
On transfer Krull orders in global fields

Balint Rago

University of Graz

Ring Theory Seminar

November 30, 2023

Balint Rago On transfer Krull orders in global fields



Outline

1 Global fields and orders

2 Krull monoids and the arithmetic of O

3 Previous results

4 Transfer Krull orders

Balint Rago On transfer Krull orders in global fields



Algebraic number fields and rings of integers

An algebraic number field K is a finite extension field Q ⊆ K ,
i.e. [K : Q] < ∞.

The ring of integers of K ,

OK = {α ∈ K : f (α) = 0 for some monic f ∈ Z[X ]}

is the ring of all algebraic integers in K .

OK is a Dedekind domain.

An order in K is a subring O ⊆ OK , such that
q(O) = q(OK ) = K .

OK is called the principal (or maximal) order.

We will always assume that O ⊊ OK .
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Algebraic function fields

Definition

Let F be a field. An algebraic function field K/F of one variable
over F is an extension field F ⊆ K , such that K is a finite
extension of F (x), where x ∈ K is transcendental over F .

Example

Consider the curve y2 = x3, defined in F . Its function field is
F (x)(

√
x3) ∼= q(F [x , y ]/(x3 − y2)).

The field of constants F̃ of a function field K/F , is the
algebraic closure of F in K .

F̃/F is a finite field extension and K/F̃ is an algebraic
function field over F̃ .

We will always assume that F is algebraically closed in K .
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Holomorphy domains

Let K/Fq be an algebraic function field over the finite field
with q = pn elements, p a prime. A prime divisor or a place p
of K is a maximal ideal of a discrete valuation domain Op,
such that q(Op) = K .

The set of prime divisors of K is denoted by P(K ).

There are infinitely many prime divisors of K and we have⋂
p∈P(K)

Op = Fq.

Definition

Let ∅ ≠ S ⊊ P(K ) be a finite set of prime divisors. The
holomorphy domain of S is the ring

OK ,S =
⋂

p∈P(K)\S

Op.
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Let ∅ ≠ S ⊊ P(K ) be a finite set of prime divisors. The
holomorphy domain of S is the ring

OK ,S =
⋂

p∈P(K)\S

Op.

Balint Rago On transfer Krull orders in global fields



Holomorphy domains

Let K/Fq be an algebraic function field over the finite field
with q = pn elements, p a prime. A prime divisor or a place p
of K is a maximal ideal of a discrete valuation domain Op,
such that q(Op) = K .

The set of prime divisors of K is denoted by P(K ).

There are infinitely many prime divisors of K and we have⋂
p∈P(K)

Op = Fq.

Definition
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Holomorphy domains

OK ,S is a Dedekind domain with q(OK ,S) = K .

There is a bijection P(K ) \ S → Spec(OK ,S), given by
p 7→ p ∩ OK ,S .

If S ,T ⊊ P(K ), then OK ,S = OK ,T if and only if S = T .

If ∅ ≠ S1 ⊆ S2 ⊊ P(K ), then OK ,S2 = T−1OK ,S1 , where
T = O×

K ,S2
∩ OK ,S1 .

An order in the holomorphy domain OK ,S is a subring
O ⊊ OK ,S such that q(O) = q(OK ,S) = K and O = OK ,S .
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Global fields

Definition

A global field K is either

1 an algebraic number field or

2 an algebraic function field over a finite field Fq.

Number fields and function fields share a common
characterization via valuation theory.

Theorem (Artin-Whaples, 1945)

Let K be a field. Then K is a global field if and only if the product
formula ∏

v

|x |v = 1

is satisfied for every x ∈ K×, where v ranges over all equivalence
classes of multiplicative valuations on K .
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Analogies between the two types of fields

Many concepts in algebraic number theory have analogues in
function fields.

Both Z and Fq[x ] are PIDs with infinitely many prime ideals,
finite residue class fields and finite group of units.

Dirichlet unit theorem: Both O×
K and O×

K ,S have finite rank.

Extensions of number fields and ramification of prime ideals
are analogous to dominant morphisms between curves and
ramification of closed points.

Generalized Riemann Hypothesis for number fields and Weil
conjectures for function fields (all proven).

Global class field theory and Chebotarevs density theorem.
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Why global fields?

OK and OK ,S share some special properties.

Both are Dedekind domains with finite residue class fields,
finite ideal class groups and infinitely many prime ideals in
every class.

Theorem (Perret, 1998)

Let Fq be a finite field. For every finite abelian group G , there
exists some function field K/Fq and some finite set ∅ ≠ S ⊊ P(K )
such that G ∼= Cl(OK ,S).

The analogous statement for number fields is still an open
problem.
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Basic facts about orders

An order O in a global field K is either an order in a number
field or an order in a holomorphy domain. We will write
O = OK ,S , where S is redundant in the number field case.

Orders are 1-dimensional and noetherian but not integrally
closed.

The conductor of O

f = {x ∈ OK | xOK ⊆ O}

is the largest ideal of OK ,S , contained in O.

Since O/f is a subring of OK ,S/f, there are only finitely many
orders with conductor f.

Let p ∈ Spec(O). Then Op is integrally closed (a DVR) if and
only if p ̸⊇ f.

The finitely many p ∈ Spec(O) with p ⊇ f are called irregular
prime ideals.
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The Picard group of an order

Let F×(O) be the group of invertible fractional ideals and let
P(O) be the subgroup of fractional principal ideals. The
quotient

Pic(O) = F×(O)/P(O)

is called the Picard group of O.

We have Pic(OK ,S) = Cl(OK ,S).

Pic(O) is finite and every class contains infinitely many prime
ideals.
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The Picard group of an order

We have F×(O) ∼=
∏

p P(Op) via a 7→ (aOp).

This yields an exact sequence

1 → O×
K ,S/O

× → (OK ,S/f)
×/(O/f)× → Pic(O) → Cl(OK ,S) → 1.

Hence |Pic(O)| = |Cl(OK ,S)| if and only if

(O×
K ,S : O×) =

|(OK ,S/f)
×|

|(O/f)×|
.

We have O · O×
K ,S = OK ,S if and only if

|Pic(O)| = |Cl(OK ,S)| and pOK ,S is a prime ideal for every
p ∈ Spec(O).
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(O×
K ,S : O×) =
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.

We have O · O×
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Notions from factorization theory

Let (H, ·) be a monoid, i.e. a commutative, cancellative
semigroup with unit element.

For an integral domain R, let R• = (R \ {0}, ·).
Let Hred = H/H×.

An element x ∈ H is irreducible (an atom) if x = ab implies
that a ∈ H× or b ∈ H×.

If x = a1 . . . ak is a factorization into atoms, then k is called
the length of the factorization.

The set of lengths of x :

L(x) = {k ∈ N | k is a factorization length of x}.

H is half-factorial if for every nonunit x ∈ H, we have
|L(x)| = 1.
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Notions from factorization theory

Let x ∈ H. The elasticity of x is defined as

ρ(x) =
sup L(x)

min L(x)

and the elasticity of H as

ρ(H) = sup
x∈H

ρ(x).

H is half-factorial if and only if ρ(H) = 1.
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Krull monoids

Let φ : H → D be a monoid homomorphism. φ is called a
divisor homomorphism if φ(a)|φ(b) implies that a|b for all
a, b ∈ H.

Definition

H is called a Krull monoid if there is a divisor homomorphism
φ : H → D, where D is factorial, such that for every a ∈ D, there
is a finite subset ∅ ≠ X ⊂ H with a = gcd(φ(X )). The class group
of H is C(H) = q(D)/q(φ(H)).
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Transfer homomorphisms

Definition

Let H and B be monoids. A homomorphism ϕ : H → B is called a
transfer homomorphism if it has the following two properties:

(1) B = ϕ(H) · B× and ϕ−1(B×) = H×

(2) If u ∈ H, b, c ∈ B and ϕ(u) = bc, then there exist v ,w ∈ H
such that u = vw , ϕ(v) ≃ b and ϕ(w) ≃ c .

Transfer homomorphisms preserve the arithmetic, in particular
they preserve sets of lengths.
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Block monoids

Let (G ,+) be an abelian group and let F(G ) be the free
monoid with basis G .

We call σ(g1 · . . . · gl) = g1 + . . .+ gl ∈ G the sum of the
sequence S = g1 · . . . · gl .
B(G ) = {S ∈ F(G ) : σ(S) = 0} is called the block monoid
over G .

Theorem

Let H be a Krull monoid with class group C(H) such that every
class contains a prime divisor. Then there is a transfer
homomorphism H → B(C(H)).
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Block monoids

Theorem

Let G be an abelian group. Then B(G ) is half-factorial if and only
if |G | ≤ 2.

Theorem (Carlitz, 1960)

OK is half-factorial if and only if |Cl(OK )| ≤ 2.
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Transfer Krull monoids

Definition

A monoid H is called transfer Krull if there exists a Krull monoid
B and a transfer homomorphism ϕ : H → B.

The arithmetic of (non-Krull) transfer Krull monoids can be
described with the well-understood machinery for Krull
monoids.

Example

Every half-factorial monoid is transfer Krull. Indeed, let H be
half-factorial. Then ℓ : H → (N0,+), where ℓ(x) ∈ L(x) is the
unique factorization length of x , is a transfer homomorphism.

Which orders are transfer Krull?

For which orders O is there a transfer homomorphism
O• → O•

K ,S?

For which orders O is O• ↪→ O•
K ,S a transfer homomorphism?
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T -block monoids and the arithmetic of O

Let G be an abelian group, T a monoid and ι : T → G a
homomorphism. Then

B(G ,T , ι) = {St ∈ F(G )× T : σ(S) + ι(t) = 0}

is called the T -block monoid over G defined by ι.

Theorem

Let O be an order in a global field K . There is a transfer
homomorphism O• → B(G ,T , ι), where G = Pic(O),

T =
∏
p⊇f

O•
p red

and ι : T → G is the canonical homomorphism.
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T -block monoids and the arithmetic of O

B(Pic(O)) is a divisor closed submonoid of B(G ,T , ι).

O half-factorial =⇒ |Cl(OK ,S)| ≤ |Pic(O)| ≤ 2 =⇒ OK ,S

is half-factorial.

The arithmetic of an order with given Picard group depends
on the arithmetic of Op for all irregular p.

Let p ∈ Spec(O) and let n be the number of prime ideals lying
above p. Then Op is a semilocal PID with n maximal ideals.

Op is half-factorial if and only if Op is a DVR and
vp(A(Op)) = {1}, where p is a prime element of Op.

We call an order O locally half-factorial if Op is half-factorial
for all p ∈ Spec(O).

Is every half-factorial order locally half-factorial?
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The elasticity

Theorem (Halter-Koch, 1995)

Let O be an order in a global field K . Then ρ(O) < ∞ if and only
if the map

Spec(OK ,S) → Spec(O)

P 7→ P ∩ O

is bijective.

Let p ∈ Spec(O) with P1, . . . ,Ps ∈ Spec(OK ) lying over p and
s ≥ 2. Let p be a prime element of Op. Then |vp(A(Op))| = ∞.
A product of few atoms of high valuation can have long
factorizations with atoms of small valuation. On the other hand, if
s = 1, then vp(A(Op)) is finite.

Corollary

If O is half-factorial, then the map P 7→ P ∩ O is bijective.
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Orders in quadratic number fields

Let K be a quadratic number field, i.e. [K : Q] = 2.

Every conductor ideal f is of the form f = fOK for some
f ∈ N≥2.

The only order with conductor f is the minimal order
Z+ fOK .
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Orders in quadratic number fields

Theorem (Halter-Koch, 1983)

Let K be a quadratic number field with ring of integers OK and let
O be an order in K with conductor f ∈ N≥2. Then O is
half-factorial if and only if the following conditions are satisfied.

(i) OK is half-factorial.

(ii) O · O×
K = OK .

(iii) f is either a prime or twice an odd prime.

If this is the case, then O is locally half-factorial.

The only half-factorial imaginary quadratic order is Z[
√
−3]

with conductor 2.
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Seminormal orders

Let R be a noetherian domain. We call R seminormal if for
all x ∈ R \ R, there are infintely many n ∈ N with xn ̸∈ R.

Lemma

An order O is seminormal if and only if f is squarefree if and only if
f is a radical ideal in OK ,S .
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Seminormal orders

Theorem (Geroldinger-Kainrath-Reinhart, 2015)

Let O be a seminormal order in a global field K . Then O is
half-factorial if and only if the following conditions are satisfied.

(i) OK ,S is half-factorial.

(ii) The map
Spec(OK ,S) → Spec(O),

P 7→ P ∩ O

is bijective.

(iii) |Pic(O)| = |Cl(OK ,S)|.

If this is the case, then O is locally half-factorial.
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Half-factoriality of O

Theorem (R., 2023)

Let O be an order in a global field K with conductor
f = Pk1

1 . . .Pks
s and let pi = Pi ∩ O. Then O is half-factorial if

and only if the following conditions are satisfied.

(i) OK ,S is half-factorial.

(ii) O · O×
K ,S = OK ,S .

(iii) For all i ∈ [1, s], we have ki ≤ 4 and vpi (A(Opi )) ⊆ {1, 2},
where pi is an arbitrary prime element of Opi . If Pi is principal, we
have ki ≤ 2 and vpi (A(Opi )) = {1}.
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Half-factorial ≠⇒ locally half-factorial

Let K = Q(ω), where ω is a root of

f = X 3 − 8X − 19 ∈ Z[X ].

Then OK = Z[ω] and |Cl(OK )| = 2.

O×
K
∼= Z× {±1} with ε = 15ω2 − 32ω − 82 a fundamental

unit.

We have 2OK = P1P2, where P1 = (2, ω2 − ω − 5) and
P2 = (2, ω + 1).

Let f = P2
1 = (ω2 − 5ω + 5) and let O be the minimal order

Z+ f.

We have (O×
K : O×) = 6, |(OK/f)

×| = 12 and |(O/f)×| = 2.

Then O is half-factorial and we have vp(A(Op)) = {1, 2},
where p = P1 ∩ O.
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Half-factorial ≠⇒ locally half-factorial

Let K = Q(ω), where ω is a root of

f = X 3 − 8X − 19 ∈ Z[X ].

Then OK = Z[ω] and |Cl(OK )| = 2.

O×
K
∼= Z× {±1} with ε = 15ω2 − 32ω − 82 a fundamental

unit.

We have 2OK = P1P2, where P1 = (2, ω2 − ω − 5) and
P2 = (2, ω + 1).

Let f = P2
1 = (ω2 − 5ω + 5) and let O be the minimal order

Z+ f.

We have (O×
K : O×) = 6, |(OK/f)

×| = 12 and |(O/f)×| = 2.

Then O is half-factorial and we have vp(A(Op)) = {1, 2},
where p = P1 ∩ O.

Balint Rago On transfer Krull orders in global fields
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Transfer Krull orders

Theorem (R., 2023)

Let O be a non-half-factorial order in a global field K . Let f be the
conductor of O.

Then O• is transfer Krull if and only if O · O×
K ,S = OK ,S and O is

locally half-factorial.

In this case, f is cubefree and O• ↪→ O•
K ,S is a transfer

homomorphism.

Transfer Krull orders are indeed close to OK ,S algebraically.

The previous example shows that the characterizations of
half-factorial orders and non-half-factorial transfer Krull orders
are different.
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Quadratic and seminormal orders revisited

Corollary

An order O in a quadratic number field K with conductor f ∈ N≥2

is transfer Krull if and only if the following two conditions are
satisfied.

(i) O · O×
K = OK .

(ii) f is either a prime or twice an odd prime.

Corollary

A seminormal order O in a global field K is transfer Krull if and
only if the following two conditions are satisfied.

(i) The map P 7→ P ∩ O is bijective.

(ii) |Pic(O)| = |Cl(OK ,S)|.
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Thank you for your attention!
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