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Preparation
A semigroup is a nonempty set G together with a binary operation on G which
is associative: a(bc) = (ab)c for all a, b, c ∈ G.

There are two notations commonly used for the operation of a semigroup:
• the multiplicative notation, where the sgrp operation is called multiplication and denoted

by a centered dot · (with or without subscripts or superscripts);
• the additive notation, where the sgrp operation is called addition and denoted by a plus

sign + (with or without subscripts or superscripts).
• I’ll write all operations multiplicatively unless a statement to the contrary is made.

A monoid is a semigroup G which contains an identity element e ∈ G such that
ae = ea = a for all a ∈ G.

A group is a monoid G such that for every a ∈ G there exists an inverse
element a−1 ∈ G such that a−1a = aa−1 = e.

Given semigroups G and H, a function f : G → H is a homomorphism if
f(ab) = f(a)f(b) for all a, b ∈ G.

If f is bijective, f is called an isomorphism, G and H are said to be isomorphic
(written G ≃ H). A homomorphism f : G → G is called an isomorphism
f : G → G is called an automorphism of G. Under the operation of
composition, the automorphisms of S form a group, henceforth called the
automorphism group of S and denoted by Aut(S).
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Power semigroups and power monoids

The large power semigroup of a semigroup S is the semigroup P(S) obtained
by endowing the non-empty subsets of S with the (provably associative)
operation

(X,Y ) 7→ XY := {xy : x ∈ X, y ∈ Y }.
If S is a monoid, then its large power semigroup is itself a monoid with identity
{1M} (where 1M is the identity element of M) and is therefore called the large
power monoid of M .

Each of the following is a unital submonoid of P(M):

• P×(M) := {X ∈ P(M) : X ∩ M× ̸= ∅}, the restricted large PM of M .

• P1(M) := {X ∈ P(M) : 1M ∈ X}, the reduced large PM of M .

• Pfin(M) = {X ∈ P(M) : |X| < ∞}, the finitary PM of M .

• Pfin,×(M) := Pfin(M) ∩ P×(M), the restricted finitary PM of M .

• Pfin,1(M) := Pfin(M) ∩ P1(M), the reduced finitary PM of M .

Altogether, these structures will be referred to as power monoids (PMs).
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The Bienvenu–Geroldinger conjecture

An interesting question: given a class O of monoids, prove/disprove that
Pfin,1(H) ≃ Pfin,1(K), for some H,K ∈ O, iff H ≃ K.

Definition 1.

A numerical monoid is a submonoid of (N,+) s.t. N ∖ S is finite.

Bienvenu–Geroldinger conjecture

The reduced finitary power monoid of a numerical monoid S1 is isomorphic to
the reduced finitary power monoid of a numerical monoid S2 iff S1 = S2.

The Bienvenu–Geroldinger conjecture was recently settled by Salvatore Tringali
and me in a 7-page note (to appear in Proc. AMS).

Main result

The reduced finitary power monoids Pfin,0(S1) and Pfin,0(S2) of two Puiseux
monoids S1 and S2 are isomorphic iff S1 and S2 are (a Puiseux monoid is a
submonoid of the non-negative rational numbers under addition).
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Nathanson’s Theorem

For all a, b ∈ Z and ∅ ̸= A ⊆ Z, we take Ja, bK := {x ∈ Z : a ≤ x ≤ b} to be
the discrete interval from a to b, and gcdA to be the greatest common divisor
of A. That is, gcdA is the largest non-negative divisor of each a ∈ A, where
the term “largest” refers to the divisibility preorder on the multiplicative monoid
of the integers. In particular, note that gcd{0} = 0.

Nathanson’s Theorem (or Fundamental Theorem of Additive NT)
Given A ∈ Pfin,0(N) with gcdA = 1, there exist b, c ∈ N, B ⊆ J0, b− 2K, and C ⊆ J0, c− 2K
s.t., for all large k ∈ N,

kA = B ∪ Jb, ka − c K ∪ (ka − C),

where a := maxA and kA := A + · · · + A (k times).

Example 2.
A = {0, 2, 5}
2A = {0, 2, 4, 5, 7, 10}
3A = {0, 2, 4, 5, 6, 7, 9, 10, 12, 15}
4A = {0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20}
· · ·
kA = {0, 2} ∪ J4, 5k − 8K ∪ (5k − {0, 3, 5, 6})
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The proof

Lemma 3.

If A ∈ Pfin,0(Q≥0), then (k + 1)A = kA+ {0,maxA} for all large k ∈ N.

Proof.
• Since A is a non-empty finite subset of Q≥0 containing 0, there exist d ∈ N+ and A′ ∈

Pfin,0(N) such that A = A′/d. It follows that maxA = maxA′/d and kA = kA′/d
for all k ∈ N, which makes it possible to assume d = 1 and hence A ∈ Pfin,0(N).

• By Nathanson’s Theorem, there exist non-negative integers b, c, and k0 and sets
B ⊆ J0, b − 2K and C ⊆ J0, c − 2K such that kA = B ∪ Jb, ka − c K ∪ (ka − C), for
each integer k ≥ k0.

• Fix an integer h ≥ max{k0, 1 + (b + c)/a}. It is obvious that
hA + {0, a} ⊆ hA + A = (h + 1)A.

• For the inverse, we have
hA = B ∪ Jb, ha − c K ∪ (ha − C) and
(h + 1)A = B ∪ Jb, (h + 1)a − c K ∪ ((h + 1)a − C).

Let x ∈ (h + 1)A. Either x ∈ B ∪ Jb, ha − c − 1K, and then x ∈ hA; or
x− a ∈ J(h− 1)a− c, ha− c K ∪ (ha−C) ⊆ hA, and then x ∈ hA+ a, where we are
especially using that h ≥ 1 + (b + c)/a and hence (h − 1)a − c ≥ b. In both cases,
x ∈ hA + {0, a}, which finishes the proof as x is arbitrary in (h + 1)A. ■
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The proof

Lemma 4.

An isomorphism ϕ : Pfin,0(S1) → Pfin,0(S2), where S1 and S2 are Puiseux
monoids, sends 2-element sets to 2-element sets.

Proof.
• Fix a non-zero a ∈ S1. We need to show that B := ϕ({0, a}) = {0, b} for some

(non-zero) b ∈ S2.
• Set b := maxB ∈ S2 and note that b is non-zero, there then exists an integer k ≥ 0

such that (k + 1)B = kB + {0, b}.
• Put A := ϕ−1({0, b}), where ϕ−1 is the inverse of ϕ. Since ϕ−1 is an isomorphism

Pfin,0(S2) → Pfin,0(S1) with ϕ−1(B) = {0, a}, we get from the above that

(k + 1){0, a} = (k + 1)ϕ
−1

(B) = kϕ
−1

(B) + ϕ
−1

({0, b}) = k{0, a} + A.

• It follows that {0} ⊊ A ⊆ (k + 1){0, a} and maxA = (k + 1)a− ka = a. So, noticing
that a is the least non-zero element of (k + 1){0, a}, we find A = {0, a} and hence
B = ϕ({0, a}) = ϕ(A) = {0, b}. ■
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The proof

Lemma 5.

Let ϕ : Pfin,0(S1) → Pfin,0(S2) be an isomorphism, where S1 and S2 are
Puiseux monoids, and pick a1, a2 ∈ S1. The following hold:

1 There exists bi ∈ S2 such that ϕ({0, ai}) = {0, bi} (i = 1, 2).

2 ϕ({0, a1 + a2}) = {0, b1 + b2}.

Proof.
• Define A := {0, a1} + {0, a2}, B := ϕ(A), and a0 := a1 + a2 = maxA ∈ S1. Then

for each i ∈ J0, 2K, there is an element bi ∈ S2 such that ϕ({0, ai}) = {0, bi}.
• We know that (k + 1)A = kA + {0, a0} for some k ∈ N. Since

ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all X,Y ∈ Pfin,0(S1), it is thus found that

B = ϕ(A) = ϕ({0, a1}) + ϕ({0, a2}) = {0, b1} + {0, b2}

and

(k + 1)B = (k + 1)ϕ(A) = ϕ((k + 1)A) = kϕ(A) + ϕ({0, a0}) = kB + {0, b0}.

Consequently, b0 = (k + 1)maxB − kmaxB = maxB = b1 + b2 (as wished). ■
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The proof

Theorem 6.

The reduced finitary power monoids Pfin,0(S1) and Pfin,0(S2) of two Puiseux
monoids S1 and S2 are isomorphic iff S1 and S2 are.

Proof.

• The "if" part: let f : S1 → S2 be a monoid isomorphism, and let F be the function

Pfin,0(S1) → Pfin,0(S2) : X 7→ f [X],

where f [X] := {f(x) : x ∈ X} ⊆ S2 is the (direct) image of X under f .
• The "only if" part: let ϕ be an isomorphism Pfin,0(S1) → Pfin,0(S2). ϕ maps a

2-element set {0, a} ⊆ S1 to a 2-element set {0, b} ⊆ S2.
• Conversely, any 2-element set {0, b} ⊆ S2 is the image under ϕ of a 2-element set

{0, a} ⊆ S1, because the inverse ϕ−1 of ϕ is itself an isomorphism, with the result that,
for each non-zero b ∈ S2, there is a non-zero a ∈ S1 with ϕ−1({0, b}) = {0, a}.

• It follows that the function Φ: S1 → S2 : a 7→ maxϕ({0, a}) is bijective; and on the
other hand, we get that Φ is a homomorphism (from S1 to S2). ■
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The proof

Corollary 7.

The reduced finitary power monoids of two numerical monoids S1 and S2 are
isomorphic iff S1 = S2.

Proof.

All that remains is to prove that two numerical monoids are isomorphic iff they
are equal, see J. C. Higgins, Representing N -semigroups, Bull. Austral. Math.
Soc. 1 (1969), 115–125, Theorem 3. ■
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Main result

It’s an interesting problem to study the automorphism group of any
mathematical object. In particular, it’s interesting to do so for the group of
semigroup automorphisms of Pfin,1(H), where H is a monoid. Here we will
consider the case of (N,+).

Main result

The only automorphisms of the reduced power monoid Pfin,0(N) of (N,+) are
the identity X 7→ X and the reversion map X 7→ maxX −X.
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The proof

Theorem 8.

The following are equivalent for a homomorphism f : Pfin,0(N) → Pfin,0(N):
1 f is injective and f({0, 1}) = {0, 1}.
2 f is surjective.

3 f is an automorphism.

Corollary 9.

For an automorphism f of Pfin,0(N), the following hold:

1 maxX = max f(X) for every X ∈ Pfin,0(N).
2 {0, k} and J0, kK are fixed points of f for all k ∈ N.

3 Either f({0, 2, 3}) = {0, 1, 3} or f({0, 2, 3}) = {0, 2, 3}.
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The proof

One consequence of Corollary 9 is that any automorphism f of Pfin,0(N) gives
rise to a well-defined function f∗ : Pfin,0(N) → Pfin,0(N), henceforth referred to
as the reversal of f , by taking f∗(X) := maxX − f(X) for all X ∈ Pfin,0(N).
The next lemma shows that something more is true.

Lemma 10.

The reversal of an automorphism of Pfin,0(N) is itself an automorphism.

Proof.
• Let f be an automorphism of Pfin,0(N), and let X,Y ∈ Pfin,0(N).
• f∗(X + Y ) = max(X + Y ) − f(X + Y ) = (maxX − f(X)) + (maxY − f(Y )) =

f∗(X) + f∗(Y ). We are left to see that f∗ is a bijection:
• Injectivity: If f∗(X) = f∗(Y ) for some X,Y ∈ Pfin,0(N), then

maxX − f(X) = maxY − f(Y ). Since max(maxZ − f(Z)) = maxZ for all
Z ∈ Pfin,0(N). It follows that maxX = maxY and hence f(X) = f(Y ). By the
injectivity of f , we can get X = Y .

• Surjectivity: Let Y ∈ Pfin,0(N). Since f is surjective, there exists X ∈ Pfin,0(N) such
that f(X) = maxY − Y . By Corollary 9, we have maxX = max f(X) = maxY and
hence Y = maxX − f(X) = f∗(X). ■
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The proof

Given X ⊆ Z, we denote by ∆(X) the gap set of X, i.e., the set of all integers
d ≥ 1 such that {x, x+ d} = X ∩ Jx, x+ dK for some x ∈ Z.

Lemma 11.

If f is an automorphism of Pfin,0(N), then max gap(X) = max gap(f(X)) for
all X ∈ Pfin,0(N).

Proof.
• Let X ∈ Pfin,0(N) and put d := max gap(f(X)). Since the functional inverse of f is

itself an automorphism of Pfin,0(N), it suffices to prove that max gap(X) ≤ d.
• Set X′ := X + J0, d − 1K and suppose to the contrary that d < max gap(X). Since

f({0}) = {0}, the gap set of X is then a non-empty finite subset of N+ and hence d is
a positive integer.

• f(X) + J0, d − 1K = J0, d − 1 + max f(X)K = J0, d − 1 + maxXK.
• f(X′) = f(X) + f(J0, d − 1K) = f(X) + J0, d − 1K = f(J0, d − 1 + maxXK).
• So, we conclude that X′ = J0, d − 1 + maxXK, it’s a contradiction. ■
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The proof

Proposition 12.

For all a, n ∈ N with n ≥ a+ 1, it holds that

n−1∑
i=0

{0, a+ i, a+ i+ 1} = {0} ∪
q
a, na+ 1

2
n(n+ 1)

y
. (1)
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The proof

Lemma 13.

Assume {0, 2, 3} is a fixed point of an automorphism f of Pfin,0(N). The
following hold:

1 If 1 ∈ X ∈ Pfin,0(N), then 1 ∈ f(X).

2 f({0, a, a+ 1}) = {0, a, a+ 1} for every a ∈ N.

3 {0} ∪
q
a, na+ 1

2
n(n+ 1)

y
is a fixed point of f for all a, n ∈ N with

n ≥ a+ 1.

Proof of 1.
• Let X ∈ Pfin,0(N) and k ∈ N. Then we have k{0, 2, 3} = {0} ∪ J2, 3kK.
• If 1 ∈ X and k ≥ (2 + maxX)/3, then J0, 3k + maxXK =

({0, 1} ∪ {maxX}) + ({0} ∪ J2, 3kK) ⊆ X + k{0, 2, 3} ⊆ J0, 3k + maxXK that is,
X + k{0, 2, 3} is the interval J0, 3k + maxXK and hence it’s a fixed point of f .

• We conclude that, if 1 ∈ X and k is a sufficiently large integer, then

1 ∈ J0, 3k+maxXK = f(X+k{0, 2, 3}) = f(X)+k{0, 2, 3} = f(X)+({0}∪J2, 3kK)

■
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The proof

Proof of 2 and 3.
• Let a ∈ N, and set X := {0, a, a + 1} and Y := f(X). We need to prove Y = X. If

a = 0 or a = 1, then X is an interval and we are done. So, assume a ≥ 2.
• maxY = maxX = a + 1 and δ := max gap(Y ) = max gap(X) = a ≥ 2. It follows

that Y does not contain any integer y in the interval J2, a − 1K, or else we would find
that δ ≤ min(y, a + 1 − y) ≤ a − 1 < δ (a contradiction).

• {0, a + 1} ⊊ Y ⊆ {0, a, a + 1} = X, which shows that Y = X and completes the
proof of 2.

• Given a, n ∈ N with n ≥ a + 1, we have from Proposition 12 that,
{0} ∪

q
a, na + 1

2n(n + 1)
y

can be written as the sum of the sets {0, a + i, a + i + 1}
as i ranges over the interval J0, n − 1K, this is enough to prove the claim. ■
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The proof
Given a set S ⊆ Z, we denote by b.dim(S) the smallest integer k ≥ 0 for which
there exist k (discrete) intervals whose union is S, with the understanding that
if no such k exists then b.dim(S) := ∞. We call b.dim(S) the boxing
dimension of S.

Theorem 14.

The only automorphisms of the reduced power monoid Pfin,0(N) of (N,+) are
the identity X 7→ X and the reversion map X 7→ maxX −X.

Proof.
• Let Γ be the set of automorphisms of Pfin,0(N) that fix {0, 2, 3}, and define

Γ′ := {f∗ : f ∈ Γ}. We infer that Aut(Pfin,0(N)) = Γ ∪ Γ′. It is therefore enough to
show that the only automorphism in Γ is the identity X 7→ X.

• For, let f ∈ Γ and X ∈ Pfin,0(N), and put Y := f(X), r := b.dim(X) − 1,
s := b.dim(Y ) − 1, and t := min(r, s). We get that µ := max(X) = max(Y ).

• There exist increasing sequences x0, x1, . . . , x2r+1 and y0, y1, . . . , y2s+1 of integers
such that
1. x2i−1 + 2 ≤ x2i for each i ∈ J1, rK and y2j−1 + 2 ≤ y2j for each j ∈ J1, sK;
2. X = Jx0, x1K ∪ · · · ∪ Jx2r, x2r+1K and Y = Jy0, y1K ∪ · · · ∪ Jy2s, y2s+1K.
In particular, x0 = y0 = 0 and x2r+1 = y2s+1 = µ. We will prove by induction on r
that X = Y . ■
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The proof

Proof.
• If r = 0, then X is an interval and we have X = f(X) = Y . So, let r ≥ 1, assume for

the sake of induction that f(S) = S for all S ∈ Pfin,0(N) with b.dim(S) ≤ r, and
suppose by way of contradiction that X ̸= Y . Accordingly, there is a smallest index v ∈
J1, 2t + 1K such that xv ̸= yv ; otherwise, since x0 ≤ x1 ≤ · · · ≤ x2r+1 and
y0 ≤ y1 ≤ · · · ≤ y2s+1, we would get that X = Y , which is absurd. We distinguish
two cases, depending on whether v is even or odd.

• To start with, there is no loss of generality in assuming xv < yv ; otherwise, we could
replace f with its functional inverse f−1. And it is clear that r ≤ s, or else Y is fixed by
f .

• Case 1: v = 2u for some u ∈ J1, rK. Put d := x2u − x2u−1 − 1 and
I := J0, rK ∖ {u − 1, u}, and set
X1 := Jx2(u−1), x2u+1 + dK and X2 :=

⋃
i∈IJx2i, x2i+1 + dK.

• X + J0, dK =
⋃r

i=0(Jx2i, x2i+1K + J0, dK) =
⋃r

i=0Jx2i, x2i+1 + dK = X1 ∪ X2.
• In a similar way, Y + J0, dK =

⋃s
j=0Jy2j , y2j+1 + dK.

• It is obvious that b.dim(X ∪ Y ) ≤ b.dim(X) + b.dim(Y ) for all X,Y ⊆ Z. Then
b.dim(X + J0, dK) ≤ b.dim(X1) + b.dim(X2) ≤ 1 + |I| = r < b.dim(X).

• X + J0, dK = f(X + J0, dK) = f(X) + f(J0, dK) = Y + J0, dK. This is however
impossible, because x2u is an element of X + J0, dK but not of Y + J0, dK. ■
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Ongoing research

Kerou Wen and Salvatore Tringali have recently announced a closely related
result: that the automorphism group of Pfin(Z) is isomorphic to Z2 ×Dih∞
(the direct product of the cyclic group of order 2 by the infinite dihedral group).

Conjecture 15.

The automorphism group of the reduced power monoid of a numerical monoid
properly contained in N is trivial (that is, the only automorphism is the
identity).

Question.

For which groups G does there exist a monoid H such that the automorphism
group of the reduced power monoid Pfin,1(H) of H is isomorphic to G?
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