

EVERY FINITELY GENERATED ABELIAN GROUP IS THE CLASS GROUP OF A GENERALIZED CLUSTER ALGEBRA

Mara POMPILI

University of Graz

Ring Theory Seminar, November 7 2024

1 The cluster algebra A_n

2 Generalized cluster algebras

3 Class groups of generalized cluster algebras

UNI

The cluster algebra A_n

UNI

The cluster algebra A_n

UNI

The cluster algebra A_n

UNI

The cluster algebra A_n

3

The cluster algebra A_n

UNI

The cluster algebra An

A TRIANGULATION of the regular n + 3-gon P_{n+3} is a maximal collection of pairwise non-crossing diagonals P_{n+3} .

Ptolemy's formula:

 $a_{26} = \frac{a_{12}a_{46} + a_{24}a_{16}}{a_{14}}$

UNI GRAZ

The cluster algebra An

A TRIANGULATION of the regular n + 3-gon P_{n+3} is a maximal collection of pairwise non-crossing diagonals P_{n+3} .

Knowing the values of a triangulation, we can know all the other values

The commutative ring A_n comes with the following data.

The commutative ring A_n comes with the following data.

■ A special set of generators (the *a*_{ij}).

The commutative ring A_n comes with the following data.

- A special set of generators (the *a*_{ij}).
- Many special subsets of those generators (the triangulations) which 'almost' generate A_n, in that every element can be written as a Laurent polynomial.

The cluster algebra A_n

The commutative ring A_n comes with the following data.

- A special set of generators (the *a*_{ij}).
- Many special subsets of those generators (the triangulations) which 'almost' generate A_n, in that every element can be written as a Laurent polynomial.
- A simple relation for moving between two adjacent special subsets (the Ptolemy relations), which replaces a single element with a binomial divided by the old element.

A cluster algebra is a commutative ring ${\mathcal A}$ with the following data

A cluster algebra is a commutative ring ${\mathcal A}$ with the following data

- A special set of generators (the cluster variables).
- Many special subsets of those generators (the clusters) which 'almost' generate A, in that every element can be written as a Laurent polynomial.
- A simple relation for moving between two adjacent special subsets (the mutation relations), which replaces a single element with a binomial divided by the old element.

From A_n to cluster algebras

The cluster algebra A_n

Let $T = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Let $T = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Define a matrix $B = (b_{ij})$, where $b_{ij} = 1$ (resp., -1) if d_i, d_j are two sides of a triangle such that d_i preceded d_j counterclockwise (resp. clockwise). Otherwise $b_{ij} = 0$.

Let $T = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Define a matrix $B = (b_{ij})$, where $b_{ij} = 1$ (resp., -1) if d_i, d_j are two sides of a triangle such that d_i preceded d_j counterclockwise (resp. clockwise). Otherwise $b_{ij} = 0$.

$$B(T) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

Let $T = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Define a matrix $B = (b_{ij})$, where $b_{ij} = 1$ (resp., -1) if d_i, d_j are two sides of a triangle such that d_i preceded d_j counterclockwise (resp. clockwise). Otherwise $b_{ij} = 0$.

$$B(T) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

The matrix *B* is antisymmetric!

The cluster algebra A_n

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0\ 1 & 0 & -1\ 0 & 1 & 0 \end{pmatrix}$$

The cluster algebra A_n

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0\ 1 & 0 & -1\ 0 & 1 & 0 \end{pmatrix}$$

The cluster algebra A_n

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0 \ 1 & 0 & -1 \ 0 & 1 & 0 \end{pmatrix}$$

The cluster algebra A_n

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0 \ 1 & 0 & -1 \ 0 & 1 & 0 \end{pmatrix}$$

$$B(T')=(b'_{ij})=egin{pmatrix} 0&1&-1\-1&0&1\1&-1&0 \end{pmatrix}$$

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0\ 1 & 0 & -1\ 0 & 1 & 0 \end{pmatrix}$$

$$b'_{ij} = egin{cases} -b_{ij} & ext{if } i=2 ext{ or } j=2; \ b_{ij}+([b_{2j}]_+b_{i2}+b_{2j}[-b_{i2}]_+) & ext{otherwise.} \end{cases}$$

$$B(T')=(b'_{ij})=egin{pmatrix} 0&1&-1\-1&0&1\1&-1&0 \end{pmatrix}$$

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0\ 1 & 0 & -1\ 0 & 1 & 0 \end{pmatrix}$$

$$b_{ij}' = egin{cases} -b_{ij} & ext{if } i=2 ext{ or } j=2; \ b_{ij}+([b_{2j}]_+b_{i2}+b_{2j}[-b_{i2}]_+) & ext{otherwise}. \end{cases}$$

$$b_{13}' = b_{13} + [b_{23}]_+ b_{12} + b_{23}[-b_{12}]_+$$

$$B(T') = (b'_{ij}) = egin{pmatrix} 0 & 1 & -1 \ -1 & 0 & 1 \ 1 & -1 & 0 \end{pmatrix}$$

$$B(T)=(b_{ij})=egin{pmatrix} 0 & -1 & 0 \ 1 & 0 & -1 \ 0 & 1 & 0 \end{pmatrix}$$

$$b_{ij}' = egin{cases} -b_{ij} & ext{if } i=2 ext{ or } j=2; \ b_{ij} + ([b_{2j}]_+ b_{i2} + b_{2j}[-b_{i2}]_+) & ext{otherwise}. \end{cases}$$

$$b_{13}' = b_{13} + [b_{23}]_+ b_{12} + b_{23}[-b_{12}]_+ = 0 + (-1)1 = -1$$

$$B(T')=(b'_{ij})=egin{pmatrix} 0&1&-1\-1&0&1\1&-1&0 \end{pmatrix}$$

Generalized cluster algebras

9

1 The cluster algebra A_n

2 Generalized cluster algebras

3 Class groups of generalized cluster algebras

Generalized cluster algebras

■ CLUSTER ALGEBRAS were introduced by Fomin and Zelevinsky in 2002

Generalized cluster algebras

- CLUSTER ALGEBRAS were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups

- CLUSTER ALGEBRAS were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups
- Cluster algebras describe TRIANGULATIONS OF A RIEMANN SURFACE with marked points

- CLUSTER ALGEBRAS were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups
- Cluster algebras describe TRIANGULATIONS OF A RIEMANN SURFACE with marked points
- Checkov and Shapiro in 2014 introduced GENERALIZED CLUSTER ALGEBRAS

- CLUSTER ALGEBRAS were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups
- Cluster algebras describe TRIANGULATIONS OF A RIEMANN SURFACE with marked points
- Checkov and Shapiro in 2014 introduced GENERALIZED CLUSTER ALGEBRAS
- Generalized cluster algebras describe triangulations of a surface with ORBIFOLD POINTS

Our setting

Generalized cluster algebras

Let $R \supseteq \mathbb{Z}$ be a factorial domain, $n \ge 1$.

Our setting

Generalized cluster algebras

Let $R \supseteq \mathbb{Z}$ be a factorial domain, $n \ge 1$.

A matrix $B \in M_n(\mathbb{Z})$ is SKEW-SYMMETRIZABLE if there exists a matrix $D \in M_n(\mathbb{N})$ such that DB is a skew-symmetric matrix.

Our setting

Generalized cluster algebras

Let $R \supset \mathbb{Z}$ be a factorial domain, n > 1.

A matrix $B \in M_n(\mathbb{Z})$ is SKEW-SYMMETRIZABLE if there exists a matrix $D \in M_n(\mathbb{N})$ such that DB is a skew-symmetric matrix.

Notice that either $b_{ii}b_{ii} < 0$ or $b_{ii} = b_{ii} = 0$.

Let $R \supseteq \mathbb{Z}$ be a factorial domain, $n \ge 1$.

A matrix $B \in M_n(\mathbb{Z})$ is SKEW-SYMMETRIZABLE if there exists a matrix $D \in M_n(\mathbb{N})$ such that DB is a skew-symmetric matrix.

Notice that either $b_{ij}b_{ji} < 0$ or $b_{ij} = b_{ji} = 0$.

For each column *i* of *B*, fix a positive integer $d_i \in \mathbb{N}$, such that $d_i \mid b_{ji}$ for every $j \in \{1, \ldots, n\}$. We denote by β_{ji} the integer b_{ji}/d_i .

12

A GENERALIZED SEED is a triple (\mathbf{x}, ρ, B) where

- A GENERALIZED SEED is a triple (\mathbf{x}, ρ, B) where
 - *B* is a skew-symmetrizable matrix with a fixed set of column divisors $\{d_1, \ldots, d_n\}$

- A GENERALIZED SEED is a triple (\mathbf{x}, ρ, B) where
 - B is a skew-symmetrizable matrix with a fixed set of column divisors $\{d_1, \ldots, d_n\}$
 - $\rho = \{\rho_1, \dots, \rho_n\}$ is a set of coefficents with $\rho_i = \{1, \rho_{i2}, \dots, \rho_{id_{i-1}}, 1\} \subseteq R$

- A GENERALIZED SEED is a triple (\mathbf{x}, ρ, B) where
 - *B* is a skew-symmetrizable matrix with a fixed set of column divisors $\{d_1, \ldots, d_n\}$
 - $\rho = \{\rho_1, \dots, \rho_n\}$ is a set of coefficents with $\rho_i = \{1, \rho_{i2}, \dots, \rho_{id_{i-1}}, 1\} \subseteq R$
 - $\mathbf{x} = \{x_1, \dots, x_n\}$ is a cluster, i.e. a set of algebraically independent indeterminates over R.

Generalized cluster algebras

Let (\mathbf{x}, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

Generalized cluster algebras

Let (\mathbf{x}, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

CLUSTER

$$\mathbf{x}' = (\mathbf{x} \setminus x_i) \cup \{x'_i\}$$

where

$$x_i x_i' = \sum_{j=0}^{d_i} \rho_{ij} \prod_{k=1}^n x_k^{j[\beta_{ki}]_+ + (d_i - j)[-\beta_{ki}]_+}$$

Generalized cluster algebras

Let (\mathbf{x}, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

CLUSTER

COEFFICENTS

$$\mathbf{x}' = (\mathbf{x} \setminus x_i) \cup \{x'_i\}$$
where
$$\rho' = (\rho \setminus \rho_i) \cup \{\rho'_i\}$$
where

$$\mathbf{x}_{i}\mathbf{x}_{i}' = \sum_{j=0}^{a_{i}}
ho_{ij} \prod_{k=1}^{n} \mathbf{x}_{k}^{j[eta_{ki}]_{+} + (d_{i}-j)[-eta_{ki}]_{+}} \quad
ho_{ij}' =
ho_{id_{i}-j}$$

Generalized cluster algebras

Let (\mathbf{x}, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

Generalized cluster algebras

13

Let (\mathbf{x}, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

The polynomials $f_i := x_i x'_i \in R[\mathbf{x}]$ are called EXCHANGE POLYNOMIALS.

14

Let (\mathbf{x}, ρ, B) be a generalized seed.

14

Let (\mathbf{x}, ρ, B) be a generalized seed.

Mutations produce a collection of seeds (possibly infinitely many).

14

Let (\mathbf{x}, ρ, B) be a generalized seed.

Mutations produce a collection of seeds (possibly infinitely many). Each element of a cluster is called a <u>CLUSTER VARIABLE</u>.

UN

Let (\mathbf{x}, ρ, B) be a generalized seed.

Mutations produce a collection of seeds (possibly infinitely many). Each element of a cluster is called a CLUSTER VARIABLE.

The GENERALIZED CLUSTER ALGEBRA $\mathcal{A} = \mathcal{A}(\mathbf{x}, \rho, B)$ is the subalgebra of the rational functions $R(x_1, \ldots, x_n)$ generated by all the cluster variables.

Cluster algebras

Generalized cluster algebras

15

Assume $d_i = 1$ for every $i \in [1, n]$.

15

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$\mathbf{x}_{i}\mathbf{x}_{i}' = \sum_{j=0}^{d_{i}} \rho_{ij} \prod_{k=1}^{n} \mathbf{x}_{k}^{j[\beta_{ki}]_{+} + (d_{i}-j)[-\beta_{ki}]_{+}}$$

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$\mathbf{x}_{i}\mathbf{x}_{i}' = \rho_{i0}\prod_{k=1}^{n}\mathbf{x}_{k}^{d_{i}[-\beta_{ki}]_{+}} + \rho_{id_{i}}\prod_{k=1}^{n}\mathbf{x}_{k}^{d_{i}[\beta_{ki}]_{+}}$$

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$x_{i}x_{i}' = \rho_{i0}\prod_{k=1}^{n} x_{k}^{d_{i}[-\beta_{ki}]_{+}} + \rho_{id_{i}}\prod_{k=1}^{n} x_{k}^{d_{i}[\beta_{ki}]_{+}} = \prod_{b_{ki}<0} x_{k}^{-b_{ki}} + \prod_{b_{ki}>0} x_{k}^{b_{ki}}$$

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$x_{i}x_{i}' = \rho_{i0}\prod_{k=1}^{n} x_{k}^{d_{i}[-\beta_{ki}]_{+}} + \rho_{id_{i}}\prod_{k=1}^{n} x_{k}^{d_{i}[\beta_{ki}]_{+}} = \prod_{b_{ki}<0} x_{k}^{-b_{ki}} + \prod_{b_{ki}>0} x_{k}^{b_{ki}}$$

And in this case we say that $\mathcal{A}(\mathbf{x}, B)$ is a CLUSTER ALGEBRA.

• Let
$$\mathbf{x} = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$$

• Let
$$\mathbf{x} = \{x_1, x_2\}$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1, d_2 = 2$, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.
• To get $f_1 = x_1 x'_1 \dots$

$$\mathbf{x}_{1}\mathbf{x}_{1}' = \sum_{j=0}^{d_{1}} \rho_{1j} \prod_{k=1}^{2} \mathbf{x}_{k}^{j[\beta_{k1}]_{+} + (d_{1}-j)[-\beta_{k1}]_{+}}$$

• Let
$$\mathbf{x} = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$$

• To get $f_1 = x_1 x'_1 \dots$
 $x_1 x'_1 = \prod_{k=1}^2 x_k^{[-b_{k1}]_+} + \prod_{k=1}^2 x_k^{[b_{k1}]_+}$

• Let
$$\mathbf{x} = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$$

• To get $f_1 = x_1 x'_1 \dots$
 $\mathbf{x}_1 \mathbf{x}'_1 = \mathbf{x}_2^{[-b_{21}]_+} + \mathbf{x}_2^{[b_{21}]_+}$

• Let
$$\mathbf{x} = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$$

• To get $f_1 = x_1 x'_1 \dots$
 $x_1 x'_1 = x_2 + 1$

• Let
$$\mathbf{x} = \{x_1, x_2\}$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1, d_2 = 2$, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.
• To get $f_1 = x_1 x'_1 \dots$

$$x_1x_1' = x_2 + 1$$

• To get $f_2 = x_2 x'_2....$

$$\mathbf{x}_{2}\mathbf{x}_{2}' = \sum_{j=0}^{d_{2}} \rho_{2j} \prod_{k=1}^{2} \mathbf{x}_{k}^{j[\beta_{k2}]_{+} + (d_{2}-j)[-\beta_{21}]_{+}}$$

• Let
$$\mathbf{x} = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$$

• To get
$$f_1 = x_1 x'_1 \dots$$

$$x_1x_1' = x_2 + 1$$

• To get
$$f_2 = x_2 x'_2 \dots$$

$$\mathbf{x}_{2}\mathbf{x}_{2}' = \prod_{k=1}^{2} x_{k}^{2[-\beta_{k2}]_{+}} + 2\prod_{k=1}^{2} x_{k}^{[\beta_{k2}]_{+} + [-\beta_{k2}]_{+}} + \prod_{k=1}^{2} x_{k}^{2[\beta_{k2}]_{+}}$$

• Let
$$\mathbf{x} = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$$

• To get
$$f_1 = x_1 x'_1 \dots$$

$$x_1x_1' = x_2 + 1$$

• To get $f_2 = x_2 x'_2 \dots$

$$x_{2}x_{2}' = \prod_{k=1}^{2} x_{k}^{2[-\beta_{k2}]_{+}} + 2\prod_{k=1}^{2} x_{k}^{[\beta_{k2}]_{+} + [-\beta_{k2}]_{+}} + \prod_{k=1}^{2} x_{k}^{2[\beta_{k2}]_{+}} = x_{1}^{2} + 2x_{1} + 1$$

• Let
$$\mathbf{x} = \{x_1, x_2\}$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1, d_2 = 2$, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.
• To get $f_1 = x_1 x'_1 \dots$

$$\mathsf{x}_1\mathsf{x}_1'=\mathsf{x}_2+1$$

• To get $f_2 = x_2 x'_2....$

$$x_{2}x_{2}' = \prod_{k=1}^{2} x_{k}^{2[-\beta_{k2}]_{+}} + 2\prod_{k=1}^{2} x_{k}^{[\beta_{k2}]_{+} + [-\beta_{k2}]_{+}} + \prod_{k=1}^{2} x_{k}^{2[\beta_{k2}]_{+}} = x_{1}^{2} + 2x_{1} + 1$$

• $\mathcal{A}(\mathbf{x}, \rho, B) = R[x_1, x_2, x_3, x_4, x_5, x_6]$, with $x_{k-1}x_{k+1} = \begin{cases} 1 + x_k & k \in 2\mathbb{Z} \\ 1 + 2x_k + x_k^2 & \text{otherwise} \end{cases}$

Let's consider again triangulations of our hexagon $P_{6...}$

$$B(T)=(b_{ij})=egin{pmatrix} 0&-1&0\ 1&0&-1\ 0&1&0 \end{pmatrix}$$

Our old example A_n

Generalized cluster algebras

From L.K. Williams, Cluster algebras: An introduction, 2012

$$A_n = \mathcal{A}(\mathbf{x}, B), \text{ with } \mathbf{x} = \{x_1, \dots, x_n\}, \text{ and } b_{ij} = \begin{cases} -1 & \text{if } j = i+1\\ 1 & \text{if } j = i-1\\ 0 & \text{otherwise} \end{cases}$$

19

$$A_n = \mathcal{A}(\mathbf{x}, B), \text{ with } \mathbf{x} = \{x_1, \dots, x_n\}, \text{ and } b_{ij} = \begin{cases} -1 & \text{if } j = i+1\\ 1 & \text{if } j = i-1\\ 0 & \text{otherwise} \end{cases}$$

 $\begin{array}{l} \mbox{triangulations} \leftrightarrow \mbox{clusters} \\ \mbox{diagonals} \leftrightarrow \mbox{cluster variables} \end{array}$

$$A_n = \mathcal{A}(\mathbf{x}, B)$$
, with $\mathbf{x} = \{x_1, \dots, x_n\}$, and $b_{ij} = \begin{cases} -1 & \text{if } j = i+1 \\ 1 & \text{if } j = i-1 \\ 0 & \text{otherwise} \end{cases}$

 $\begin{array}{l} \mbox{triangulations} \leftrightarrow \mbox{clusters} \\ \mbox{diagonals} \leftrightarrow \mbox{cluster variables} \end{array}$

$$A_{3} = R\left[x_{1}, x_{2}, x_{3}, \frac{1+x_{2}}{x_{1}}, \frac{x_{1}+x_{3}}{x_{2}}, \frac{1+x_{2}}{x_{3}}, \frac{x_{1}+(1+x_{2})x_{3}}{x_{1}x_{2}}, \frac{(1+x_{2})x_{1}+x_{3}}{x_{2}x_{3}}, \frac{(1+x_{2})(x_{1}+x_{3})}{x_{1}x_{2}x_{3}}\right]$$

Some properties

	Cluster	Generalized Cluster
	Algebras	Algebras
$\mathcal{A}\subseteq {\sf R}[{\sf x}^{\pm 1}]$ (Laurent phenomenon)	\checkmark	\checkmark
$\mathcal{A}^{\times} = R^{\times}$	\checkmark	\checkmark
cluster variables are strong atoms	\checkmark	\checkmark
exchange polynomials have positive coefficients	\checkmark	\checkmark
full finite type classification	\checkmark	\checkmark
FF-domains	\checkmark	\checkmark
Class groups	\mathbb{Z}^{r}	\mathbb{Z}^r/I

Class groups of generalized cluster algebras

21

1 The cluster algebra A_n

2 Generalized cluster algebras

3 Class groups of generalized cluster algebras

KRULL DOMAINS are a higher dimensional generalization of DEDEKIND DOMAINS²

²integral domains where every non-zero ideals factors uniquely into prime ideals.

- \blacksquare KRULL DOMAINS are a higher dimensional generalization of DEDEKIND DOMAINS 2
- The CLASS GROUP $\mathcal{C}(A)$ of A is

 $C(A) = \langle \text{height-1 prime ideals} \rangle / \{ \text{principal ideals} \}.$

²integral domains where every non-zero ideals factors uniquely into prime ideals.

- \blacksquare Krull domains are a higher dimensional generalization of Dedekind domains 2
- The CLASS GROUP $\mathcal{C}(A)$ of A is

 $C(A) = \langle \text{height-1 prime ideals} \rangle / \{ \text{principal ideals} \}.$

■ There are only finitely many height-1 prime ideals that contain an element *x* ∈ *A*, say 𝑘₁,...,𝑘_t.

²integral domains where every non-zero ideals factors uniquely into prime ideals.

- \blacksquare Krull domains are a higher dimensional generalization of Dedekind domains 2
- The CLASS GROUP $\mathcal{C}(A)$ of A is

 $C(A) = \langle \text{height-1 prime ideals} \rangle / \{ \text{principal ideals} \}.$

- There are only finitely many height-1 prime ideals that contain an element *x* ∈ *A*, say 𝑘₁,...,𝑘_t.
- The principal ideal xA can be written uniquely as

$$xA = \mathfrak{p}_1^{a_1} \cdot_v \cdots \cdot_v \mathfrak{p}_t^{a_t},$$

with $a_i \in \mathbb{N}_0$.

²integral domains where every non-zero ideals factors uniquely into prime ideals.

23

Class groups of generalized cluster algebras

- Claborn 1966: every abelian group is the class group of a Dedekind domain.
- Leedham-Green 1972: every abelian group is the class group of a Dedekind domain that is the quadratic extension of a principal ideal domain.
- Rosen 1976: every countable abelian group is the class group of an elliptic Dedekind domain.
- Smertnig 2017: every abelian group is the class group of a simple Dedekind domain.
- Still open: is every finite abelian group isomorphic the class group of the ring of integers of a number field?

■ FINITE TYPE CLUSTER ALGEBRAS³ are Krull domains

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

- FINITE TYPE CLUSTER $\operatorname{ALGEBRAS}^3$ are Krull domains
- LOCALLY ACYCLIC CLUSTER ALGEBRAS are noetherian and integrally closed, so Krull domains.

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

- FINITE TYPE CLUSTER ALGEBRAS³ are Krull domains
- LOCALLY ACYCLIC CLUSTER ALGEBRAS are noetherian and integrally closed, so Krull domains.
- FULL RANK CLUSTER ALGEBRAS⁴ are Krull domains.

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

- \blacksquare FINITE TYPE CLUSTER $\operatorname{ALGEBRAS}^3$ are Krull domains
- LOCALLY ACYCLIC CLUSTER ALGEBRAS are noetherian and integrally closed, so Krull domains.
- FULL RANK CLUSTER ALGEBRAS⁴ are Krull domains.
- The MARKOV CLUSTER ALGEBRA is not a Krull domain.

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

Theorem (Garcia Elsener, Lampe, Smertnig 2019)

Let $\mathcal{A} = \mathcal{A}(\mathbf{x}, B)$ be a cluster algebra. Assume that \mathcal{A} is a Krull domain. Then the class group $\mathcal{C}(\mathcal{A})$ of \mathcal{A} is

 $\mathcal{C}(\mathcal{A}) \cong \mathbb{Z}^r$,

where r is the number of height-1 prime ideals that contain one of x_1, \ldots, x_n .

Theorem (Garcia Elsener, Lampe, Smertnig 2019)

Let $\mathcal{A} = \mathcal{A}(\mathbf{x}, B)$ be a cluster algebra. Assume that \mathcal{A} is a Krull domain. Then the class group $\mathcal{C}(\mathcal{A})$ of \mathcal{A} is

 $\mathcal{C}(\mathcal{A}) \cong \mathbb{Z}^r$,

where r is the number of height-1 prime ideals that contain one of x_1, \ldots, x_n .

Moreover, if $n \ge 2$, then every class contains exactly |R| height-1 prime ideals.

26

The rank r of the class group C(A) can be computed explicitly in some cases:

26

The rank r of the class group C(A) can be computed explicitly in some cases:

• for acyclic cluster algebras (Garcia Elsener, Lampe, Smertnig 2019)

26

The rank r of the class group C(A) can be computed explicitly in some cases:

• for acyclic cluster algebras (Garcia Elsener, Lampe, Smertnig 2019)

■ full rank upper cluster algebras (P. 2023)

Theorem (P. 2024)

Let $\mathcal{A} = \mathcal{A}(\mathbf{x}, \rho, B)$ be a generalized cluster algebra. Assume that \mathcal{A} is a Krull domain. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the pairwise distinct height-1 prime ideals of \mathcal{A} containing one of x_1, \ldots, x_n . Suppose that

$$x_i \mathcal{A} = \mathfrak{p}_1^{a_{i1}} \cdot_v \cdots \cdot_v \mathfrak{p}_r^{a_{ir}},$$

with $\mathbf{a}_i = (a_{ij})_{j=1}^r \in \mathbb{N}_0^r$. Then

 $\mathcal{C}(\mathcal{A})\cong\mathbb{Z}^r/\langle \mathbf{a}_i\mid i\in [1,n]
angle$

and it is generated by $[p_1], \ldots, [p_r]$.

Moreover, if $n \ge 2$, then every class contains exactly |R| height-1 prime ideals.

Let \mathcal{A} be a generalized cluster algebra (that is also a Krull domain), and \mathcal{G} its class group.

M. Pompili (mara.pompili@uni-graz.at) Every finitely generated abelian group is the class group of a generalized cluster algebra

28

Let \mathcal{A} be a generalized cluster algebra (that is also a Krull domain), and G its class group.

• If G = 0, then \mathcal{A} is factorial.

Let \mathcal{A} be a generalized cluster algebra (that is also a Krull domain), and G its class group.

- If G = 0, then \mathcal{A} is factorial.
- If G is infinite, then for every non-empty finite subset $L = \{l_1, \ldots, l_k\}$ of $\mathbb{N}_{\geq 2}$ there exists $a \in \mathcal{A}$ such that

$$a = u_{1,1} \cdots u_{1,l_1} = \cdots = u_{l_1,1} \cdots u_{l_1,l_1},$$

where u_{ij} are atoms of \mathcal{A} .

Let \mathcal{A} be a generalized cluster algebra (that is also a Krull domain), and G its class group.

- If G = 0, then \mathcal{A} is factorial.
- If G is infinite, then for every non-empty finite subset $L = \{l_1, \ldots, l_k\}$ of $\mathbb{N}_{\geq 2}$ there exists $a \in \mathcal{A}$ such that

$$a = u_{1,1} \cdots u_{1,l_1} = \cdots = u_{l_1,1} \cdots u_{l_1,l_1},$$

where u_{ij} are atoms of \mathcal{A} .

If G is finite, then there are arithmetic invariants that make us completely understand the algebraic structure of A.

Proposition (P. 2024)

Let $\mathcal{A} = \mathcal{A}(\mathbf{x}, \rho, B)$ be a generalized cluster algebra. Suppose that \mathcal{A} is acyclic and full rank. Let $r_1, \ldots, r_t \in R[\mathbf{x}]$ be the distinct irreducible factors of the exchange polynomial $f_i = x_i x'_i$. Then

$\{r_jA_i\cap\mathcal{A}\mid j\in[1,t]\}$

is the set of all the height-1 prime ideals of A that contain x_i .

Proposition (P. 2024)

Let $\mathcal{A} = \mathcal{A}(\mathbf{x}, \rho, B)$ be a generalized cluster algebra. Suppose that \mathcal{A} is acyclic and full rank. Let $r_1, \ldots, r_t \in R[\mathbf{x}]$ be the distinct irreducible factors of the exchange polynomial $f_i = x_i x'_i$. Then

$\{r_jA_i\cap\mathcal{A}\mid j\in[1,t]\}$

is the set of all the height-1 prime ideals of A that contain x_i .

Here A_i denote the Laurent polynomial ring $R[x_1^{\pm 1}, \ldots, x_i^{\prime \pm 1}, \ldots, x_n^{\pm 1}]$.

How to compute the class group?

Class groups of generalized cluster algebras

Let's come back to our example with
$$B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.

How to compute the class group?

Class groups of generalized cluster algebras

Let's come back to our example with $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Let's come back to our example with $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap \mathcal{A}$ is the only height-1 prime that contains x_1 and $\mathfrak{p}_2 = (x_1 + 1)A_2 \cap \mathcal{A}$ is the only height-1 prime that contains x_2 .

Let's come back to our example with $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap \mathcal{A}$ is the only height-1 prime that contains x_1 and $\mathfrak{p}_2 = (x_1 + 1)A_2 \cap \mathcal{A}$ is the only height-1 prime that contains x_2 . So r = 2.

30

Let's come back to our example with
$$B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap \mathcal{A}$ is the only height-1 prime that contains x_1 and $\mathfrak{p}_2 = (x_1 + 1)A_2 \cap \mathcal{A}$ is the only height-1 prime that contains x_2 . So r = 2.

In addition, $x_1 \mathcal{A} = \mathfrak{p}_1$ and $x_2 \mathcal{A} = \mathfrak{p}_2^2$.

30

Let's come back to our example with
$$B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap \mathcal{A}$ is the only height-1 prime that contains x_1 and $\mathfrak{p}_2 = (x_1 + 1)A_2 \cap \mathcal{A}$ is the only height-1 prime that contains x_2 . So r = 2.

In addition, $x_1 \mathcal{A} = \mathfrak{p}_1$ and $x_2 \mathcal{A} = \mathfrak{p}_2^2$. Hence $\mathbf{a}_1 = (1,0)$ and $\mathbf{a}_2 = (0,2)$.

Let's come back to our example with
$$B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap \mathcal{A}$ is the only height-1 prime that contains x_1 and $\mathfrak{p}_2 = (x_1 + 1)A_2 \cap \mathcal{A}$ is the only height-1 prime that contains x_2 . So r = 2.

In addition, $x_1\mathcal{A} = \mathfrak{p}_1$ and $x_2\mathcal{A} = \mathfrak{p}_2^2$. Hence $\mathbf{a}_1 = (1,0)$ and $\mathbf{a}_2 = (0,2)$.

Therefore $\mathcal{C}(\mathcal{A}) \cong \mathbb{Z}^2/\langle \mathbf{a}_1, \mathbf{a}_2 \rangle \cong \mathbb{Z}/2\mathbb{Z}.$

A realization theorem

Class groups of generalized cluster algebras

Theorem (P. 2024)

Let G be a finitely generated abelian group. Then there exists an acyclic and coprime generalized cluster algebra \mathcal{A} over an algebraically closed field k such that \mathcal{A} is a Krull domain, its class group $\mathcal{C}(\mathcal{A})$ is isomorphic to G and each class of $\mathcal{C}(\mathcal{A})$ contains exactly |k| prime divisors.

Class groups of generalized cluster algebras

Class groups of generalized cluster algebras

32

Let G be $\mathbb{Z}^4 \times \mathbb{Z}/3\mathbb{Z}$.

• Let $\mathbf{x} = \{x_1, x_2, x_3, x_4\}.$

Class groups of generalized cluster algebras

UNI

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}.$$

• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$

Class groups of generalized cluster algebras

Let G be $\mathbb{Z}^4 \times \mathbb{Z}/3\mathbb{Z}$.

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}.$$

• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$

M. Pompili (mara.pompili@uni-graz.at) Every finitely generated abelian group is the class group of a generalized cluster algebra

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}.$$

• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$.

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}.$$

• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}$$
.
• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$.Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
• $\{r_1A_1 \cap A, r_2A_1 \cap A, r_3A_1 \cap A, r_4A_1 \cap A, r_5A_1 \cap A$

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}$$
.
• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
• $\{\underbrace{r_1 A_1 \cap A, r_2 A_1 \cap A, r_3 A_1 \cap A, r_4 A_1 \cap A, r_5 A_1 \cap A, \underbrace{g_2 A_2 \cap A}_{p_{11}, \dots, p_{15} \ni x_1}, \underbrace{g_2 A_2 \cap A}_{=:p_2 \ni x_2}$

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}$$
.
• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
• $\{\underbrace{r_1A_1 \cap A, r_2A_1 \cap A, r_3A_1 \cap A, r_4A_1 \cap A, r_5A_1 \cap A, g_2A_2 \cap A, f_3A_3 \cap A, f_4A_4 \cap A \}$.
• $\underbrace{r_{11} \wedge r_{12} \wedge r_{13} \wedge r$

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}$$
.
• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$.Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
• $\{\underbrace{r_1A_1 \cap A, r_2A_1 \cap A, r_3A_1 \cap A, r_4A_1 \cap A, r_5A_1 \cap A, g_2A_2 \cap A, \underbrace{f_3A_3 \cap A, f_4A_4 \cap A}_{p_{11}, \dots, p_{15} \ni x_1}, \underbrace{g_2A_2 \cap A, f_3A_3 \cap A, f_4A_4 \cap A}_{=:p_3 \ni x_3}, \underbrace{f_4A_4 \cap A}_{=:p_4 \ni x_4}$.
• $x_1A = p_{11} \cdots p_{12} \cdots p_{13} \cdots p_{14} \cdots p_{15}, x_2A = p_3^2, x_3A = p_3, x_4A = p_4$

Class groups of generalized cluster algebras

• Let
$$\mathbf{x} = \{x_1, x_2, x_3, x_4\}$$
.
• Let $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
• $f_1 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$.Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
• $\{\underbrace{r_1 A_1 \cap A, r_2 A_1 \cap A, r_3 A_1 \cap A, r_4 A_1 \cap A, r_5 A_1 \cap A, \underbrace{g_2 A_2 \cap A}_{=:p_2 \ni x_2}, \underbrace{f_3 A_3 \cap A}_{=:p_4 \ni x_4}, \underbrace{f_4 A_4 \cap A}_{=:p_4 \ni x_4}\}$.
• $x_1 \mathcal{A} = \mathfrak{p}_{11} \cdots \mathfrak{p}_{12} \cdots \mathfrak{p}_{13} \cdots \mathfrak{p}_{14} \cdots \mathfrak{p}_{15}, \underbrace{x_2 \mathcal{A}}_{=:p_2^3}, x_3 \mathcal{A} = \mathfrak{p}_3, x_4 \mathcal{A} = \mathfrak{p}_4$
• $C(\mathcal{A}(\mathbf{x}, \rho, B)) \cong \mathbb{Z}^8 / \langle \mathbf{a}_1, \dots, \mathbf{a}_5 \rangle \cong \mathbb{Z}^4 \times \mathbb{Z} / 3\mathbb{Z}.$

33

- The class groups of generalized cluster and cluster algebras (that are Krull domains) are always finitely generated.
- Cluster algebras does not have torsion, while generalised cluster algebra may have torsion.
- It is possible to realize every finitely generated abelian group as class group of a generalized cluster algebra.

- The class groups of generalized cluster and cluster algebras (that are Krull domains) are always finitely generated.
- Cluster algebras does not have torsion, while generalised cluster algebra may have torsion.
- It is possible to realize every finitely generated abelian group as class group of a generalized cluster algebra.

Open questions:

- Is there a characterization of (generalized) cluster algebras that are Krull domains?
- Can we say something more about the arithmetic of generalized cluster algebras?

34

Class groups of generalized cluster algebras

Thank you for your attention!