
ventilatory dead space. Ventilatory dead space refers to the fact that, on inspiration,
one first brings into the alveoli air from the upper conducting airways (where no
gas exchange occurs) left over from expiration. This air is fully equilibrated with
the venous partial pressures of £€é8nd G and hence does not contribute to the
ventilation process. This dead space represents approximately 25—-30% of the air
moved during inspiration.
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The ventilation raté/, depends on the signals sent from the peripheral and
central sensors and the peripheral and central control effects are additive [7]. Thus

VI = Vperiph+ Vcent, (6)
where

Vcent = Ventilation due to the central control signal
Vpe,iph = ventilation due to the peripheral control signal

Physiologically, we do not assign any meaning to a negativeY periph OF Vcent
Let Vp be the function defining ventilation due to the peripheral control signal and
V¢ be the function defining ventilation due to the central control signal. Then, we
setVp andV¢ equal to zero should these functions become negative. Using the
following notation
x forx =0

[ = 0 forx<O

the control equation actually takes the form

Vi = [[Vell +[[Vcll

where
Vp = Gpexp(—.05Pxg, (7 — 7)) (Pacg, (f — 7a) — 1p)
and
. MRBCO2
Ve = Gc(Paeg, (1) — — — lo).
€% Kco,Qs

Here, G: and Ge are control gains andcland b are cutoff thresholds. However, to

simplify our discussion, we will omit this notation while always maintaining that

the peripheral and central ventilation rates will be greater than or equal to zero.
The control equation describing the rate of ventilatigris thus [17]

V| = Gpexp(—.05P, (f — 7)) (Pacg, (1 — 7) — Ip)
MReco,

+ Gc(Pagg, (1) — Koo O — lo). (7)

The first term in (7) describ&&periph and the second term describés

3. A simplified two-dimensional state space model
3.1. Model equations

The mathematical model described in Section 2 has been used to study the mecha-
nisms producing unstable patterns of breathing such as periodic breathing and ap-
nea, and specifically to investigate numerically the hypothesis that such phenomena
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represent the manifestation of feedback-induced instabilities in the respiratory con-
trol system (see e.g. [15], [16], [17]). This model was later extended by Batzel and
Tran [1] to include variable state dependent delay in the feedback control loop and
to study the phenomena of periodic breathing and apnea as they occur during quiet
sleep in infant sleep respiration at around 4 months of age. Although this model
captures many physiological aspects of human respiration, it is very complex for
a rigorous analytical study of the effect of delay on the stability. In this section,
we simplified the model presented in Section 2 to include only two state variables:
P,gco2 and %02- We make the following simplifying assumptions:

0] PVcoz = constant.
(i) PVO2 = constant.
(i) Q = constant.
(iv) O values stay within one section of the dissociation piecewise function.
(v) The only delay is to the peripheral control.
(vi) Only the peripheral control is modeled.
(vii) The one delay to peripheral control is constant sicis constant.
(viii) There is no modeling of breath by breath changes (constant flow model).
(ix) Dead space ventilation is represented by the ventilation fagtor E

Assumptions (i) and (ii) above are fairly reasonable (even during oscillations) as
can be seen in the full model simulations of adult Cheyne Stokes respiration shown
in Figure 2 [1]. Specifically, the simulations were obtained by reducing the cardiac
output by 50% from the normal case and thus doubling all transport delays in the
full model (1)—(5).

This reduces the model to 3 state equations f@{ozl? P302 and %coz- We
first consider only peripheral control (consequently, there is one transport delay).
This eliminates the need for the equation fg[:gz. The reduced model will exhibit
greater instability than would be the case for the full system (see section 3.4 for
further discussion). We are left with the 2 equations describ:';&g&Pand %02 and
a control equation responsive to arteri@ba and FE;OZ with one transport delay
to the peripheral controller. The system, with these assumptions, is a nonlinear,
autonomous, two-dimensional system of ordinary differential equations with one
constant delay. The state equations are:

dPago, (1) 86QKco,[Pvgo, — Paco, (1]

dt MLC02
EeVi[Pien — Pacn (1)
F I[ Ico, acoz ]’ (8)
Mico,
dPag, (1) 863AM,Pyg — MPag, (1) + By — Bd
dt a ML02
E:Vi[Pia — Pan. ()
F I[ lo, 602 ] (9)

ML02
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Fig. 2. Full model simulations of adult congestive heart case: periodic breathing.

Recalling the bracket notation from Section 2, the control equation is described as
follows.

Vi = [[ Gpexp(—.05Pxg, (r — 7a))(Pagq, (t — ) — 1p) ]I

Again, for simplicity of notation, we will drop the double brackets and simply write
the control equation as

V| = Gpexp(—.05Py, (f — 7)) (Pacg, (t — ) — Ip),

Table 7 at the appendix section of this paper gives parameter values used in our
simulation studies of this simplified model for human respiration.

3.2. Stability analysis of the two-dimensional state space model

Letr > 0 andC([a, b], R™ be the Banach space of continuous functions map-
ping [a, b] into RM with the sup norm - |«. For simplicity of notation, we will
denoteC([—r, 0], R™) by C. For¢ € C, define|p| = sup_,_,-o |¢(0)]. Let
B(0, b) = {x| |x| < b} for x in a normed space with norin |. Forc € R, A >

0,x e C(o —r,0 +A]l, RMandr € [0,0 + A] definex; € C by

x(0) = x(t + 6).

We recall the following definitions of stability which will be needed in this section.
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Supposef : R x € — RM with the sup norni - |« and consider the retarded
functional differential equation

x(t) = f(t, xp). (10)

For a giveno € R and¢ € C we sayx (o, ¢) is a solution of (10) with initial data
¢ € C ato ifthereisanA > 0 such thak (o, ¢)(¢) satisfies (10) ond —r, o + A]
andx, (o, ¢) = ¢.

Definition 3.1. Supposef (¢, 0) = O for allr € R. The solutiont = 0 of equation
(10) is said to betrable if for any o € R, € > 0, there is & = §(e, o) such
thaty € B(0,8) c C impliesx; (o, ¢) € B(0,¢) fort > o. The solutionr = 0
of equation (10) is said to basymptotically stabléf it is stable and there is a
b, = b,(c) > 0 such thatp € B(0, b,) impliesx (o, ¢)(t) — 0 ast — oo.

To study the stability properties of the nonlinear system (8) and (9), we will
apply the following well-known theorems. A proof may be found in [10] (see The-
orems (3.7.1) and (3.7.2)). Consider the system

n

K@) =YY aijx(t — %)

j=1k=1
+ R;i(t, x1(t), x2(t — 11), ..xn(t — 1)), i =21,2,...,n (11)

and define the characteristic equation for this system as

| Z Arexp(—ity) — Al =0,
k=1

whereA; = (a;j) are matrices and is the identity matrix.

Theorem 3.1. The null solution of the n dimensional system defined by (11) is
asymptotically stable if :

1. all the roots of the characteristic equation for the first approximation system
for (11) have negative real parts;

2. |Ri(t,ut, up, ..lpm+1))| < « Z;’.(:’”fl) lu;|, wherew is a sufficiently small
constant, allu;| are sufficiently small, i.du;| < H, whereH is a sufficiently
small positive constant and> 1.

Theorem 3.2. If at least one root of the characteristic equation has a positive real
part, and condition (2) in Theorem 3.1 is satisfied, then the null solution of (11) is
unstable.

For the stability study of system (8) and (9), we will rewrite the system as:

dX(r)

— = = KalKz = X(0] — KaV(X(1) — Pigo,). (12)
dyY
d;” = Ka[Ks — KoY (1) — K7] +KgV (P, — Y (1)), (13)
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where
X(t) = Pacg,.
Y (1) = Pag,,
V=VX(t—1),Y({t—1),
T = Ta,
K
Ky = 863200
Mico,
Kz = PVCOZ’
E
Kz = .
Mico,
Ks— 8632 .
Mg,
K5 = mvPV02 + BVv
K6 = maa
K7 - Ba»
E
Kg=—r
M._O2

Note that VisincreasingiX (-) and decreasing ifi(-). Simplifying these equations
gives

dX(t)
e K11 — KaX(#) = K3V (X(#) = Pigg,), (14)
dy (1)
TR K1z — K13Y (1) + KgV (P, — Y (1)), (15)
where
K11 = K1Kp,
K12 = K4Ks — K7Kyg,
K3 = K4Ks.
Let

X(t) = X(t) — P'coz’
y(@) = P|02 -Y@®),
so that Xr) represents the difference in inspired £nd arterial CQ@ and \r)

represents the difference in inspired &nd arterial @. We note that '%02 ~ 0.
After some substitutions and simplifications, we obtain

dx(t)
dt

= & — aX(1) — agVX(1), (16)
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dy(t)
dt

= b1 — boy(r) — b3Vy (1), (17)
where

& = K11 — K1Pigo,

& = Ky,
a = Ks,
by = —Ki2+ KisPg, .
b2 = Kys,
bz = Kg.

The R¢q, level in ambient air is very small and we will assume that it is zero. It
should be noted that the control function V has the following properties:

i) V=V —r1),yt — 1)), is now increasing in botk andy,
(i) V(lp, y) =0,
(iii) V is differentiable forx # Ip,

(iv) Vx > 0, Vy > 0,forx > lp,y > 0.

The above system (16) and (17) is of the form
x(1) = f(x).
wheref : C — R?andC = C([—r, 0], R?). f(x,) takes the form

_ J1(xp)
fla) = (fz(m))

andx(r) takes the formx1(¢), x2(¢)). We first observe the following:

Theorem 3.3. The system (16) and (17) has a unique solutionsfoe R and
¢ eC.

Proof. We will show thatf is continuous orC and locally Lipschitz on compact
sets ofC. Recall that the norm o6 is defined as follows. Fap < C,

[Ploc = SUP_, <p<0 \/(¢1(9))2 + (¢2(9))2’

Itis clear that if eacly; is continuous and locally Lipschitz, for= 1, 2, thenf is
continuous and we can find a Lipschitz constant K for
Letw = (i, ) € R? x R2, whereii = (u1, u2), v = (v1, v2) and with norm
defined by| (i, V)|g2, g2 = liilg2 + |U|g2. Considerf as a function defined on
R? x R? by
fi(u, v) = & — spuy — &gV (v1, v2)uy, (18)
where

V(v1, v2) = Gpexp(—0.05v2)(v1 — Ip).
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SinceR? x R? = R4, it is clear that (18) is continuous dR? x R2. From
now on| - | will represent the appropriate norm when no confusion will occur. Let
¢ = (¢1, ¢2) € C be chosen and lét = (i, v) € R? x R? where(i, v) is defined

-(2)-(38) - () (2
u $200) )’ v2 d2(=1) )"

Thusw = (¢(0), ¢(—1)) is a given element ifR? x R2. Considering the right-
hand side of (18) as a mapping &% x R?, and forw defined above, for every
€ = e(w) > Othereis & > 0 such that f1(x¥) — f1(W)| < € when|x — w| < §.
Let|¢p — | < §/2fory € C. Then it follows that

lp(0) —v (O] <é/2 and [p(—7) —Y(-D)| <d/2
For anyyr, letx = (¥ (0), ¥ (—1)). We have
|AW) = fil@)] = | i(X) — fa(w)]
and
|/1(X) = fa(W)] < €

when

% = ] =/ (@100) — ¥2(0) + (¢2(0) — ¥2(0))2
+@1(=) — Y= + (B2(=T) — Y2(—T))?

< 4.

That is, when¢ — | < §/2. We conclude thaf; is continuous orC. A similar
argument can be given fgb and thusf is continuous orC.

Again regardingf; as a mapping oiR? x R?, it is clear that the exponential
factor in V has continuous partial derivatives and will be locally Lipschitz on com-
pact sets. Also, the second factor in V defined by the shapu, v) — [(v1— Ip)]
is Lipschitz. Furthermore, sums and products of Lipschitz maps on compact sets
will be Lipschitz. Therefore, the above mapping (18) will be locally Lipschitz on
compact sets dR? x R?. Thus, if¥, y € R? x R? are contained in a compact set,
then there exists & > 0 such that

/1) — i) < KX = 3. (19)

Now, let D be acompact seté. Hence, fow = (¢1, ¢2) € D,wehavdep| < b
for someb > 0. Thus the set¢(¢)|¢p € D,t € [—r, 0]} will be contained in the
closed ballB(0, b), a compact set iR? and so pairs of the forr@ (0), ¢ (—1)) will
be contained in the closed ba(0, 2b) in R? x R2. This ball is compact ang;
will be Lipschitz onB(0, 2b) with Lipschitz constant K. Consider, fgr, ¢ € D,

f1(@) — 1Y) = —a(¢1(0) — ¥1(0))
—ag(V(¢1(—1), ¢p2(—=1)$1(0) — V(Y1(—1), Y2(—1))¥1(0).
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Again considering the right-hand side of (18) as a mapping fRfmx R?, and
making the identification

<u1> _ <¢1(0)> <vl> _ <¢1(_T)>
uz ) \ 20 )’ \v2) = \¢o(—17) )’

(similarly for /) we have

|f1(9) — fa()] < K\/(d’l(o) — ¥1(0)? + (¢2(0) — ¥2(0))?

+ K\/(¢1(—f) = Y1(=1))? + (P2(=7) — Y2(~1))?
<2K|¢p — |

Thus i islocally Lipschitz on compact sets. A similar argument can be giveffor
and thusf is locally Lipschitz. From well known results (see, e.g., [14] Theorems
(2.2.1) and (2.2.3)) it follows that the system (16) and (17) has a unique solution
foro € Rand¢ € C. This ends the proof. a

Note that by introducing added components to the product sRaceR? to
account for the brain transport delay and tissue transport delays, we can establish
the same results for the five-dimensional state space model presented in Section
2. We further note that from Theorem 2.2.2 in [14] we are also guaranteed that
the solutions are continuously dependent on initial data so that the models are
well-posed.

We now will show that the system (16) and (17) has a unique positive
equilibrium.

Theorem 3.4. The above system (16) and (17) has a unique positive equilibrium
(X, y) wherex > Ip andy > O.

Proof. The equilibrium solutionx, y) satisfies

0=a — aX — agVXx, (20)
0 = by — b2y — bsVy, (21)

whereV = V (X, y). Note that% =Pygg, and will always be physiologically much
larger than 4, the threshold level for zero ventilation. This implies that= 0 is
impossible at equilibrium. FortheN, = 0= X < lpbutV=0= X = % from
solving (20) forx and this contradicts th% >> |p. Now (20) gives

a

K=t (22)
2 + agV

and (21) implies

_ b1 by
V=—-—. 23
b3y b 3)
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Note that this equation gives the value ¥t equilibrium and is not meant as a
formula forV in terms ofy. Substituting (23) into (22) gives
a
X = tl) - (24)
& +as(py — pl)

Atequilibrium,y > =2 & V < 0. Thisisimpossible at equilibrium so that<

Now using (24), we see th@t= x(y) is monotonically increasing ip andx — O
monotonically agy — 0. Thus we may find a uniqugsuch thai is as close to
(but greater than} = Ip as we wish. Furthermore, from the equation for V we

may bound the exponential factor involvingon the interval O< y < % by a

positive value M. Thus

b,
b,

V < M@ — Ip).

We can choosg so that V is as small as we wish and find a corresponginging
(24). We also note that

is decreasing ifi. By choosingk sufficiently close to x=¢ (call it X ;) we can find
apair(Xip, ¥,5) so that

\7(>_(Ip’)_’|P) <g()_7|p) (25)

wherey |, < g—;
Now V is monotonically increasing in x and y aid= x(y) is monotonically
increasing iry from (24). ThusV (X(¥), ¥) is increasing iy wherey |, < g—l.AIso

g(y) = bbly ZZ is decreasing in y ang( ) = 0. Thus if we begin with the
3 3

relation (25) there will be a unique solutltyh of
by b

V&), y) = by bs

whereyIP <y < b_ Using the solutioiy* to definex* we get upon substituting
y* into (24) the correspondlng uniquely defired

ag
az+%(~b% - g—;)

Note that p < X* < % Solving forV in (20) at equilibrium we see that

X =

v % (26)

&X &
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and substituting™ defined above we get

V5.7 = 2 _2_ b B

( ) a bsy* bz

| —F—p
Vil

ag+ae(b—;y ‘H?

ThusV as defined by (23) and (26) are equalt, y*) and so(X*, y*) is indeed
a positive equilibrium and is unique by the above argument. This completes our
proof. |

We will now consider the stability of the above nonlinear system of delay
differential equations (16) and (17). Let

§(r) =x(1) — X,
n(t) =y@) —Yy.

The linearized system of (16) and (17) is given by

. ) ) ]
_i (tf) = (—a — aV)§(1) — aXVxk(t — 1) —aVyn(t — 1), (27)
. ) ) ]

Zzy_) = (=bz — V) (1) — gV (t — ©) — bayVyn(t — 7). (28)

Writing in matrix form

d (60 _ , (E0) £t — 1)
dt<77(f)>_A(U(l))+B<n(t—r))’

A:(—ae—ae\_/ 0 _) B:<—36)_(\:/X —36>_<\:/y>
0 —b; —bgV J” —bayVx —bsyVy )

The characteristic equation is

where

detrl — A — Be ™)oyn=0. (29)

Upon substituting the matrix A and B we get

A+ (a0 + &V) + agXVyxe ™ aeXVye ™
det =0.
bayVyx e~ ™* A+ (b2 4 baV) + bayVye ™
Expanding this determinant gives

A(r, T) =PO) 4+ Qe ™ =0 (30)
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where
P(L) =22+ (g + baV + @ + &V)A + (& + V) (bp +b3V)  (31)
and

Q) = [(3yVy + asXVx)A + (& + agV)bsyVy + (b2 + baV)asxVx)].

(32)
Notice that
A, 0) = 2% + (bp + b3V + & + agV/ + bayVy + aXVx)1
+ (8 + aV) (b2 + b3V) + (a2 + aV)bsyVy
+ (b + bg\_/)ae)_(\_/x (33)

has all positive coefficients so that the roots to the characteristic equation have
negative real parts when no delay is present. Also

A(0, 7) = (3 + agV)(bp + b3V)
+ (a2 + aV)bsyVy + asXVx(bz + baV) # 0. (34)

To simplify subsequent calculations we will use the following notation:

A1 =a +aV,
Ay = aaXVx,
By = by + bgV,
By = b3)7\_/y.

In the simpler model analyzed by Cooke and Turi [5] they developed stability cri-
teria based on the relation between the valusnd the valu&Vx + yVy. We will

find that in our model the situation is more complicated. We establish the following
lemmas which will be needed to analyze the stability properties of the above system
(27) and (28).

Lemma 3.1. If V > XVx + YWy thenA(iw, 7) # Ofor o € R/{0}, T > 0.

Proof. As noted above\ (0, t) £ 0. Also forw € R, we have

IP(iw)]? — 1Q(i»)|? = 0* + kiw® + ko (35)
where
ki = A2+ Bf — (A + Bp)?,
ko = A2BZ — (A1B2 + A2B1)2.
Consider

A1B1 — (A1B2 + A2B1) = (a2 + asV)(bp + bgV)
—[(a& + aV)bsyVy + (b2 + bsV)agkVx].  (36)
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If V> XVx + yVy and @ = 0 = by, then
A1B1 — (A1B2 + A2B1) = agVbsV — (a3VbzyVy + baVasXVx)
= aghaV(V — (yVy + XVx)) = 0. (37)
Also givenV > XVx + yVy it follows that
boagV > bpasXVx and absV > apbsyVy. (38)

Now, as a increases, the first term on the right hand side of (36) increases by
aby + apbzV while the second term increases hgb@'/\_/y. From inequality (38)

we see that the first term is larger than the second so that (37) still holds for non-
negative a. The same is true aglincreases. Therefore, fopa& 0, b, > 0, we

have that

A1B1 — (A1B2 + A2B1) > 0.
This implies that
ko = AfBS — (A1B2 + A2B1)* > 0.
Also, if V > XVx + yVy and & = 0 = by, then
A2+ BS = @+ bV’ = (@ + b (RVx + YVy)?
— (& + b3 PV + 2x§VxVy +¥2Vy)
= &BX2V + (& + b3)(2XFVxVy) + aBy?Vy + b3V + bZy2Vy)
> &BX2Vx + 2a3baxVxVy + b372Vy,
= (86XVx + bayVy)?
= (A2 +Bp)?

where we have use{d§+b§) > 2agbs > aghsz since @ and Iy are positive constants.
So we have
A2 1 B2 — (A4 By)? > 0.

Since only A and B increase aszand by increase it follows that
A2 1 B2 > (A;+Bp)?
for & and by positive constants. Thug k- 0 and
IP(iw)]? — |Q(iw)|? = w* + kiw? + ko # 0 forw € R/{0}.

This implies
(IPlw)| — Q)N (IP(w)| + |Q(iw)]) # 0.
Thus
IPiw)] — 1Q(w)| # 0.
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This gives
|A(iw, T)| = [IPGw)| — [Q(w)|| > 0.

Hence,
Aliw, 1) = Pliw) + Qliw)e ™ £0, we R/{0} ,7>0.
This ends the proof. ]

WhenV < xVx + yVy the conditions which determine the signs efdnd k
are not so transparent and we will consider several cases.

Lemma 3.2. IF A1B; < A1By + AyBs then there is a unique pair @b,, 7, with
w, > 0,7, >0, andw,1, < 27 such thatA(iw,, 7,) = 0.

Proof. If A1B1 — (A1B2 + A2B1) < 0 or equivalently i < 0, we have that
IP(iw)]? = |Q(i®)|? = 0* + kiw® + ko = v2 + kv + ko = F(v)

wherev = w?. ThenF (v) has a unique positive root= v,
Vo = 1/2(—kq + /K2 — 4kp) > 0.

IP(iw)|* — |Qliw)|> = 0
if and only if v = +w, wherew, = /v, € R. The condition

Thus

IP(iw,)[* = 1Q(iw,)|* = 0
implies that
[Piw,)| = |Qiw,)]
and thus % lies on the unit circle. Note thaQ(iw,)| # O since it is linear

with real coefficients. This means that there exist a unigusuch thatr, > 0,
w, > 0, 1,0, < 27 and

_ Plw,)

e oo — 07 (39)
Qiw,)
Consequently;, = 7, + 25—” n=0,1,2, ..., also satisfies
e—irnwa — _ P(i.a)(,) . (40)
Qiwo)
Thus the characteristic equation
A(z,7) =P@) + Q)e ™ =0
has conjugate pairs of imaginary roais, where
2
w=4w, and 1, =1, + 2% n=0,1,2, .. (41)
Wo

and a unique positive paif,, w, wheret,w, < 2. This completes the proofd
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Lemma 3.3. IF A1B1 > A1B> + A2B; then the following is true:

1. If A;B1 = A1Bo + A2Bj then there is at most a unique pair @f, t, with
wo > 0,7, > 0, w,7, < 27 such thatA (iw,, 7,) = 0.

2. If A1B1 > A1B2 + A2B1 then there are at most two pairs @f, ; withw; > 0,
7 >0, andw;t; <27 fori =1, 2.

Proof. (1) If A1B1 = A1B2 + A2B1 so that k = O then
IP(w)2 — |Qiw)[? = w* + kiw? + ko = v(v + k1) = F(v)

which has at most one positive solution if k 0. Statement (1) follows from using
similar arguments as in Lemma 3.1.
(2) If A1B1 > A1B2 + A2B1 so that k > 0 then

w4+k1a)2+k2=v2+k1v+k2=0

will have no positive root if k > 0 and two positive roots ifk< 0 and l§ — 4ky >
0. Again the conclusions aboutandt follow as above. This ends the proofd

Notice that the condition 81 > A1B2 + A2B1 and its variations_ reflects
physiological considerations. The parametetsgaare linear functions of (they

depend on compartment volumes also) so th&varies with QQz) while A1Bo+
A,B; varies with @Q). ko will cross to nonnegative values fog,d, sufficiently
large (assuminy, Vy and\7y are fixed). The above condition reflects the interac-
tion of Q, V, Vx andVy and Ge. Steady state values do change aa6dQ change
but larger values fo® (together with reasonable assumptions on other parameters)
does move the system into more stable configurations. LargemiBes, on the
other hand, tend to destabilize the system. The parameter values reflected in a
and Iy correspond to compartment volumes and the respiratory efficiency factor
Er which mimics the effects of dead space ventilation and diffusion inefficiencies.
In the two-dimensional model manipulating &cts to change controller gain. The
factors we can manipulate are,®&, compartment volumes ang BNe refer the
reader simulation studies in Section 3.3 for additional discussion.

Before we state the main results of this section which give stability results in
terms of the delay variable we recall the following theorem that originally is due
to Cooke and van den Driessche [5]. The version given below is a corrected version
proposed by Boese [2] (see also Theorem 4.1 on page 83 in [18]). Let the general
characteristic equation to a linear system of differential equations with one delay
be given as

A(z,7) =P(2) + Q(z)e ™ = 0. (42)

Theorem 3.5. Consider (42) where P and Q are analytic functions in a right half
plane Re > —§, § > 0 which satisfies the following conditions

(i) P(z) and Q(z) have no common imaginary zeroes;
(i) P(=iy) = P(iy), Q(—iy) = Q(iy) for real y;
(i) PO+ Q(0) #0;
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(@iv) lim sup|Q(r)/P(V)] i [A] = oo, Red > 0} < 1;
(v) F(y) = |P@iy)|? — |Q(iy)|2 has at most a finite number of real zeroes.

Then the following statements are true.

1. If F(y) = Ohas no positive roots then if (42) is stablerat O it remains stable
forall r > 0. If (42) is unstable for = 0 then it remains unstable far > 0.

2. If F(y) = 0 has at least one positive root and each such root is simple then
ast increases stability switches may occur. There exists a positive nurfiber
such that (42) is unstable for all > t*. Ast varies from 0 tor* at most a
finite number of stability switches occur.

The proof of this theorem is given in the above cited paper. The idea behind the
theorem is that roots of

A(z,7) =P(z) + Q(z)e > =0

vary continuously withc. We may consider a root of the characteristic equation
to be a function of in the sense that a small change in the paramepgoduces
a small change in any root to the characteristic equation. We weitez(t). The
justification for this follows from Rouche’s Theorem and a proof may be found in
[8]. Thus if there exists & for which all roots have negative real part anga- t1
for which there are roots with positive real part then there must besach that
11 < % < 12 fOr which there is an imaginary root to (42). Informally, we say that
if a root crosses from the negative complex half plane to the positive half plane as
7 increases then for somé there must be a crossover point on the imaginary axis,
i.e. an imaginary roaty,- to the characteristic equation for that
The equationF (y) = 0 is used to find the crossover points on the imaginary
axis. Without loss of generality, we consider 0. It is established in the proof of
Theorem 3.5 that the statement thas a simple root of'(y) = 0 is equivalent to
the statement that there are an infinite number*dfor whichiy is a root of (42)
and for each such* we have thaty is a simple root of (42). We denote this relation
betweeniy andt* by iy,«. Now, if a positive rooty of F(y) = 0 is simple, we
may apply the Inverse Function Theorem for complex variables using this simple
imaginary rooty andz* (42). Using this theorem, we may actually solve for roots
z in terms ofz in a neighborhood of a* for which iy, is a simple root of (42).
Furthermorez = z(t) will be differentiable (with derivative (1) #0)atr*.
It can further be shown that, at such roetsf F(y) = 0 andt* for whichiy,+
is a simple root of (42), theign{Re z/(r)|,*} = sign{F/(y)|yT* }. Thus the change
in the real part of the roots can be calculated and it can be determined whether roots
move from the left half plane to the right half planeragaries through*. That is,
the crossing direction of the roots can be ascertained. Note also that from the above
equation we see that trsign{Re z’(r)|,*} is independent ot* at these simple
imaginary roots. If there is only one simple ropto F(y) = 0 andz () > O for
thisiy,+ then roots may only cross from the negative to the positive half plane.
Furthermore, ifP and Q are polynomials with real coefficients wherés the
degree ofP, m is the degree 0f andn > m, thenF (y) is an even polynomial of
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degree 2n. By setting = yf, y > 0, we define a new functiofi (x) which will be
a polynomial of degree ' (x) can be factored as

Fy=]]&x=rp.
j=1

In the following corollary it is shown how the crossing directions may be calculated
in this case.

Corollary 3.1. If P andQ are polynomials with real coefficients whereés the de-

gree of P, m is the degree of andn > m andwhere'y > r» > r3 > ... >r, >0

are the distinct roots of (x), thentiy, = £/rk(k =1, 2, ..., p) are the possible
roots of (42) on the imaginary axis. Assume that these roots are simple. Then the
crossing directiony; atiyy is given by

p
st = sign{[ Jow—rp).
j=1
J#k
If there is only one rooy then the sign must be positive so that roots may only
cross from the negative to positive half plane. We are thus led to the following:

Theorem 3.6. For the above defined system (16) and (17, if XVx + yVy then
the equilibrium(k, y) is asymptotically stable for ait > 0.

Proof. This result follows from Lemma 3.1, and Theorem 3.5. We note that P and
Q for our system satisfy the conditions (i), (ii) (iv) and (v) required by Theorem 3.5
since they are polynomials with real coefficients and can have no common imagi-
nary root since Q is linear. Also as noted above, (33) establishes that=fdr, all

roots of A(A, 0) = 0 have negative real part so that the system is stable=aD.

(34) established thak (0, ) # 0 so that (iii) is satisfied. Lemma 3.1 establishes
that there is no positive root to (35). Hence the result follows from conclusion 1 in
Theorem 3.5. Note that all the roatg in the above lemmas are simple. This ends
the proof. ]

Using the results from (3.1) and (3.5) we have:

Theorem 3.7. For the above defined system, (16) and (17),1BA— (A1B2 +
A2B;1) < Othen there exists @ > 0 such that the equilibriunix, y) is asymptoti-
cally stable forr < t* and unstable for > *.

Proof. This result follows immediately from Lemma 3.2, conclusion 2 in Theorem
3.5, Corollary 3.1 and the comments in Theorem 3.6. The crossing direction is
guaranteed to be from the negative to positive half plane as there is only one simple
root. This ends the proof. |

We may findt* by solving (35) forw and then solving fot* in equation (39).
Thatis,t* is a solution to

—r*iw,, —_ P(la)o)
Qiwo)
andt* is such that,t* < 27.
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Theorem 3.8. For the above defined system (16) and (17),1iBA— (A1B> +
AB1) > Oand & + B2 — (A2 + Bp)?2 = ki > 0 then the equilibriumx, ) is
asymptotically stable for alt > 0.

Proof. This follows exactly as in Theorem 3.6. |

We point out here that similar results may be stated for the other conditions in
Lemma 3.3 but numerical studies indicate that=k O will not occur given rea-
sonable physiological values for the parameters unlgss R so that we will not
consider these cases. Even should this condition be satisfied we see that the system
will eventually become unstable after a finite number of stability switches (there are
then at most two positive roots). From a physiological perspective, later switches
will require delay times probably too long to be physiologically meaningful. Two
numerical studies are included in section 3.5 below indicating the relationships
between k and k for various parameter values.

3.3. Numerical simulation studies

In this section, numerical simulations on the simplified two-dimensional state space
model described in Section 3.1 were carried out to verify the stability analysis pre-
sented in Section 3.2. All steady state and stability calculations were done using
Maple 5 release 3. In addition, the initial conditions are chosen to be small offsets
from the steady state values. We pI@‘CBZ, Paoz, and ventilation rate denoted by

Ve.

Table 1 (and other tables) gives the steady state valugsyprVy + y\7y, Gp,

Q,V, k2 and k (where appropriate). All tables are found at the end of the paper.
The table also gives the natural delay timgm as defined by the vascular volumes
andQ andQB as well as a* multiplier for thorm Which indicates when instability
sets in. Ther* multiplier describes by what factor the normal detaym must be
increased to produce instability in the system. Figure 3 shows simulation results
for a moderate controller gain and< t*. Figure 4 represents the situation when

T > 1"

Figure 5 gives the simulation results for a larger controller gaia@lr < t*.
Figure 6 represents the situation wher t*.

The parameter values and stability calculations for Figures 5 and 6 are given
in Table 2. We note that parameters in Table 2 are such tﬁBﬁA (A2B1 +
A1B2)? << 0 andV << XVx + yVy than was the case in Figures 3 and 4 so
that the system will have delay related instability for all parameter values in the
physiological range. The rati%%n is approximately 2:1 which is much lower than
is to be expected in real individuals. However, we are only modeling the peripheral
control system which, it is believed, is responsible for the unstable phenomena in
respiratory physiology. Thus, the model supports this idea.

We see that larger controller gain produces a smafiéndicating that the con-
troller gain level is important for stability properties. One reason that the peripheral
controller contributes so much to instability characteristics is that it responds to
P;;CO2 and I%O2 which (as can be seen in the five-dimensional model simulations,
Figure 2) varies much more than the other state variables. Also, it is known that
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Fig. 6. Unstable two-dimensional basic model with high gain.
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the carotid bodies are extremely well supplied with capillaries and thus very ef-
ficiently perfused with arterial blood. They are thus able to respond quickly and
proportionately to changes in arteriaéd:g)2 and '%02-

3.4. A modified control equation for the two-dimensional model

To compensate for this heightened sensitivity@(g and Paoz we can amend the
two-dimensional model presented in Section 3.1 in the following way. Notice that
in the five-dimensional model the brairng02 level varies much less than;goz.
Therefore the central control response varies less. We can modify the control equa-
tion by including a central control component as follows:

Ve=[[ Kve, +Kve,(x(r —7) — 1) ]I,

where Kyc, and Kyc, are constants. Again, the double bracket notation indicates
that V¢ will be greater than or equal to zero. What we have done is to introduce a
second control component which varies much less than the peripheral control for
X() (i.e. Pacoz) levels. In the steady state this would act similarly to the central
control. Of course, this setup does not allog % become zero and we assume the
same delay but we are concerned here only with a qualitative look at the effects on
the steady state calculations. A more correct formulation requires a three-dimen-
sional state space model to allow for a correct formulation of the central control
Vcen: We have analyzed this case in Part Il of this paper. Table 3 and Figures 7 and
8 give calculated parameter values and simulations results, respectively. In Table
4, we compare the stability conditions as predicted by the model with a peripheral
control only versus one with a variable central control component added. We note
Table 4 shows that the system with a central control component will be much more
stable than one with a peripheral control alone.

3.5. Parameter interaction

The following graphs illustrate the relation between several important determiners
of stability versus changing control gain. Figure 9 illustrates how the coefficients
ki and k from (35) vary versus control gain. We use the modified control equa-
tion in Section 3.4 with central drive constanyd set at 3.0 I/min. In this graph

k> moves from positive to negative values whiledemains positive. One reason
for this is thatX andy do not vary much with controller gain as can be seen in
Figure 10 thus stabilizingik Over a very large set of variations in parameter values
it has been the case that Will not be negative unless;kis also. Thus it appears
that multiple switching in stability does not occur when reasonable physiological
parameter values are used.

4. Discussions

Itis clear that the central control contributes much to the stable behavior of the hu-
man respiratory control system. We can compare the results of the stability analysis
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1 1 C T T T T

1OCU\MNWW\AMMN\AAAMNWWV\ANV\MNVWVWWWMNVMVWWWWWMVM\?
o0+ i
Pa02

Gp = 45, tau muitiplier 10.80 (predicted unstable at 11.275)

mm Hg , liters/minute
D
2
1

PaCO2

Ve

1 1 ] 1.
00 50 100 150 200 250
time in minutes

Fig. 7. Stable two-dimensional model with a modified control and moderate gain.
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Fig. 9.k, andk, versus control gain.

for the two-dimensional and five-dimensional models. We compare the two-dimen-
sional model with the modified control equation and varying central gain. Using the
parameter values indicated, we see from Table 5 that there is areasonable correlation
in the predictions about stability. Note that for normal control gain the two-dimen-
sional model predicted instability atramultiplier of 10.54 while simulations of

the five-dimensional gives 14.1. State variables also correlate very well.

We see that the overall structure of instability was illuminated by the small-
er models and the actual state variables were in good agreement for the modified
central control component. Themultiplier necessary for instability for the five-
dimensional model was about 28% higher than predicted by the smaller models
indicating that the tissue compartments add to the stability of the system. Figure 11
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Fig. 10. Two-dimensional steady state values versus control gain.

represents the five-dimensional model simulation at instability. Note kl/"@ézP
and R,o2 do not vary much even in unstable situations.

Finally, we will present calculations comparing the effects produced by varying
different parameters. We will introduce one further parameter in this analysis. We
have heretofore used:Eet at 0.7 to reflect dead space ventilatignand diffusion
inefficiencies. This factor reduces each breath by a certain percentage. In this case,
we are assuming that an increase in ventilation rate is produced by increased breath-
ing rate and thus each breath is reduced by the same dead space volume percentage.
We might also assume that breathing rate is held constant and depth of breathing
is varied. In this case there will be a fixed dead space volume subtracted from each
breath. We, therefore, havey/=V — Vp. E- will be set at 1.0. Notice that in this
case \4 serves to reduce V by a fixed amount in each breath.
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Fig. 11.Unstable simulation of the five-dimensional state space model.

Table 6 presents the results obtained by varying different parameters and their
effects on stability. We compile the results for both of the versions of modeling
dead space ventilation just described. To develop this table we start with the stan-
dard parameter values and the calculatechultiplier for these parameters. Some
changes in the steady state values f\qg(g and R, are to be expected when large
changes in parameters are made. We have keptthe Ievejé(gf&hd R/oz fixed at
the values found in Table 5 for comparison purposes. Column 1 gives the parameter
which is changed while others are held fixed. Column 2 gives the change in that
parameter by a certain factor. Column 3 gives the factor by which the standard value
for the* multiplier is increased or decreased when this parameter change occurs.
We see that an increase in lung compartment volumes tends to stabilize the system
which agrees with [17]. It is interesting to note that using ¥ V — Vp to repre-
sent dead space ventilation acts to reduce the stability of the system more than the
factor B- does. This makes sense if we consider thad s to reduce the effective-
ness of the control signal by a certain constant percentage while in the expression
Vet = V — Vp the useless volume d/becomes a smaller percentage as deeper
breaths are taken and hence increasing the efficacy of the control. In actuality, the
control signal modulates both rate and depth of breathing.

The analytical methods described above can predict the effects of any combi-
nation of factors as well. From Table 6, one can ascertain the general effects of any
combination of factors.
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5. Conclusions

We now conclude this paper with some observations based on the foregoing
analysis.

1. We have looked at the behavior of the model when only peripheral control is
utilized. In this case, the delay needed to produce instability is much smaller
than is expected from observations and experiments. Introducing a second term
to mimic the central control near steady state dramatically increases the stability
of the system. This form of central control is not physiologically correct but in-
dicates the role played by the actual central control in stabilizing the respiratory
control system.

2. Further analysis with modified controls which mimic both central and periph-
eral control can be combined with the above two-dimensional model to study
stability properties. Such a control might be as is given in [3] where a con-
volution was used to smooth out the instability of a peripheral control which
responds instantaneously to variations in arterial blood gas levels. A control
which incorporates the effects of botl@d%z and I%O2 (such as suggested in
[5]) can also be analyzed using the above described results.

3. Thecentral control acts to reduce the instability inherentin the peripheral control
mechanism. One might be tempted to believe that the central control evolved for
this purpose. The peripheral control responds quickly to changes in the blood
gases while the central control responds more slowly and with less variation
due to the process of transformingc%2 levels into '%coz levels. Peripheral
response is most critical during hypoxia and in such cases quick changes in ven-
tilation are necessary. Quick changes to increa%gﬁand hence decreases
in pH levels are also important. The price paid for this response is instability
and the central control acts to mitigate this factor.

4. The tissue compartments act to dampen oscillations and contribute to stability
as Table 5 indicates. Notice that the five-dimensional model seems to be more
stable than the two-dimensional model. Also, Table 6 indicated an increase
in lung compartment volumes acts to stabilize the system. However, with the
controls presented the effects of changes in lung volumes are much larger than
predicted in [16].

. Variations in controller gain are critical to the stability of the system.

6. A control which varies depth of breathing is more unstable than one which

varies rate of breathing.

ol
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Appendix

Table 1. Stability calculation parameters for Figures 3 and 4.

Quantity Unit Value

Gp I/min/mmHg 45.0
Q I/min 6.0
®, 7.47
Normalt sec 8.5
Unstabler multiplier ... 2.02
X mmHg 41.48
y mmHg 66.9
\Y I/min 459
XVx+yVvy L 44.7
AZBZ — (AB; +AB)? ... —2738.8

Pugo, =460 R =409 Ry =150.0

Table 2. Stability calculation parameters for Figures 5 and 6.

Quantity Unit Value

Gp I/min/mmHg 90.0
Q I/min 6.0
w, 9.7
Normalt sec 8.5
Unstabler multiplier . 1.54
X mmHg 40.7
y mmHg 59.0
v I/min 5.45
XVx+yVvy L 54.8
AZB2 — (A,B; +A1By)? ... —3667.3

Puco, =460 Ryp =40.9 R, =150.0



Stability of the human respiratory control system. |

77

Table 3. Stability calculation parameters for Figures 7 and 8.

Quantity Unit Value
Figure 7
Gp I/min/mmHg 45.0
KVC1 I/min 3.0
Kvc, 0.5
o) I/min 6.0
®, 1.765
Normalt sec 8.5
Unstabler multiplier 11.27
X mmHg 39.57
y mmHg 48.46
\Y I/min 6.85
PVCQ I/min 46.0
0, I/min 41.0
P|coz I/min 146.0
XVx+yVy L 37.14
AzBf —2(AzBl + A1822)2 ...... —168.62
AT+Bi— (A +By)* ... 51.03
Figure 8
Gp I/min/mmHg 90.0
KV(_:1 I/min 3.0
Kve, 0.5
o) I/min 6.0
®, 5.08
Normalt sec 8.5
Unstabler multiplier 3.524
X mmHg 39.09
y mmHg 45.36
\Y I/min 7.5
PVcoz I/min 46.0
0, I/min 41.0
Plcq I/min 146.0
XVx+yVy L 47.93
AZB2 — (A,B; +ABy)? ... —862.24
A +BI—(A,+By)? L. 7.49
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Table 4. Stability comparison for 2-D model: different control equations.

Moderate (> comparisons

Quantity Peripheral control only ~ Varyingd/
Gp 45 45.0
Kve, 3.0
Kvc, 0.5
, 7.69 1.76
Normalt 8.5 8.5
Unstabler multiplier 1.97 11.27
X 41.35 39.57
y 64.0 48.46
Y 4.74 6.85
PVoz 41.0 41.0
P\/coz 46.0 46.0
P o, 146.0 146.0
High Gp comparisons

Quantity Peripheral control only ~ Varyingdy
Gp 90 90.0
Kvc, 3.0
Kve, 0.5
, 10.2 5.1
Normalz 8.5 8.5
Unstabler multiplier 1.47 3.53
X 40.6 39.09
y 56.2 45.35
Y 5.6 7.45
P\,O2 41.0 41.0
Prco, 46.0 46.0
P.o2 146.0 146.0

Table 5. Stability calculation comparisons for 2-D and 5-D models.

Quantity 2-D 5-D
Gc 1.2
Gp 45.0 45.0
V¢ added term 3 0.5%

0 6.0 6.0
W, 1.88
Normalt 8.5 8.5
Unstabler multiplier 10.54 14.1*
X 39.45 39.46
y 48.98 48.53
\YJ 6.78 6.12
Pvco, 45.8 45.8
P\/O2 40.9 40.9
Pig, 146.0 146.0

* numerical estimate
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Table 6. Stability results of parameter changes: 2-D model with modified control.

2-D with B¢ = 0.7

uantity arameter multiplier * multiplier
Q i P Itipli * multipli
Gp 1.0 11.27 x

Gp 2.0 3.53x
M._Co2 and M_02 0.5 5.60 x
MLcoz and l\/LOz 2.0 22.6 X

2-D with Vp = 2.0 I/min

Quantity Parameter multiplier * multiplier
Gp 1.0 2.63 x

Gp 2.0 1.43x
M._CQ and l\/i_o2 0.5 1.3x
MLcoz and I\/L02 2.0 5.27 x

Pugo, =46.0 Rig =410 R, =146.0

Table 7. Parameter values for 2-D model.

Quantity Unit Value
Gp I/min/mmHg 45.0
Q I/min 6.0
Qs I/min 0.75
P\/Coz mmHg 46.0

0, mmHg 41.0
P.O2 mmHg 1460°
Ip, Ic mmHg 35.0
M._COZ liter 3.2
MLO2 I/min 25
EF .. 0.7
Kco, ls1pn/ (I MMHg) 0.0057
my lstpn/ (I MmMHg) 0.00025
Ba lstpo/! 0.1728
my lstpn/ (I MMHg) 0.0021
By lstpo/! 0.0662

2includes 4 mmHg alveolar arterial gradient



