On transfer Krull orders in global fields

Balint Rago

University of Graz

Ring Theory Seminar

November 30, 2023

- Global fields and orders
- **2** Krull monoids and the arithmetic of ${\mathcal O}$
- Previous results
- Transfer Krull orders

An algebraic number field K is a finite extension field Q ⊆ K,
 i.e. [K : Q] < ∞.

∃ ► < ∃ ►</p>

- An algebraic number field K is a finite extension field Q ⊆ K,
 i.e. [K : Q] < ∞.
- The ring of integers of K,

 $\mathcal{O}_{K} = \{ \alpha \in K : f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[X] \}$

- An algebraic number field K is a finite extension field Q ⊆ K,
 i.e. [K : Q] < ∞.
- The ring of integers of K,

 $\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[X] \}$

is the ring of all algebraic integers in K.

• $\mathcal{O}_{\mathcal{K}}$ is a Dedekind domain.

- An algebraic number field K is a finite extension field Q ⊆ K,
 i.e. [K : Q] < ∞.
- The ring of integers of K,

 $\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[X] \}$

- \mathcal{O}_K is a Dedekind domain.
- An order in K is a subring $\mathcal{O} \subseteq \mathcal{O}_K$, such that $q(\mathcal{O}) = q(\mathcal{O}_K) = K$.

- An algebraic number field K is a finite extension field Q ⊆ K,
 i.e. [K : Q] < ∞.
- The ring of integers of K,

 $\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[X] \}$

- \mathcal{O}_K is a Dedekind domain.
- An order in K is a subring $\mathcal{O} \subseteq \mathcal{O}_K$, such that $q(\mathcal{O}) = q(\mathcal{O}_K) = K$.
- $\mathcal{O}_{\mathcal{K}}$ is called the principal (or maximal) order.

- An algebraic number field K is a finite extension field Q ⊆ K,
 i.e. [K : Q] < ∞.
- The ring of integers of K,

 $\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[X] \}$

- \mathcal{O}_K is a Dedekind domain.
- An order in K is a subring $\mathcal{O} \subseteq \mathcal{O}_K$, such that $q(\mathcal{O}) = q(\mathcal{O}_K) = K$.
- $\mathcal{O}_{\mathcal{K}}$ is called the principal (or maximal) order.
- We will always assume that $\mathcal{O} \subsetneq \mathcal{O}_{\mathcal{K}}$.

Let *F* be a field. An *algebraic function field* K/F of one variable over *F* is an extension field $F \subseteq K$, such that *K* is a finite extension of F(x), where $x \in K$ is transcendental over *F*.

Let *F* be a field. An *algebraic function field* K/F of one variable over *F* is an extension field $F \subseteq K$, such that *K* is a finite extension of F(x), where $x \in K$ is transcendental over *F*.

Example

Consider the curve $y^2 = x^3$, defined in *F*. Its function field is $F(x)(\sqrt{x^3}) \cong q(F[x, y]/(x^3 - y^2))$.

Let *F* be a field. An *algebraic function field* K/F of one variable over *F* is an extension field $F \subseteq K$, such that *K* is a finite extension of F(x), where $x \in K$ is transcendental over *F*.

Example

Consider the curve $y^2 = x^3$, defined in *F*. Its function field is $F(x)(\sqrt{x^3}) \cong q(F[x, y]/(x^3 - y^2))$.

• The *field of constants* \tilde{F} of a function field K/F, is the algebraic closure of F in K.

Let *F* be a field. An *algebraic function field* K/F of one variable over *F* is an extension field $F \subseteq K$, such that *K* is a finite extension of F(x), where $x \in K$ is transcendental over *F*.

Example

Consider the curve $y^2 = x^3$, defined in *F*. Its function field is $F(x)(\sqrt{x^3}) \cong q(F[x, y]/(x^3 - y^2))$.

- The *field of constants* \tilde{F} of a function field K/F, is the algebraic closure of F in K.
- \tilde{F}/F is a finite field extension and K/\tilde{F} is an algebraic function field over \tilde{F} .

伺 ト イヨ ト イヨト

Let *F* be a field. An *algebraic function field* K/F of one variable over *F* is an extension field $F \subseteq K$, such that *K* is a finite extension of F(x), where $x \in K$ is transcendental over *F*.

Example

Consider the curve $y^2 = x^3$, defined in *F*. Its function field is $F(x)(\sqrt{x^3}) \cong q(F[x, y]/(x^3 - y^2))$.

- The *field of constants* \tilde{F} of a function field K/F, is the algebraic closure of F in K.
- \tilde{F}/F is a finite field extension and K/\tilde{F} is an algebraic function field over \tilde{F} .
- We will always assume that F is algebraically closed in K.

Let K/𝔽_q be an algebraic function field over the finite field with q = pⁿ elements, p a prime. A prime divisor or a place p of K is a maximal ideal of a discrete valuation domain 𝕗_p, such that q(𝕗_p) = K.

- Let K/\mathbb{F}_q be an algebraic function field over the finite field with $q = p^n$ elements, p a prime. A prime divisor or a place \mathbf{p} of K is a maximal ideal of a discrete valuation domain $\mathcal{O}_{\mathbf{p}}$, such that $q(\mathcal{O}_{\mathbf{p}}) = K$.
- The set of prime divisors of K is denoted by $\mathcal{P}(K)$.

- Let K/𝔽_q be an algebraic function field over the finite field with q = pⁿ elements, p a prime. A prime divisor or a place p of K is a maximal ideal of a discrete valuation domain 𝓿_p, such that q(𝓿_p) = K.
- The set of prime divisors of K is denoted by $\mathcal{P}(K)$.
- There are infinitely many prime divisors of K and we have

$$\bigcap_{\mathbf{p}\in\mathcal{P}(K)}\mathcal{O}_{\mathbf{p}}=\mathbb{F}_{q}.$$

- Let K/𝔽_q be an algebraic function field over the finite field with q = pⁿ elements, p a prime. A prime divisor or a place p of K is a maximal ideal of a discrete valuation domain 𝓿_p, such that q(𝓿_p) = K.
- The set of prime divisors of K is denoted by $\mathcal{P}(K)$.
- There are infinitely many prime divisors of K and we have

$$\bigcap_{\mathbf{p}\in\mathcal{P}(K)}\mathcal{O}_{\mathbf{p}}=\mathbb{F}_{q}.$$

Definition

Let $\emptyset \neq S \subsetneq \mathcal{P}(K)$ be a finite set of prime divisors. The *holomorphy domain* of S is the ring

$$\mathcal{O}_{\mathcal{K},S} = \bigcap_{\mathbf{p}\in\mathcal{P}(\mathcal{K})\setminus S} \mathcal{O}_{\mathbf{p}}.$$

• $\mathcal{O}_{K,S}$ is a Dedekind domain with $q(\mathcal{O}_{K,S}) = K$.

э

- $\mathcal{O}_{K,S}$ is a Dedekind domain with $q(\mathcal{O}_{K,S}) = K$.
- There is a bijection $\mathcal{P}(K) \setminus S \to \text{Spec}(\mathcal{O}_{K,S})$, given by $\mathbf{p} \mapsto \mathbf{p} \cap \mathcal{O}_{K,S}$.

• • • • • • • •

э

- $\mathcal{O}_{K,S}$ is a Dedekind domain with $q(\mathcal{O}_{K,S}) = K$.
- There is a bijection $\mathcal{P}(K) \setminus S \to \text{Spec}(\mathcal{O}_{K,S})$, given by $\mathbf{p} \mapsto \mathbf{p} \cap \mathcal{O}_{K,S}$.
- If $S, T \subsetneq \mathcal{P}(K)$, then $\mathcal{O}_{K,S} = \mathcal{O}_{K,T}$ if and only if S = T.

A B M A B M

э

- $\mathcal{O}_{K,S}$ is a Dedekind domain with $q(\mathcal{O}_{K,S}) = K$.
- There is a bijection $\mathcal{P}(K) \setminus S \to \text{Spec}(\mathcal{O}_{K,S})$, given by $\mathbf{p} \mapsto \mathbf{p} \cap \mathcal{O}_{K,S}$.
- If $S, T \subsetneq \mathcal{P}(K)$, then $\mathcal{O}_{K,S} = \mathcal{O}_{K,T}$ if and only if S = T.
- If $\emptyset \neq S_1 \subseteq S_2 \subsetneq \mathcal{P}(K)$, then $\mathcal{O}_{K,S_2} = T^{-1}\mathcal{O}_{K,S_1}$, where $T = \mathcal{O}_{K,S_2}^{\times} \cap \mathcal{O}_{K,S_1}$.

- $\mathcal{O}_{K,S}$ is a Dedekind domain with $q(\mathcal{O}_{K,S}) = K$.
- There is a bijection $\mathcal{P}(K) \setminus S \to \text{Spec}(\mathcal{O}_{K,S})$, given by $\mathbf{p} \mapsto \mathbf{p} \cap \mathcal{O}_{K,S}$.
- If $S, T \subsetneq \mathcal{P}(K)$, then $\mathcal{O}_{K,S} = \mathcal{O}_{K,T}$ if and only if S = T.
- If $\emptyset \neq S_1 \subseteq S_2 \subsetneq \mathcal{P}(K)$, then $\mathcal{O}_{K,S_2} = T^{-1}\mathcal{O}_{K,S_1}$, where $T = \mathcal{O}_{K,S_2}^{\times} \cap \mathcal{O}_{K,S_1}$.
- An order in the holomorphy domain $\mathcal{O}_{K,S}$ is a subring $\mathcal{O} \subsetneq \mathcal{O}_{K,S}$ such that $q(\mathcal{O}) = q(\mathcal{O}_{K,S}) = K$ and $\overline{\mathcal{O}} = \mathcal{O}_{K,S}$.

(b) a (B) b (a) (B) b

Global fields

Definition

- A global field K is either
 - an algebraic number field or
 - 2 an algebraic function field over a finite field \mathbb{F}_q .

▲ 伊 ▶ ▲ 王 ▶

Global fields

Definition

- A global field K is either
 - an algebraic number field or
 - 2 an algebraic function field over a finite field \mathbb{F}_q .
 - Number fields and function fields share a common characterization via valuation theory.

Global fields

Definition

A global field K is either

- an algebraic number field or
- 2) an algebraic function field over a finite field \mathbb{F}_q .
 - Number fields and function fields share a common characterization via valuation theory.

Theorem (Artin-Whaples, 1945)

Let K be a field. Then K is a global field if and only if the *product* formula

$$\prod_{\mathsf{v}} |x|_{\mathsf{v}} = 1$$

is satisfied for every $x \in K^{\times}$, where v ranges over all equivalence classes of multiplicative valuations on K.

ロトスポトメラトメラト

• Many concepts in algebraic number theory have analogues in function fields.

- Many concepts in algebraic number theory have analogues in function fields.
- Both Z and F_q[x] are PIDs with infinitely many prime ideals, finite residue class fields and finite group of units.

- Many concepts in algebraic number theory have analogues in function fields.
- Both Z and F_q[x] are PIDs with infinitely many prime ideals, finite residue class fields and finite group of units.
- Dirichlet unit theorem: Both $\mathcal{O}_{\mathcal{K}}^{\times}$ and $\mathcal{O}_{\mathcal{K},S}^{\times}$ have finite rank.

- Many concepts in algebraic number theory have analogues in function fields.
- Both Z and F_q[x] are PIDs with infinitely many prime ideals, finite residue class fields and finite group of units.
- Dirichlet unit theorem: Both \mathcal{O}_{K}^{\times} and $\mathcal{O}_{K,S}^{\times}$ have finite rank.
- Extensions of number fields and ramification of prime ideals are analogous to dominant morphisms between curves and ramification of closed points.

- Many concepts in algebraic number theory have analogues in function fields.
- Both Z and F_q[x] are PIDs with infinitely many prime ideals, finite residue class fields and finite group of units.
- Dirichlet unit theorem: Both \mathcal{O}_{K}^{\times} and $\mathcal{O}_{K,S}^{\times}$ have finite rank.
- Extensions of number fields and ramification of prime ideals are analogous to dominant morphisms between curves and ramification of closed points.
- Generalized Riemann Hypothesis for number fields and Weil conjectures for function fields (all proven).

- Many concepts in algebraic number theory have analogues in function fields.
- Both Z and F_q[x] are PIDs with infinitely many prime ideals, finite residue class fields and finite group of units.
- Dirichlet unit theorem: Both \mathcal{O}_{K}^{\times} and $\mathcal{O}_{K,S}^{\times}$ have finite rank.
- Extensions of number fields and ramification of prime ideals are analogous to dominant morphisms between curves and ramification of closed points.
- Generalized Riemann Hypothesis for number fields and Weil conjectures for function fields (all proven).
- Global class field theory and Chebotarevs density theorem.

• $\mathcal{O}_{\mathcal{K}}$ and $\mathcal{O}_{\mathcal{K},S}$ share some special properties.

A B M A B M

æ

- $\mathcal{O}_{\mathcal{K}}$ and $\mathcal{O}_{\mathcal{K},S}$ share some special properties.
- Both are Dedekind domains with finite residue class fields, finite ideal class groups and infinitely many prime ideals in every class.

- $\mathcal{O}_{\mathcal{K}}$ and $\mathcal{O}_{\mathcal{K},S}$ share some special properties.
- Both are Dedekind domains with finite residue class fields, finite ideal class groups and infinitely many prime ideals in every class.

Theorem (Perret, 1998)

Let \mathbb{F}_q be a finite field. For every finite abelian group G, there exists some function field K/\mathbb{F}_q and some finite set $\emptyset \neq S \subsetneq \mathcal{P}(K)$ such that $G \cong Cl(\mathcal{O}_{K,S})$.

- $\mathcal{O}_{\mathcal{K}}$ and $\mathcal{O}_{\mathcal{K},S}$ share some special properties.
- Both are Dedekind domains with finite residue class fields, finite ideal class groups and infinitely many prime ideals in every class.

Theorem (Perret, 1998)

Let \mathbb{F}_q be a finite field. For every finite abelian group G, there exists some function field K/\mathbb{F}_q and some finite set $\emptyset \neq S \subsetneq \mathcal{P}(K)$ such that $G \cong Cl(\mathcal{O}_{K,S})$.

• The analogous statement for number fields is still an open problem.

Basic facts about orders

• An order \mathcal{O} in a global field K is either an order in a number field or an order in a holomorphy domain. We will write $\overline{\mathcal{O}} = \mathcal{O}_{K,S}$, where S is redundant in the number field case.
- An order \mathcal{O} in a global field K is either an order in a number field or an order in a holomorphy domain. We will write $\overline{\mathcal{O}} = \mathcal{O}_{K,S}$, where S is redundant in the number field case.
- Orders are 1-dimensional and noetherian but not integrally closed.

- Orders are 1-dimensional and noetherian but not integrally closed.
- The conductor of ${\mathcal O}$

$$\mathfrak{f} = \{ x \in \mathcal{O}_{\mathcal{K}} \mid x\mathcal{O}_{\mathcal{K}} \subseteq \mathcal{O} \}$$

is the largest ideal of $\mathcal{O}_{K,S}$, contained in \mathcal{O} .

- Orders are 1-dimensional and noetherian but not integrally closed.
- The conductor of ${\mathcal O}$

$$\mathfrak{f} = \{ x \in \mathcal{O}_{\mathcal{K}} \mid x\mathcal{O}_{\mathcal{K}} \subseteq \mathcal{O} \}$$

is the largest ideal of $\mathcal{O}_{\mathcal{K},\mathcal{S}}$, contained in \mathcal{O} .

 Since O/f is a subring of O_{K,S}/f, there are only finitely many orders with conductor f.

- An order \mathcal{O} in a global field K is either an order in a number field or an order in a holomorphy domain. We will write $\overline{\mathcal{O}} = \mathcal{O}_{K,S}$, where S is redundant in the number field case.
- Orders are 1-dimensional and noetherian but not integrally closed.
- The conductor of ${\mathcal O}$

$$\mathfrak{f} = \{ x \in \mathcal{O}_{\mathcal{K}} \mid x\mathcal{O}_{\mathcal{K}} \subseteq \mathcal{O} \}$$

is the largest ideal of $\mathcal{O}_{K,S}$, contained in \mathcal{O} .

- Since O/f is a subring of O_{K,S}/f, there are only finitely many orders with conductor f.
- Let p ∈ Spec(O). Then O_p is integrally closed (a DVR) if and only if p ⊉ f.

- Orders are 1-dimensional and noetherian but not integrally closed.
- The conductor of ${\mathcal O}$

$$\mathfrak{f} = \{ x \in \mathcal{O}_{\mathcal{K}} \mid x\mathcal{O}_{\mathcal{K}} \subseteq \mathcal{O} \}$$

is the largest ideal of $\mathcal{O}_{K,S}$, contained in \mathcal{O} .

- Since O/f is a subring of O_{K,S}/f, there are only finitely many orders with conductor f.
- Let p ∈ Spec(O). Then O_p is integrally closed (a DVR) if and only if p ⊉ f.
- The finitely many p ∈ Spec(O) with p ⊇ f are called *irregular* prime ideals.

• Let $\mathcal{F}^{\times}(\mathcal{O})$ be the group of invertible fractional ideals and let $\mathcal{P}(\mathcal{O})$ be the subgroup of fractional principal ideals. The quotient

$$\mathsf{Pic}(\mathcal{O}) = \mathcal{F}^{ imes}(\mathcal{O})/\mathcal{P}(\mathcal{O})$$

is called the *Picard group* of \mathcal{O} .

• Let $\mathcal{F}^{\times}(\mathcal{O})$ be the group of invertible fractional ideals and let $\mathcal{P}(\mathcal{O})$ be the subgroup of fractional principal ideals. The quotient

$$\mathsf{Pic}(\mathcal{O}) = \mathcal{F}^{ imes}(\mathcal{O})/\mathcal{P}(\mathcal{O})$$

is called the *Picard group* of \mathcal{O} .

• We have $Pic(\mathcal{O}_{K,S}) = Cl(\mathcal{O}_{K,S})$.

• Let $\mathcal{F}^{\times}(\mathcal{O})$ be the group of invertible fractional ideals and let $\mathcal{P}(\mathcal{O})$ be the subgroup of fractional principal ideals. The quotient

$$\mathsf{Pic}(\mathcal{O}) = \mathcal{F}^{ imes}(\mathcal{O})/\mathcal{P}(\mathcal{O})$$

is called the *Picard group* of \mathcal{O} .

- We have $Pic(\mathcal{O}_{K,S}) = Cl(\mathcal{O}_{K,S})$.
- Pic(O) is finite and every class contains infinitely many prime ideals.

• We have $\mathcal{F}^{\times}(\mathcal{O}) \cong \prod_{\mathfrak{p}} \mathcal{P}(\mathcal{O}_{\mathfrak{p}})$ via $\mathfrak{a} \mapsto (\mathfrak{a}\mathcal{O}_{\mathfrak{p}})$.

글 🖌 🔺 글 🛌

э

- We have $\mathcal{F}^{\times}(\mathcal{O}) \cong \prod_{\mathfrak{p}} \mathcal{P}(\mathcal{O}_{\mathfrak{p}})$ via $\mathfrak{a} \mapsto (\mathfrak{a}\mathcal{O}_{\mathfrak{p}})$.
- This yields an exact sequence

$$1 \to \mathcal{O}_{\mathcal{K},\mathcal{S}}^{\times}/\mathcal{O}^{\times} \to (\mathcal{O}_{\mathcal{K},\mathcal{S}}/\mathfrak{f})^{\times}/(\mathcal{O}/\mathfrak{f})^{\times} \to \mathsf{Pic}(\mathcal{O}) \to \mathsf{Cl}(\mathcal{O}_{\mathcal{K},\mathcal{S}}) \to 1.$$

- We have $\mathcal{F}^{\times}(\mathcal{O}) \cong \prod_{\mathfrak{p}} \mathcal{P}(\mathcal{O}_{\mathfrak{p}})$ via $\mathfrak{a} \mapsto (\mathfrak{a}\mathcal{O}_{\mathfrak{p}})$.
- This yields an exact sequence

$$1 \to \mathcal{O}_{\mathcal{K},\mathcal{S}}^{\times}/\mathcal{O}^{\times} \to (\mathcal{O}_{\mathcal{K},\mathcal{S}}/\mathfrak{f})^{\times}/(\mathcal{O}/\mathfrak{f})^{\times} \to \mathsf{Pic}(\mathcal{O}) \to \mathsf{Cl}(\mathcal{O}_{\mathcal{K},\mathcal{S}}) \to 1.$$

• Hence $|\operatorname{Pic}(\mathcal{O})| = |\operatorname{Cl}(\mathcal{O}_{\mathcal{K},\mathcal{S}})|$ if and only if

$$(\mathcal{O}_{K,S}^{\times}:\mathcal{O}^{\times})=rac{|(\mathcal{O}_{K,S}/\mathfrak{f})^{\times}|}{|(\mathcal{O}/\mathfrak{f})^{\times}|}.$$

- We have $\mathcal{F}^{\times}(\mathcal{O}) \cong \prod_{\mathfrak{p}} \mathcal{P}(\mathcal{O}_{\mathfrak{p}})$ via $\mathfrak{a} \mapsto (\mathfrak{a}\mathcal{O}_{\mathfrak{p}})$.
- This yields an exact sequence

$$1 \to \mathcal{O}_{\mathcal{K},\mathcal{S}}^{\times}/\mathcal{O}^{\times} \to (\mathcal{O}_{\mathcal{K},\mathcal{S}}/\mathfrak{f})^{\times}/(\mathcal{O}/\mathfrak{f})^{\times} \to \mathsf{Pic}(\mathcal{O}) \to \mathsf{Cl}(\mathcal{O}_{\mathcal{K},\mathcal{S}}) \to 1.$$

• Hence $|\operatorname{Pic}(\mathcal{O})| = |\operatorname{Cl}(\mathcal{O}_{\mathcal{K},\mathcal{S}})|$ if and only if

$$(\mathcal{O}_{\mathcal{K},\mathcal{S}}^{\times}:\mathcal{O}^{\times})=\frac{|(\mathcal{O}_{\mathcal{K},\mathcal{S}}/\mathfrak{f})^{\times}|}{|(\mathcal{O}/\mathfrak{f})^{\times}|}.$$

• We have $\mathcal{O} \cdot \mathcal{O}_{K,S}^{\times} = \mathcal{O}_{K,S}$ if and only if $|\operatorname{Pic}(\mathcal{O})| = |\operatorname{Cl}(\mathcal{O}_{K,S})|$ and $\mathfrak{p}\mathcal{O}_{K,S}$ is a prime ideal for every $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O})$.

 Let (H, ·) be a monoid, i.e. a commutative, cancellative semigroup with unit element.

- Let (H, ·) be a monoid, i.e. a commutative, cancellative semigroup with unit element.
- For an integral domain R, let $R^{\bullet} = (R \setminus \{0\}, \cdot)$.

- Let (H, \cdot) be a monoid, i.e. a commutative, cancellative semigroup with unit element.
- For an integral domain R, let $R^{\bullet} = (R \setminus \{0\}, \cdot)$.
- Let $H_{\rm red} = H/H^{\times}$.

- Let (H, \cdot) be a monoid, i.e. a commutative, cancellative semigroup with unit element.
- For an integral domain R, let $R^{\bullet} = (R \setminus \{0\}, \cdot)$.
- Let $H_{\rm red} = H/H^{\times}$.
- An element x ∈ H is irreducible (an atom) if x = ab implies that a ∈ H[×] or b ∈ H[×].

- Let (H, \cdot) be a monoid, i.e. a commutative, cancellative semigroup with unit element.
- For an integral domain R, let $R^{\bullet} = (R \setminus \{0\}, \cdot)$.
- Let $H_{\rm red} = H/H^{\times}$.
- An element x ∈ H is irreducible (an atom) if x = ab implies that a ∈ H[×] or b ∈ H[×].
- If $x = a_1 \dots a_k$ is a factorization into atoms, then k is called the length of the factorization.

- Let (H, \cdot) be a monoid, i.e. a commutative, cancellative semigroup with unit element.
- For an integral domain R, let $R^{\bullet} = (R \setminus \{0\}, \cdot)$.
- Let $H_{\rm red} = H/H^{\times}$.
- An element x ∈ H is irreducible (an atom) if x = ab implies that a ∈ H[×] or b ∈ H[×].
- If $x = a_1 \dots a_k$ is a factorization into atoms, then k is called the length of the factorization.
- The set of lengths of x:

$$L(x) = \{k \in \mathbb{N} \mid k \text{ is a factorization length of } x\}.$$

- Let (H, \cdot) be a monoid, i.e. a commutative, cancellative semigroup with unit element.
- For an integral domain R, let $R^{\bullet} = (R \setminus \{0\}, \cdot)$.
- Let $H_{\rm red} = H/H^{\times}$.
- An element x ∈ H is irreducible (an atom) if x = ab implies that a ∈ H[×] or b ∈ H[×].
- If $x = a_1 \dots a_k$ is a factorization into atoms, then k is called the length of the factorization.
- The set of lengths of x:

 $L(x) = \{k \in \mathbb{N} \mid k \text{ is a factorization length of } x\}.$

• *H* is *half-factorial* if for every nonunit $x \in H$, we have |L(x)| = 1.

• Let $x \in H$. The *elasticity* of x is defined as

$$\rho(x) = \frac{\sup \mathsf{L}(x)}{\min \mathsf{L}(x)}$$

and the elasticity of H as

$$\rho(H) = \sup_{x \in H} \rho(x).$$

• Let $x \in H$. The *elasticity* of x is defined as

$$\rho(x) = \frac{\sup \mathsf{L}(x)}{\min \mathsf{L}(x)}$$

and the elasticity of H as

$$\rho(H) = \sup_{x \in H} \rho(x).$$

• *H* is half-factorial if and only if $\rho(H) = 1$.

Let φ : H → D be a monoid homomorphism. φ is called a divisor homomorphism if φ(a)|φ(b) implies that a|b for all a, b ∈ H.

-∢ ≣ ▶

Let φ : H → D be a monoid homomorphism. φ is called a divisor homomorphism if φ(a)|φ(b) implies that a|b for all a, b ∈ H.

Definition

H is called a *Krull monoid* if there is a divisor homomorphism $\varphi : H \to D$, where *D* is factorial, such that for every $a \in D$, there is a finite subset $\emptyset \neq X \subset H$ with $a = \gcd(\varphi(X))$. The *class group* of *H* is $\mathcal{C}(H) = q(D)/q(\varphi(H))$.

Definition

Let *H* and *B* be monoids. A homomorphism $\phi : H \to B$ is called a *transfer homomorphism* if it has the following two properties:

(1)
$$B = \phi(H) \cdot B^{\times}$$
 and $\phi^{-1}(B^{\times}) = H^{\times}$

(2) If $u \in H$, $b, c \in B$ and $\phi(u) = bc$, then there exist $v, w \in H$ such that u = vw, $\phi(v) \simeq b$ and $\phi(w) \simeq c$.

Definition

Let *H* and *B* be monoids. A homomorphism $\phi : H \to B$ is called a *transfer homomorphism* if it has the following two properties:

(1)
$$B = \phi(H) \cdot B^{\times}$$
 and $\phi^{-1}(B^{\times}) = H^{\times}$

(2) If $u \in H$, $b, c \in B$ and $\phi(u) = bc$, then there exist $v, w \in H$ such that u = vw, $\phi(v) \simeq b$ and $\phi(w) \simeq c$.

• Transfer homomorphisms preserve the arithmetic, in particular they preserve sets of lengths.

• Let (G, +) be an abelian group and let $\mathcal{F}(G)$ be the free monoid with basis G.

< ∃ >

- Let (G, +) be an abelian group and let $\mathcal{F}(G)$ be the free monoid with basis G.
- We call $\sigma(g_1 \cdot \ldots \cdot g_l) = g_1 + \ldots + g_l \in G$ the sum of the sequence $S = g_1 \cdot \ldots \cdot g_l$.

- Let (G, +) be an abelian group and let $\mathcal{F}(G)$ be the free monoid with basis G.
- We call $\sigma(g_1 \cdot \ldots \cdot g_l) = g_1 + \ldots + g_l \in G$ the sum of the sequence $S = g_1 \cdot \ldots \cdot g_l$.
- B(G) = {S ∈ F(G) : σ(S) = 0} is called the *block monoid* over G.

- Let (G, +) be an abelian group and let $\mathcal{F}(G)$ be the free monoid with basis G.
- We call $\sigma(g_1 \cdot \ldots \cdot g_l) = g_1 + \ldots + g_l \in G$ the sum of the sequence $S = g_1 \cdot \ldots \cdot g_l$.
- B(G) = {S ∈ F(G) : σ(S) = 0} is called the *block monoid* over G.

Theorem

Let H be a Krull monoid with class group $\mathcal{C}(H)$ such that every class contains a prime divisor. Then there is a transfer homomorphism $H \to \mathcal{B}(\mathcal{C}(H))$.

伺 ト イヨ ト イヨ ト

Theorem

Let G be an abelian group. Then $\mathcal{B}(G)$ is half-factorial if and only if $|G| \leq 2$.

-

B> B

Theorem

Let G be an abelian group. Then $\mathcal{B}(G)$ is half-factorial if and only if $|G| \leq 2$.

Theorem (Carlitz, 1960)

 $\mathcal{O}_{\mathcal{K}}$ is half-factorial if and only if $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| \leq 2$.

→ < ∃ →</p>

Definition

A monoid *H* is called *transfer Krull* if there exists a Krull monoid *B* and a transfer homomorphism $\phi : H \to B$.

• • = • • = •

э

Definition

A monoid *H* is called *transfer Krull* if there exists a Krull monoid *B* and a transfer homomorphism $\phi : H \to B$.

• The arithmetic of (non-Krull) transfer Krull monoids can be described with the well-understood machinery for Krull monoids.

Definition

A monoid *H* is called *transfer Krull* if there exists a Krull monoid *B* and a transfer homomorphism $\phi : H \to B$.

• The arithmetic of (non-Krull) transfer Krull monoids can be described with the well-understood machinery for Krull monoids.

Example

Every half-factorial monoid is transfer Krull. Indeed, let H be half-factorial. Then $\ell : H \to (\mathbb{N}_0, +)$, where $\ell(x) \in L(x)$ is the unique factorization length of x, is a transfer homomorphism.

Definition

A monoid *H* is called *transfer Krull* if there exists a Krull monoid *B* and a transfer homomorphism $\phi : H \to B$.

• The arithmetic of (non-Krull) transfer Krull monoids can be described with the well-understood machinery for Krull monoids.

Example

Every half-factorial monoid is transfer Krull. Indeed, let H be half-factorial. Then $\ell : H \to (\mathbb{N}_0, +)$, where $\ell(x) \in L(x)$ is the unique factorization length of x, is a transfer homomorphism.

• Which orders are transfer Krull?

Definition

A monoid *H* is called *transfer Krull* if there exists a Krull monoid *B* and a transfer homomorphism $\phi : H \to B$.

• The arithmetic of (non-Krull) transfer Krull monoids can be described with the well-understood machinery for Krull monoids.

Example

Every half-factorial monoid is transfer Krull. Indeed, let H be half-factorial. Then $\ell : H \to (\mathbb{N}_0, +)$, where $\ell(x) \in L(x)$ is the unique factorization length of x, is a transfer homomorphism.

- Which orders are transfer Krull?
- $\bullet\,$ For which orders ${\cal O}$ is there a transfer homomorphism

$$\mathcal{O}^{\bullet} \to \mathcal{O}_{K,S}^{\bullet}$$
?
Transfer Krull monoids

Definition

A monoid *H* is called *transfer Krull* if there exists a Krull monoid *B* and a transfer homomorphism $\phi : H \to B$.

• The arithmetic of (non-Krull) transfer Krull monoids can be described with the well-understood machinery for Krull monoids.

Example

Every half-factorial monoid is transfer Krull. Indeed, let H be half-factorial. Then $\ell : H \to (\mathbb{N}_0, +)$, where $\ell(x) \in L(x)$ is the unique factorization length of x, is a transfer homomorphism.

- Which orders are transfer Krull?
- For which orders \mathcal{O} is there a transfer homomorphism $\mathcal{O}^{\bullet} \to \mathcal{O}^{\bullet}_{\mathcal{K},S}$?
- For which orders \mathcal{O} is $\mathcal{O}^{\bullet} \hookrightarrow \mathcal{O}_{K,S}^{\bullet}$ a transfer homomorphism?

• Let G be an abelian group, T a monoid and $\iota: T \to G$ a homomorphism. Then

$$\mathcal{B}(G, T, \iota) = \{St \in \mathcal{F}(G) imes T : \sigma(S) + \iota(t) = 0\}$$

is called the T-block monoid over G defined by ι .

• Let G be an abelian group, T a monoid and $\iota: T \to G$ a homomorphism. Then

$$\mathcal{B}(G, T, \iota) = \{St \in \mathcal{F}(G) imes T : \sigma(S) + \iota(t) = 0\}$$

is called the T-block monoid over G defined by ι .

Theorem

Let \mathcal{O} be an order in a global field K. There is a transfer homomorphism $\mathcal{O}^{\bullet} \to \mathcal{B}(G, T, \iota)$, where $G = \text{Pic}(\mathcal{O})$,

$$\mathcal{T} = \prod_{\mathfrak{p} \supseteq \mathfrak{f}} \mathcal{O}^{ullet}_{\mathfrak{p} \, \mathsf{red}}$$

and $\iota: T \to G$ is the canonical homomorphism.

• $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ is a divisor closed submonoid of $\mathcal{B}(G, T, \iota)$.

• E • • E • ...

э

- $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ is a divisor closed submonoid of $\mathcal{B}(G, T, \iota)$.
- \mathcal{O} half-factorial $\implies |Cl(\mathcal{O}_{K,S})| \le |Pic(\mathcal{O})| \le 2 \implies \mathcal{O}_{K,S}$ is half-factorial.

- $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ is a divisor closed submonoid of $\mathcal{B}(G, T, \iota)$.
- \mathcal{O} half-factorial $\implies |Cl(\mathcal{O}_{K,S})| \le |Pic(\mathcal{O})| \le 2 \implies \mathcal{O}_{K,S}$ is half-factorial.
- The arithmetic of an order with given Picard group depends on the arithmetic of O_p for all irregular p.

- $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ is a divisor closed submonoid of $\mathcal{B}(G, T, \iota)$.
- \mathcal{O} half-factorial $\implies |Cl(\mathcal{O}_{K,S})| \le |Pic(\mathcal{O})| \le 2 \implies \mathcal{O}_{K,S}$ is half-factorial.
- The arithmetic of an order with given Picard group depends on the arithmetic of O_p for all irregular p.
- Let p ∈ Spec(O) and let n be the number of prime ideals lying above p. Then O_p is a semilocal PID with n maximal ideals.

- $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ is a divisor closed submonoid of $\mathcal{B}(G, T, \iota)$.
- \mathcal{O} half-factorial $\implies |Cl(\mathcal{O}_{K,S})| \le |Pic(\mathcal{O})| \le 2 \implies \mathcal{O}_{K,S}$ is half-factorial.
- The arithmetic of an order with given Picard group depends on the arithmetic of O_p for all irregular p.
- Let p ∈ Spec(O) and let n be the number of prime ideals lying above p. Then Op is a semilocal PID with n maximal ideals.
- $\mathcal{O}_{\mathfrak{p}}$ is half-factorial if and only if $\overline{\mathcal{O}_{\mathfrak{p}}}$ is a DVR and $v_p(\mathcal{A}(\mathcal{O}_{\mathfrak{p}})) = \{1\}$, where p is a prime element of $\overline{\mathcal{O}_{\mathfrak{p}}}$.

- $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ is a divisor closed submonoid of $\mathcal{B}(G, T, \iota)$.
- \mathcal{O} half-factorial $\implies |Cl(\mathcal{O}_{K,S})| \le |Pic(\mathcal{O})| \le 2 \implies \mathcal{O}_{K,S}$ is half-factorial.
- The arithmetic of an order with given Picard group depends on the arithmetic of O_p for all irregular p.
- Let p ∈ Spec(O) and let n be the number of prime ideals lying above p. Then Op is a semilocal PID with n maximal ideals.
- $\mathcal{O}_{\mathfrak{p}}$ is half-factorial if and only if $\overline{\mathcal{O}_{\mathfrak{p}}}$ is a DVR and $v_p(\mathcal{A}(\mathcal{O}_{\mathfrak{p}})) = \{1\}$, where p is a prime element of $\overline{\mathcal{O}_{\mathfrak{p}}}$.
- We call an order *O* locally half-factorial if *O*_p is half-factorial for all p ∈ Spec(*O*).
- Is every half-factorial order locally half-factorial?

- 3 b - 4 3 b

Theorem (Halter-Koch, 1995)

Let $\mathcal O$ be an order in a global field K. Then $\rho(\mathcal O)<\infty$ if and only if the map

$${
m Spec}({\mathcal O}_{{\mathcal K},{\mathcal S}}) o {
m Spec}({\mathcal O}) \ {\mathfrak P} \mapsto {\mathfrak P} \cap {\mathcal O}$$

is bijective.

▲ 同 ▶ → 三 ▶

< ∃ →

Theorem (Halter-Koch, 1995)

Let $\mathcal O$ be an order in a global field K. Then $\rho(\mathcal O) < \infty$ if and only if the map

$${
m Spec}({\mathcal O}_{{\mathcal K},{\mathcal S}}) o {
m Spec}({\mathcal O}) \ {\mathfrak P} \mapsto {\mathfrak P} \cap {\mathcal O}$$

is bijective.

Let $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O})$ with $\mathfrak{P}_1, \ldots, \mathfrak{P}_s \in \operatorname{Spec}(\mathcal{O}_K)$ lying over \mathfrak{p} and $s \geq 2$. Let p be a prime element of $\overline{\mathcal{O}}_{\mathfrak{p}}$. Then $|v_p(\mathcal{A}(\mathcal{O}_{\mathfrak{p}}))| = \infty$. A product of few atoms of high valuation can have long factorizations with atoms of small valuation. On the other hand, if s = 1, then $v_p(\mathcal{A}(\mathcal{O}_{\mathfrak{p}}))$ is finite.

伺 ト イヨ ト イヨト

Theorem (Halter-Koch, 1995)

Let $\mathcal O$ be an order in a global field K. Then $\rho(\mathcal O) < \infty$ if and only if the map

$${
m Spec}({\mathcal O}_{{\mathcal K},{\mathcal S}}) o {
m Spec}({\mathcal O}) \ {\mathfrak P} \mapsto {\mathfrak P} \cap {\mathcal O}$$

is bijective.

Let $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O})$ with $\mathfrak{P}_1, \ldots, \mathfrak{P}_s \in \operatorname{Spec}(\mathcal{O}_K)$ lying over \mathfrak{p} and $s \geq 2$. Let p be a prime element of $\overline{\mathcal{O}}_{\mathfrak{p}}$. Then $|v_p(\mathcal{A}(\mathcal{O}_{\mathfrak{p}}))| = \infty$. A product of few atoms of high valuation can have long factorizations with atoms of small valuation. On the other hand, if s = 1, then $v_p(\mathcal{A}(\mathcal{O}_{\mathfrak{p}}))$ is finite.

Corollary

If \mathcal{O} is half-factorial, then the map $\mathfrak{P} \mapsto \mathfrak{P} \cap \mathcal{O}$ is bijective.

3 D 🛛 🔿 D

• Let K be a quadratic number field, i.e. $[K : \mathbb{Q}] = 2$.

- Let K be a quadratic number field, i.e. $[K : \mathbb{Q}] = 2$.
- Every conductor ideal \mathfrak{f} is of the form $\mathfrak{f} = f\mathcal{O}_{\mathcal{K}}$ for some $f \in \mathbb{N}_{\geq 2}$.

- Let K be a quadratic number field, i.e. $[K : \mathbb{Q}] = 2$.
- Every conductor ideal \mathfrak{f} is of the form $\mathfrak{f} = f\mathcal{O}_{\mathcal{K}}$ for some $f \in \mathbb{N}_{\geq 2}$.
- The only order with conductor f is the minimal order $\mathbb{Z} + f\mathcal{O}_{K}$.

Theorem (Halter-Koch, 1983)

Let K be a quadratic number field with ring of integers \mathcal{O}_K and let \mathcal{O} be an order in K with conductor $f \in \mathbb{N}_{\geq 2}$. Then \mathcal{O} is half-factorial if and only if the following conditions are satisfied.

(i) $\mathcal{O}_{\mathcal{K}}$ is half-factorial.

(ii) $\mathcal{O} \cdot \mathcal{O}_{K}^{\times} = \mathcal{O}_{K}$.

(iii) f is either a prime or twice an odd prime.

If this is the case, then \mathcal{O} is locally half-factorial.

Theorem (Halter-Koch, 1983)

Let K be a quadratic number field with ring of integers \mathcal{O}_K and let \mathcal{O} be an order in K with conductor $f \in \mathbb{N}_{\geq 2}$. Then \mathcal{O} is half-factorial if and only if the following conditions are satisfied.

(i) $\mathcal{O}_{\mathcal{K}}$ is half-factorial.

(ii) $\mathcal{O} \cdot \mathcal{O}_K^{\times} = \mathcal{O}_K$.

(iii) f is either a prime or twice an odd prime.

If this is the case, then \mathcal{O} is locally half-factorial.

• The only half-factorial imaginary quadratic order is $\mathbb{Z}[\sqrt{-3}]$ with conductor 2.

 Let R be a noetherian domain. We call R seminormal if for all x ∈ R \ R, there are infinitely many n ∈ N with xⁿ ∉ R. • Let *R* be a noetherian domain. We call *R* seminormal if for all $x \in \overline{R} \setminus R$, there are infinitely many $n \in \mathbb{N}$ with $x^n \notin R$.

Lemma

An order \mathcal{O} is seminormal if and only if \mathfrak{f} is squarefree if and only if \mathfrak{f} is a radical ideal in $\mathcal{O}_{K,S}$.

Theorem (Geroldinger-Kainrath-Reinhart, 2015)

Let \mathcal{O} be a seminormal order in a global field K. Then \mathcal{O} is half-factorial if and only if the following conditions are satisfied.

(i) $\mathcal{O}_{K,S}$ is half-factorial.

(ii) The map ${
m Spec}({\mathcal O}_{{\mathcal K},{\mathcal S}}) o {
m Spec}({\mathcal O}),$ ${\mathfrak P}\mapsto {\mathfrak P}\cap {\mathcal O}$

is bijective.

```
(iii) |\operatorname{Pic}(\mathcal{O})| = |\operatorname{Cl}(\mathcal{O}_{K,S})|.
```

If this is the case, then \mathcal{O} is locally half-factorial.

Theorem (R., 2023)

Let \mathcal{O} be an order in a global field K with conductor $\mathfrak{f} = \mathfrak{P}_1^{k_1} \dots \mathfrak{P}_s^{k_s}$ and let $\mathfrak{p}_i = \mathfrak{P}_i \cap \mathcal{O}$. Then \mathcal{O} is half-factorial if and only if the following conditions are satisfied.

(i) $\mathcal{O}_{K,S}$ is half-factorial.

(ii) $\mathcal{O} \cdot \mathcal{O}_{K,S}^{\times} = \mathcal{O}_{K,S}$.

(iii) For all $i \in [1, s]$, we have $k_i \leq 4$ and $v_{p_i}(\mathcal{A}(\mathcal{O}_{\mathfrak{p}_i})) \subseteq \{1, 2\}$, where p_i is an arbitrary prime element of $\overline{\mathcal{O}}_{\mathfrak{p}_i}$. If \mathfrak{P}_i is principal, we have $k_i \leq 2$ and $v_{p_i}(\mathcal{A}(\mathcal{O}_{\mathfrak{p}_i})) = \{1\}$.

何 ト イヨ ト イヨ ト

• Let $K = \mathbb{Q}(\omega)$, where ω is a root of

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

э

Half-factorial \implies locally half-factorial

• Let $K = \mathbb{Q}(\omega)$, where ω is a root of

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

• Then
$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\omega]$$
 and $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| = 2$.

э

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

- Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\omega]$ and $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| = 2$.
- $\mathcal{O}_{K}^{\times} \cong \mathbb{Z} \times \{\pm 1\}$ with $\varepsilon = 15\omega^2 32\omega 82$ a fundamental unit.

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

- Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\omega]$ and $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| = 2$.
- $\mathcal{O}_{K}^{\times} \cong \mathbb{Z} \times \{\pm 1\}$ with $\varepsilon = 15\omega^2 32\omega 82$ a fundamental unit.
- We have $2\mathcal{O}_{\mathcal{K}} = \mathfrak{P}_1\mathfrak{P}_2$, where $\mathfrak{P}_1 = (2, \omega^2 \omega 5)$ and $\mathfrak{P}_2 = (2, \omega + 1)$.

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

- Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\omega]$ and $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| = 2$.
- $\mathcal{O}_{K}^{\times} \cong \mathbb{Z} \times \{\pm 1\}$ with $\varepsilon = 15\omega^2 32\omega 82$ a fundamental unit.
- We have $2\mathcal{O}_{\mathcal{K}} = \mathfrak{P}_1\mathfrak{P}_2$, where $\mathfrak{P}_1 = (2, \omega^2 \omega 5)$ and $\mathfrak{P}_2 = (2, \omega + 1)$.
- Let $\mathfrak{f} = \mathfrak{P}_1^2 = (\omega^2 5\omega + 5)$ and let \mathcal{O} be the minimal order $\mathbb{Z} + \mathfrak{f}$.

• Let $K = \mathbb{Q}(\omega)$, where ω is a root of

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

- Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\omega]$ and $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| = 2$.
- $\mathcal{O}_{K}^{\times} \cong \mathbb{Z} \times \{\pm 1\}$ with $\varepsilon = 15\omega^2 32\omega 82$ a fundamental unit.
- We have $2\mathcal{O}_{\mathcal{K}} = \mathfrak{P}_1\mathfrak{P}_2$, where $\mathfrak{P}_1 = (2, \omega^2 \omega 5)$ and $\mathfrak{P}_2 = (2, \omega + 1)$.
- Let $\mathfrak{f} = \mathfrak{P}_1^2 = (\omega^2 5\omega + 5)$ and let \mathcal{O} be the minimal order $\mathbb{Z} + \mathfrak{f}$.
- We have $(\mathcal{O}_{\mathcal{K}}^{\times}:\mathcal{O}^{\times})=6, |(\mathcal{O}_{\mathcal{K}}/\mathfrak{f})^{\times}|=12$ and $|(\mathcal{O}/\mathfrak{f})^{\times}|=2.$

Half-factorial \implies locally half-factorial

$$f = X^3 - 8X - 19 \in \mathbb{Z}[X].$$

- Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\omega]$ and $|\operatorname{Cl}(\mathcal{O}_{\mathcal{K}})| = 2$.
- $\mathcal{O}_{K}^{\times} \cong \mathbb{Z} \times \{\pm 1\}$ with $\varepsilon = 15\omega^2 32\omega 82$ a fundamental unit.
- We have $2\mathcal{O}_{\mathcal{K}} = \mathfrak{P}_1\mathfrak{P}_2$, where $\mathfrak{P}_1 = (2, \omega^2 \omega 5)$ and $\mathfrak{P}_2 = (2, \omega + 1)$.
- Let $\mathfrak{f} = \mathfrak{P}_1^2 = (\omega^2 5\omega + 5)$ and let \mathcal{O} be the minimal order $\mathbb{Z} + \mathfrak{f}$.
- We have $(\mathcal{O}_{\mathcal{K}}^{\times}:\mathcal{O}^{\times})=6, |(\mathcal{O}_{\mathcal{K}}/\mathfrak{f})^{\times}|=12$ and $|(\mathcal{O}/\mathfrak{f})^{\times}|=2.$
- Then \mathcal{O} is half-factorial and we have $v_p(\mathcal{A}(\mathcal{O}_p)) = \{1, 2\}$, where $\mathfrak{p} = \mathfrak{P}_1 \cap \mathcal{O}$.

Transfer Krull orders

Theorem (R., 2023)

Let \mathcal{O} be a non-half-factorial order in a global field K. Let \mathfrak{f} be the conductor of \mathcal{O} .

Then \mathcal{O}^{\bullet} is transfer Krull if and only if $\mathcal{O} \cdot \mathcal{O}_{K,S}^{\times} = \mathcal{O}_{K,S}$ and \mathcal{O} is locally half-factorial.

In this case, \mathfrak{f} is cubefree and $\mathcal{O}^{\bullet} \hookrightarrow \mathcal{O}_{K,S}^{\bullet}$ is a transfer homomorphism.

Transfer Krull orders

Theorem (R., 2023)

Let \mathcal{O} be a non-half-factorial order in a global field K. Let \mathfrak{f} be the conductor of \mathcal{O} .

Then \mathcal{O}^{\bullet} is transfer Krull if and only if $\mathcal{O} \cdot \mathcal{O}_{K,S}^{\times} = \mathcal{O}_{K,S}$ and \mathcal{O} is locally half-factorial.

In this case, \mathfrak{f} is cubefree and $\mathcal{O}^{\bullet} \hookrightarrow \mathcal{O}^{\bullet}_{K,S}$ is a transfer homomorphism.

• Transfer Krull orders are indeed close to $\mathcal{O}_{K,S}$ algebraically.

Theorem (R., 2023)

Let \mathcal{O} be a non-half-factorial order in a global field K. Let \mathfrak{f} be the conductor of \mathcal{O} .

Then \mathcal{O}^{\bullet} is transfer Krull if and only if $\mathcal{O} \cdot \mathcal{O}_{K,S}^{\times} = \mathcal{O}_{K,S}$ and \mathcal{O} is locally half-factorial.

In this case, \mathfrak{f} is cubefree and $\mathcal{O}^{\bullet} \hookrightarrow \mathcal{O}^{\bullet}_{K,S}$ is a transfer homomorphism.

- Transfer Krull orders are indeed close to $\mathcal{O}_{K,S}$ algebraically.
- The previous example shows that the characterizations of half-factorial orders and non-half-factorial transfer Krull orders are different.

Quadratic and seminormal orders revisited

Corollary

An order \mathcal{O} in a quadratic number field K with conductor $f \in \mathbb{N}_{\geq 2}$ is transfer Krull if and only if the following two conditions are satisfied.

(i) $\mathcal{O} \cdot \mathcal{O}_K^{\times} = \mathcal{O}_K$.

(ii) f is either a prime or twice an odd prime.

Quadratic and seminormal orders revisited

Corollary

An order \mathcal{O} in a quadratic number field K with conductor $f \in \mathbb{N}_{\geq 2}$ is transfer Krull if and only if the following two conditions are satisfied.

(i) $\mathcal{O} \cdot \mathcal{O}_{K}^{\times} = \mathcal{O}_{K}$.

(ii) f is either a prime or twice an odd prime.

Corollary

A seminormal order \mathcal{O} in a global field K is transfer Krull if and only if the following two conditions are satisfied.

(i) The map $\mathfrak{P}\mapsto\mathfrak{P}\cap\mathcal{O}$ is bijective.

(ii) $|\operatorname{Pic}(\mathcal{O})| = |\operatorname{Cl}(\mathcal{O}_{\mathcal{K},\mathcal{S}})|.$

Thank you for your attention!

æ

≪ ≣ ⊁

⊡ ▶ ∢ ≣ ▶