

EVERY FINITELY GENERATED ABELIAN GROUP IS THE CLASS group of a generalized cluster algebra

Mara POMPILI

University of Graz

Ring Theory Seminar, November 7 2024

1 [The cluster algebra](#page-1-0) A_n

² [Generalized cluster algebras](#page-27-0)

³ [Class groups of generalized cluster algebras](#page-71-0)

썠

[The cluster algebra](#page-1-0) A_n

LUN

[The cluster algebra](#page-1-0) A_n

LUN

[The cluster algebra](#page-1-0) A_n

LUN

[The cluster algebra](#page-1-0) A_n

LIN

[The cluster algebra](#page-1-0) A_n

UN

[The cluster algebra](#page-1-0) A_n

A TRIANGULATION of the regular $n + 3$ -gon P_{n+3} is a maximal collection of pairwise non-crossing diagonals P_{n+3} .

Ptolemy's formula:

 $a_{26}=\frac{a_{12}a_{46}+a_{24}a_{16}}{2}$ a_{14}

[The cluster algebra](#page-1-0) A_n

A TRIANGULATION of the regular $n + 3$ -gon P_{n+3} is a maximal collection of pairwise non-crossing diagonals P_{n+3} .

Knowing the values of a triangulation, we can know all the other values

The commutative ring A_n comes with the following data.

The commutative ring A_n comes with the following data.

A special set of generators (the a_{ij}).

The commutative ring A_n comes with the following data.

- A special set of generators (the a_{ii}).
- Many special subsets of those generators (the triangulations) which 'almost' generate A_n , in that every element can be written as a Laurent polynomial.

The commutative ring A_n comes with the following data.

- A special set of generators (the a_{ii}).
- Many special subsets of those generators (the triangulations) which 'almost' generate A_n , in that every element can be written as a Laurent polynomial.
- A simple relation for moving between two adjacent special subsets (the Ptolemy relations), which replaces a single element with a binomial divided by the old element.

A cluster algebra is a commutative ring A with the following data

A cluster algebra is a commutative ring A with the following data

- A special set of generators (the cluster variables).
- **Many special subsets of those generators (the clusters) which 'almost' generate** A **,** in that every element can be written as a Laurent polynomial.
- A simple relation for moving between two adjacent special subsets (the mutation relations), which replaces a single element with a binomial divided by the old element.

From A_n to cluster algebras

[The cluster algebra](#page-1-0) A_n

Let $\mathcal{T} = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Let $\mathcal{T} = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Define a matrix $B = (b_{ij})$, where $b_{ij} = 1$ (resp., -1) if d_i, d_j are two sides of a triangle such that d_i preceed d_i counterclockwise (resp. clockwise). Otherwise $b_{ii} = 0$.

Let $\mathcal{T} = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Define a matrix $B = (b_{ij})$, where $b_{ij} = 1$ (resp., -1) if d_i, d_j are two sides of a triangle such that d_i preceed d_i counterclockwise (resp. clockwise). Otherwise $b_{ii} = 0$.

$$
B(\mathcal{T}) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}
$$

Let $\mathcal{T} = \{d_1, \ldots, d_n\}$ be a triangulation of P_{n+3} .

Define a matrix $B = (b_{ij})$, where $b_{ij} = 1$ (resp., -1) if d_i, d_j are two sides of a triangle such that d_i preceed d_i counterclockwise (resp. clockwise). Otherwise $b_{ii} = 0$.

$$
B(\mathcal{T}) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}
$$

The matrix B is antisymmetric!

[The cluster algebra](#page-1-0) A_n

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

[The cluster algebra](#page-1-0) A_n

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

[The cluster algebra](#page-1-0) A_n

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

[The cluster algebra](#page-1-0) A_n

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

$$
B(\mathcal{T}')=(b_{ij}')=\begin{pmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{pmatrix}
$$

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

$$
b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = 2 \text{ or } j = 2; \\ b_{ij} + ([b_{2j}]_+ b_{i2} + b_{2j}[-b_{i2}]_+) & \text{otherwise.} \end{cases}
$$

$$
B(\mathcal{T}')=(b_{ij}')=\begin{pmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{pmatrix}
$$

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}
$$

LUN

$$
b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = 2 \text{ or } j = 2; \\ b_{ij} + ([b_{2j}]_+ b_{i2} + b_{2j}[-b_{i2}]_+) & \text{otherwise.} \end{cases}
$$

$$
b_{13}^\prime = b_{13} + [b_{23}]_+b_{12} + b_{23}[-b_{12}]_+
$$

$$
B(\mathcal{T}')=(b'_{ij})=\begin{pmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{pmatrix}
$$

[The cluster algebra](#page-1-0) A_n

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

HAT

$$
b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = 2 \text{ or } j = 2; \\ b_{ij} + ([b_{2j}]_+ b_{i2} + b_{2j}[-b_{i2}]_+) & \text{otherwise.} \end{cases}
$$

$$
b_{13}^{\prime}=b_{13}+[b_{23}]_+b_{12}+b_{23}[-b_{12}]_+=0+(-1)1=-1
$$

$$
B(\mathcal{T}') = (b_{ij}') = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}
$$

[Generalized cluster algebras](#page-27-0)

1 [The cluster algebra](#page-1-0) A_n

2 [Generalized cluster algebras](#page-27-0)

³ [Class groups of generalized cluster algebras](#page-71-0)

[Generalized cluster algebras](#page-27-0)

■ CLUSTER ALGEBRAS were introduced by Fomin and Zelevinsky in 2002

- Cluster algebras were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups

- Cluster algebras were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups
- **Cluster algebras describe TRIANGULATIONS OF A RIEMANN SURFACE with marked** points

- Cluster algebras were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups
- **Cluster algebras describe TRIANGULATIONS OF A RIEMANN SURFACE with marked** points
- **E** Checkov and Shapiro in 2014 introduced GENERALIZED CLUSTER ALGEBRAS

- Cluster algebras were introduced by Fomin and Zelevinsky in 2002
- Aim: find a dual canonical basis for some Lie groups
- **Cluster algebras describe** TRIANGULATIONS OF A RIEMANN SURFACE with marked points
- **E** Checkov and Shapiro in 2014 introduced GENERALIZED CLUSTER ALGEBRAS
- Generalized cluster algebras describe triangulations of a surface with ORBIFOLD **POINTS**

Our setting

[Generalized cluster algebras](#page-27-0)

Let $R \supseteq \mathbb{Z}$ be a factorial domain, $n \geq 1$.

Our setting

[Generalized cluster algebras](#page-27-0)

Let $R \supset \mathbb{Z}$ be a factorial domain, $n \geq 1$.

A matrix $B \in M_n(\mathbb{Z})$ is SKEW-SYMMETRIZABLE if there exists a matrix $D \in M_n(\mathbb{N})$ such that DB is a skew-symmetric matrix.

Our setting

[Generalized cluster algebras](#page-27-0)

Let $R \supset \mathbb{Z}$ be a factorial domain, $n \geq 1$.

A matrix $B \in M_n(\mathbb{Z})$ is SKEW-SYMMETRIZABLE if there exists a matrix $D \in M_n(\mathbb{N})$ such that DB is a skew-symmetric matrix.

Notice that either $b_{ii}b_{ii} < 0$ or $b_{ii} = b_{ii} = 0$.
Our setting

[Generalized cluster algebras](#page-27-0)

Let $R \supset \mathbb{Z}$ be a factorial domain, $n \geq 1$.

A matrix $B \in M_n(\mathbb{Z})$ is SKEW-SYMMETRIZABLE if there exists a matrix $D \in M_n(\mathbb{N})$ such that DB is a skew-symmetric matrix.

Notice that either $b_{ii}b_{ii} < 0$ or $b_{ii} = b_{ii} = 0$.

For each column *i* of B, fix a positive integer $d_i \in \mathbb{N}$, such that $d_i | b_{ii}$ for every $j \in \{1, \ldots, n\}$. We denote by β_{ii} the integer b_{ii}/d_i .

A GENERALIZED SEED is a triple (x, ρ, B) where

A GENERALIZED SEED is a triple (x, ρ, B) where

B is a skew-symmetrizable matrix with a fixed set of column divisors $\{d_1, \ldots, d_n\}$

- A GENERALIZED SEED is a triple (x, ρ, B) where
	- **B** is a skew-symmetrizable matrix with a fixed set of column divisors $\{d_1, \ldots, d_n\}$
	- $\rho=\{\rho_1,\ldots,\rho_n\}$ is a set of coefficents with $\rho_i=\{1,\rho_{i2},\ldots,\rho_{id_{i-1}},1\}\subseteq R$

- A GENERALIZED SEED is a triple (x, ρ, B) where
	- **B** is a skew-symmetrizable matrix with a fixed set of column divisors $\{d_1, \ldots, d_n\}$
	- $\rho=\{\rho_1,\ldots,\rho_n\}$ is a set of coefficents with $\rho_i=\{1,\rho_{i2},\ldots,\rho_{id_{i-1}},1\}\subseteq R$
	- $\mathbf{x} = \{x_1, \ldots, x_n\}$ is a cluster, i.e. a set of algebraically independent indeterminates over R.

[Generalized cluster algebras](#page-27-0)

Let (x, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

[Generalized cluster algebras](#page-27-0)

Let (x, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

CLUSTER

$$
\mathbf{x}' = (\mathbf{x} \setminus x_i) \cup \{x'_i\}
$$

where

$$
x_i x_i' = \sum_{j=0}^{d_i} \rho_{ij} \prod_{k=1}^n x_k^{j[\beta_{ki}]_+ + (d_i - j)[-\beta_{ki}]_+}
$$

[Generalized cluster algebras](#page-27-0)

Let (x, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

CLUSTER

COEFFICENTS

$$
\mathbf{x}' = (\mathbf{x} \setminus x_i) \cup \{x_i'\}
$$
\nwhere\n
$$
\rho' = (\rho \setminus \rho_i) \cup \{\rho'_i\}
$$
\nwhere

$$
x_i x_i' = \sum_{j=0}^{d_i} \rho_{ij} \prod_{k=1}^n x_k^{j[\beta_{ki}]_+ + (d_i - j)[-\beta_{ki}]_+} \qquad \rho'_{ij} = \rho_{id_i - j}
$$

[Generalized cluster algebras](#page-27-0)

Let (x, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction *i*, i.e. to build another seed (\mathbf{x}', ρ', B') .

[Generalized cluster algebras](#page-27-0)

Let (x, ρ, B) be a generalized seed.¹ We want to mutate the seed in direction i, i.e. to build another seed (\mathbf{x}', ρ', B') .

The polynomials $f_i := x_i x_i' \in R[x]$ are called EXCHANGE POLYNOMIALS.

LUN

Let (x, ρ, B) be a generalized seed.

Let (x, ρ, B) be a generalized seed.

Mutations produce a collection of seeds (possibly infinitely many).

Let (x, ρ, B) be a generalized seed.

Mutations produce a collection of seeds (possibly infinitely many). Each element of a cluster is called a CLUSTER VARIABLE.

Let (x, ρ, B) be a generalized seed.

Mutations produce a collection of seeds (possibly infinitely many). Each element of a cluster is called a CLUSTER VARIABLE.

The GENERALIZED CLUSTER ALGEBRA $A = A(x, \rho, B)$ is the subalgebra of the rational functions $R(x_1, \ldots, x_n)$ generated by all the cluster variables.

Assume $d_i = 1$ for every $i \in [1, n]$.

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$
x_i x_i' = \sum_{j=0}^{d_i} \rho_{ij} \prod_{k=1}^n x_k^{j[\beta_{ki}]_+ + (d_i - j)[-\beta_{ki}]_+}
$$

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$
x_i x_i' = \rho_{i0} \prod_{k=1}^n x_k^{d_i[-\beta_{ki}]_+} + \rho_{id_i} \prod_{k=1}^n x_k^{d_i[\beta_{ki}]_+}
$$

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$
x_i x_i' = \rho_{i0} \prod_{k=1}^n x_k^{d_i[-\beta_{ki}]_+} + \rho_{id_i} \prod_{k=1}^n x_k^{d_i[\beta_{ki}]_+} = \prod_{b_{ki}<0} x_k^{-b_{ki}} + \prod_{b_{ki}>0} x_k^{b_{ki}}
$$

Assume $d_i = 1$ for every $i \in [1, n]$.

Then $\rho_i = (1, 1)$ for every $i \in [1, n]$.

And

$$
x_i x_i' = \rho_{i0} \prod_{k=1}^n x_k^{d_i[-\beta_{ki}]_+} + \rho_{id_i} \prod_{k=1}^n x_k^{d_i[\beta_{ki}]_+} = \prod_{b_{ki}<0} x_k^{-b_{ki}} + \prod_{b_{ki}>0} x_k^{b_{ki}}
$$

And in this case we say that $A(x, B)$ is a CLUSTER ALGEBRA.

$$
\quad \text{ Let } \textbf{x} = \{x_1, x_2\}, \ B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, \ d_1 = 1, d_2 = 2, \text{ and } \rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.
$$

Let
$$
\mathbf{x} = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\nTo get $f_1 = x_1 x'_1$

$$
x_1x_1' = \sum_{j=0}^{d_1} \rho_{1j} \prod_{k=1}^2 x_k^{j[\beta_{k1}]_+ + (d_1 - j)[-\beta_{k1}]_+}
$$

\n- Let
$$
x = \{x_1, x_2\}, B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, d_1 = 1, d_2 = 2,
$$
 and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}.$
\n- To get $f_1 = x_1 x_1' \dots$
\n- $x_1 x_1' = \prod_{k=1}^2 x_k^{[-b_{k1}]_+} + \prod_{k=1}^2 x_k^{[b_{k1}]_+}$
\n

\n- Let
$$
x = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\n- To get $f_1 = x_1 x_1' \dots$
\n- $x_1 x_1' = x_2^{[-b_{21}]_+} + x_2^{[b_{21}]_+}$
\n

\n- Let
$$
x = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\n- To get $f_1 = x_1 x_1' \dots$
\n- $x_1 x_1' = x_2 + 1$
\n

An example

\n- Let
$$
x = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\n- To get $f_1 = x_1 x_1' \dots$, $x_1 x_1' = x_2 + 1$
\n

To get $f_2 = x_2 x'_2 ...$

$$
x_2x_2' = \sum_{j=0}^{d_2} \rho_{2j} \prod_{k=1}^2 x_k^{j[\beta_{k2}]_+ + (d_2 - j)[- \beta_{21}]_+}
$$

\n- Let
$$
x = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\n- To get $f_1 = x_1 x_1' \dots$, $x_1 x_1' = x_2 + 1$
\n

To get
$$
f_2 = x_2 x_2' \dots
$$

$$
x_2x_2'=\prod_{k=1}^2x_k^{2[-\beta_{k2}]_+}+2\prod_{k=1}^2x_k^{[\beta_{k2}]_++[-\beta_{k2}]_+}+\prod_{k=1}^2x_k^{2[\beta_{k2}]_+}
$$

\n- Let
$$
x = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\n- To get $f_1 = x_1 x_1' \dots$
\n- $x_1 x_1' = x_2 + 1$
\n

To get $f_2 = x_2 x'_2 ...$

$$
x_2x_2'=\prod_{k=1}^2x_k^{2[-\beta_{k2}]_+}+2\prod_{k=1}^2x_k^{[\beta_{k2}]_++[-\beta_{k2}]_+}+\prod_{k=1}^2x_k^{2[\beta_{k2}]_+}=x_1^2+2x_1+1
$$

\n- Let
$$
x = \{x_1, x_2\}
$$
, $B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$, $d_1 = 1$, $d_2 = 2$, and $\rho_1 = \{1, 1\}$, $\rho_2 = \{1, 2, 1\}$.
\n- To get $f_1 = x_1 x_1' \dots$
\n- $x_1 x_1' = x_2 + 1$
\n

To get $f_2 = x_2 x'_2 ...$

$$
x_2x_2'=\prod_{k=1}^2x_k^{2[-\beta_{k2}]_+}+2\prod_{k=1}^2x_k^{[\beta_{k2}]_+ + [-\beta_{k2}]_+}+\prod_{k=1}^2x_k^{2[\beta_{k2}]_+}=x_1^2+2x_1+1
$$

 $\mathcal{A}(\mathsf{x},\rho,B)=R[x_1,x_2,x_3,x_4,x_5,x_6],$ with $x_{k-1}x_{k+1}=$ $\int 1 + x_k$ $k \in 2\mathbb{Z}$ $1+2x_k+x_k^2$ otherwise

$$
B(\mathcal{T})=(b_{ij})=\begin{pmatrix}0&-1&0\\1&0&-1\\0&1&0\end{pmatrix}
$$

Our old example A_n

[Generalized cluster algebras](#page-27-0)

From L.K. Williams, Cluster algebras: An introduction, 2012

.

$$
A_n = \mathcal{A}(\mathbf{x}, B), \text{ with } \mathbf{x} = \{x_1, \dots, x_n\}, \text{ and } b_{ij} = \begin{cases} -1 & \text{if } j = i+1 \\ 1 & \text{if } j = i-1 \\ 0 & \text{otherwise} \end{cases}
$$

$$
A_n = \mathcal{A}(\mathbf{x}, B), \text{ with } \mathbf{x} = \{x_1, \dots, x_n\}, \text{ and } b_{ij} = \begin{cases} -1 & \text{if } j = i+1 \\ 1 & \text{if } j = i-1 \\ 0 & \text{otherwise} \end{cases}
$$

triangulations \leftrightarrow clusters diagonals \leftrightarrow cluster variables

$$
A_n = \mathcal{A}(\mathbf{x}, B), \text{ with } \mathbf{x} = \{x_1, \dots, x_n\}, \text{ and } b_{ij} = \begin{cases} -1 & \text{if } j = i+1 \\ 1 & \text{if } j = i-1 \\ 0 & \text{otherwise} \end{cases}
$$

triangulations \leftrightarrow clusters diagonals \leftrightarrow cluster variables

$$
A_3=R\left[x_1,x_2,x_3,\tfrac{1+x_2}{x_1},\tfrac{x_1+x_3}{x_2},\tfrac{1+x_2}{x_3},\tfrac{x_1+(1+x_2)x_3}{x_1x_2},\tfrac{(1+x_2)x_1+x_3}{x_2x_3},\tfrac{(1+x_2)(x_1+x_3)}{x_1x_2x_3}\right]
$$

Some properties

[Class groups of generalized cluster algebras](#page-71-0)

1 [The cluster algebra](#page-1-0) A_n

² [Generalized cluster algebras](#page-27-0)

3 [Class groups of generalized cluster algebras](#page-71-0)

KRULL DOMAINS are a higher dimensional generalization of DEDEKIND DOMAINS 2

 2 integral domains where every non-zero ideals factors uniquely into prime ideals.

- KRULL DOMAINS are a higher dimensional generalization of DEDEKIND DOMAINS 2
- **The CLASS GROUP** $C(A)$ **of A is**

 $C(A) = \{height-1 \text{ prime ideals}\}/\{principal ideals\}.$

 2 integral domains where every non-zero ideals factors uniquely into prime ideals.

KRULL DOMAINS are a higher dimensional generalization of DEDEKIND DOMAINS 2 **The CLASS GROUP** $C(A)$ **of A is**

 $C(A) = \langle$ height-1 prime ideals \rangle/\langle principal ideals \rangle .

There are only finitely many height-1 prime ideals that contain an element $x \in A$, say $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$.

 2 integral domains where every non-zero ideals factors uniquely into prime ideals.

KRULL DOMAINS are a higher dimensional generalization of DEDEKIND DOMAINS 2 \blacksquare The CLASS GROUP $C(A)$ of A is

 $C(A) = \langle$ height-1 prime ideals \rangle/\langle principal ideals \rangle .

- **There are only finitely many height-1 prime ideals that contain an element** $x \in A$ **,** say $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$.
- \blacksquare The principal ideal xA can be written uniquely as

$$
xA = \mathfrak{p_1}^{a_1} \cdot_v \cdots \cdot_v \mathfrak{p_t}^{a_t},
$$

with $a_i \in \mathbb{N}_0$.

 2 integral domains where every non-zero ideals factors uniquely into prime ideals.

- Claborn 1966: every abelian group is the class group of a Dedekind domain.
- **Leedham-Green 1972: every abelian group is the class group of a Dedekind domain** that is the quadratic extension of a principal ideal domain.
- Rosen 1976: every countable abelian group is the class group of an elliptic Dedekind domain.
- Smertnig 2017: every abelian group is the class group of a simple Dedekind domain.
- **Still open: is every finite abelian group isomorphic the class group of the ring of** integers of a number field?

FINITE TYPE CLUSTER ALGEBRAS³ are Krull domains

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

- FINITE TYPE CLUSTER ALGEBRAS³ are Krull domains
- LOCALLY ACYCLIC CLUSTER ALGEBRAS are noetherian and integrally closed, so Krull domains.

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

- FINITE TYPE CLUSTER ALGEBRAS³ are Krull domains
- LOCALLY ACYCLIC CLUSTER ALGEBRAS are noetherian and integrally closed, so Krull domains.
- FULL RANK CLUSTER ALGEBRAS⁴ are Krull domains.

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

- FINITE TYPE CLUSTER ALGEBRAS³ are Krull domains
- LOCALLY ACYCLIC CLUSTER ALGEBRAS are noetherian and integrally closed, so Krull domains.
- FULL RANK CLUSTER ALGEBRAS⁴ are Krull domains.
- **The MARKOV CLUSTER ALGEBRA is not a Krull domain.**

³Cluster algebras with finitely many cluster variables

⁴The matrix B is non-singular.

Theorem (Garcia Elsener, Lampe, Smertnig 2019)

Let $A = A(x, B)$ be a cluster algebra. Assume that A is a Krull domain. Then the class group $C(A)$ of A is

 $\mathcal{C}(\mathcal{A}) \cong \mathbb{Z}^r$

where r is the number of height-1 prime ideals that contain one of x_1, \ldots, x_n .

Theorem (Garcia Elsener, Lampe, Smertnig 2019)

Let $A = A(x, B)$ be a cluster algebra. Assume that A is a Krull domain. Then the class group $C(A)$ of A is

 $\mathcal{C}(\mathcal{A}) \cong \mathbb{Z}^r$

where r is the number of height-1 prime ideals that contain one of x_1, \ldots, x_n .

Moreover, if $n \geq 2$, then every class contains exactly $|R|$ height-1 prime ideals.

The rank r of the class group $C(A)$ can be computed explicitely in some cases:

The rank r of the class group $C(A)$ can be computed explicitely in some cases:

for acyclic cluster algebras (Garcia Elsener, Lampe, Smertnig 2019)

The rank r of the class group $C(A)$ can be computed explicitely in some cases:

For acyclic cluster algebras (Garcia Elsener, Lampe, Smertnig 2019)

 \blacksquare full rank upper cluster algebras (P. 2023)

Theorem (P. 2024)

Let $A = A(x, \rho, B)$ be a generalized cluster algebra. Assume that A is a Krull domain. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the pairwise distinct height-1 prime ideals of A containining one of x_1, \ldots, x_n . Suppose that

$$
x_i\mathcal{A}=\mathfrak{p}_1^{a_{i1}}\cdot_v\cdots\cdot_v\mathfrak{p}_r^{a_{ir}},
$$

with $\mathbf{a}_i = (a_{ij})_{j=1}^r \in \mathbb{N}_0^r$. Then

 $\mathcal{C}(\mathcal{A}) \cong \mathbb{Z}^r/\langle \mathbf{a}_i | i \in [1,n] \rangle$

and it is generated by $[p_1], \ldots, [p_r]$.

Moreover, if $n > 2$, then every class contains exactly $|R|$ height-1 prime ideals.

Let A be a generalized cluster algebra (that is also a Krull domain), and G its class group.

M. Pompili (mara.pompili@uni-graz.at) [Every finitely generated abelian group is the class group of a generalized cluster algebra](#page-0-0) 28

Let A be a generalized cluster algebra (that is also a Krull domain), and G its class group.

If $G = 0$, then A is factorial.

Let A be a generalized cluster algebra (that is also a Krull domain), and G its class group.

- If $G = 0$, then A is factorial.
- **If G** is infinite, then for every non-empty finite subset $L = \{l_1, \ldots, l_k\}$ of $\mathbb{N}_{\geq 2}$ there exists $a \in A$ such that

$$
a = u_{1,1} \cdots u_{1, i_1} = \cdots = u_{i_1,1} \cdots u_{i_1, i_1},
$$

where u_{ij} are atoms of A .

Let A be a generalized cluster algebra (that is also a Krull domain), and G its class group.

- If $G = 0$, then A is factorial.
- **If G** is infinite, then for every non-empty finite subset $L = \{l_1, \ldots, l_k\}$ of $\mathbb{N}_{\geq 2}$ there exists $a \in A$ such that

$$
a = u_{1,1} \cdots u_{1, i_1} = \cdots = u_{i_1,1} \cdots u_{i_1, i_1},
$$

where u_{ii} are atoms of A .

If G is finite, then there are arithmetic invariants that make us completely understand the algebraic structure of A.

Proposition (P. 2024)

Let $A = A(x, \rho, B)$ be a generalized cluster algebra. Suppose that A is acyclic and full rank. Let $r_1, \ldots, r_t \in R[x]$ be the distinct irreducible factors of the exchange polynomial $f_i = x_i x'_i$. Then

$\{r_iA_i\cap\mathcal{A}\mid j\in[1,t]\}$

is the set of all the height-1 prime ideals of A that contain x_i .

Proposition (P. 2024)

Let $A = A(x, \rho, B)$ be a generalized cluster algebra. Suppose that A is acyclic and full rank. Let $r_1, \ldots, r_t \in R[x]$ be the distinct irreducible factors of the exchange polynomial $f_i = x_i x'_i$. Then

$\{r_iA_i\cap\mathcal{A}\mid j\in[1,t]\}$

is the set of all the height-1 prime ideals of A that contain x_i .

Here A_i denote the Laurent polynomial ring $R[x_1^{\pm 1}, \ldots, x_i'^{\pm 1}, \ldots, x_n^{\pm 1}].$

How to compute the class group?

[Class groups of generalized cluster algebras](#page-71-0)

Let's come back to our example with
$$
B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}
$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.

How to compute the class group?

[Class groups of generalized cluster algebras](#page-71-0)

Let's come back to our example with $B=\begin{pmatrix} 0 & -2\ 1 & 0 \end{pmatrix}$, and $\rho_1=\{1,1\}, \rho_2=\{1,2,1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Let's come back to our example with
$$
B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}
$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap A$ is the only height-1 prime that contains x_1 and $p_2 = (x_1 + 1)A_2 \cap A$ is the only height-1 prime that contains x_2 .

Let's come back to our example with
$$
B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}
$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap A$ is the only height-1 prime that contains x_1 and $p_2 = (x_1 + 1)A_2 \cap A$ is the only height-1 prime that contains x_2 . So $r = 2$.

Let's come back to our example with $B=\begin{pmatrix} 0 & -2\ 1 & 0 \end{pmatrix}$, and $\rho_1=\{1,1\}, \rho_2=\{1,2,1\}.$

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap A$ is the only height-1 prime that contains x_1 and $p_2 = (x_1 + 1)A_2 \cap A$ is the only height-1 prime that contains x_2 . So $r = 2$.

In addition, $x_1 \mathcal{A} = \mathfrak{p}_1$ and $x_2 \mathcal{A} = \mathfrak{p}_2^2$.

Let's come back to our example with
$$
B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}
$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $p_1 = (x_2 + 1)A_1 \cap A$ is the only height-1 prime that contains x_1 and $p_2 = (x_1 + 1)A_2 \cap A$ is the only height-1 prime that contains x_2 . So $r = 2$.

In addition, $x_1A = \mathfrak{p}_1$ and $x_2A = \mathfrak{p}_2^2$. Hence $\mathbf{a}_1 = (1,0)$ and $\mathbf{a}_2 = (0,2)$.

Let's come back to our example with
$$
B = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}
$$
, and $\rho_1 = \{1, 1\}, \rho_2 = \{1, 2, 1\}$.

Remember that $f_1 = x_2 + 1$ and $f_2 = x_1^2 + 2x_1 + 1$.

Then $\mathfrak{p}_1 = (x_2 + 1)A_1 \cap A$ is the only height-1 prime that contains x_1 and $p_2 = (x_1 + 1)A_2 \cap A$ is the only height-1 prime that contains x_2 . So $r = 2$.

In addition, $x_1A = \mathfrak{p}_1$ and $x_2A = \mathfrak{p}_2^2$. Hence $\mathbf{a}_1 = (1,0)$ and $\mathbf{a}_2 = (0,2)$.

Therefore $C(\mathcal{A}) \cong \mathbb{Z}^2 / \langle \mathbf{a}_1, \mathbf{a}_2 \rangle \cong \mathbb{Z}/2\mathbb{Z}$.

A realization theorem

[Class groups of generalized cluster algebras](#page-71-0)

Theorem (P. 2024)

Let G be a finitely generated abelian group. Then there exists an acyclic and coprime generalized cluster algebra A over an algebraically closed field k such that A is a Krull domain, its class group $C(A)$ is isomorphic to G and each class of $C(A)$ contains exactly |k| prime divisors.

[Class groups of generalized cluster algebras](#page-71-0)

[Class groups of generalized cluster algebras](#page-71-0)

Let G be $\mathbb{Z}^4 \times \mathbb{Z}/3\mathbb{Z}$.

Let $\mathbf{x} = \{x_1, x_2, x_3, x_4\}.$

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$,

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$

M. Pompili (mara.pompili@uni-graz.at) [Every finitely generated abelian group is the class group of a generalized cluster algebra](#page-0-0) 32

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_3 = \rho_4 = \{1, 1\}$

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_4 = x_4 + 1$, $\rho_5 = (x_3 + 1)^3$, $\rho_5 = x_2 + 1$, $\rho_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_4 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
\nIf $\rho_1 A_1 \cap A$, $r_2 A_1 \cap A$, $r_3 A_1 \cap A$, $r_4 A_1 \cap A$, $r_5 A_1 \cap A$, $r_6 A_1 \cap A$, $r_7 A_1 \cap A$, $r_8 A_1 \cap A$, $r_9 A_1 \cap A$, r

Idea of the construction

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_4 = x_4 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
\nIf $\rho_1 A_1 \cap A$, $r_2 A_1 \cap A$, $r_3 A_1 \cap A$, $r_4 A_1 \cap A$, $r_5 A_1 \cap A$, $\sum_{i=1}^{\infty} a_i B_2 \cap A$
\n $\rho_{11}, \ldots, \rho_{15} \ge x_1$

Idea of the construction

[Class groups of generalized cluster algebras](#page-71-0)

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_4 = x_4^5 + 1$, $f_2 = (x_3 + 1)^3$, $f_3 = x_2 + 1$, $f_4 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
\nIf $\rho_1 A_1 \cap A$, $r_2 A_1 \cap A$, $r_3 A_1 \cap A$, $r_4 A_1 \cap A$, $r_5 A_1 \cap A$, $\underbrace{g_2 A_2 \cap A}_{=: p_2 \ni x_2}$, $\underbrace{f_3 A_3 \cap A}_{=: p_3 \ni x_3}$, $\underbrace{f_4 A_4 \cap A}_{=: p_4 \ni x_4}$.

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $\rho_4 = x_4^5 + 1$, $\rho_5 = (x_3 + 1)^3$, $\rho_5 = x_2 + 1$, $\rho_6 = x_1 + 1$. Write: $f_1 = r_1 \cdots r_5$, and $f_2 = g_2^3$.
\nIf $\rho_1 A_1 \cap A$, $r_2 A_1 \cap A$, $r_3 A_1 \cap A$, $r_4 A_1 \cap A$, $r_5 A_1 \cap A$, $\sum_{i=1}^{\infty} a_i A_i$, $\sum_{i=1}^{\infty} a_i A_i$, $\sum_{i=1}^{\infty} a_i A_i$
\n $\rho_{11}, \ldots, \rho_{15} \Rightarrow x_1$
\n $\rho_{12} = x_1^3$, $\rho_{14} = x_2^3$, $\rho_{15} = x_3^3$, $\rho_{16} = x_4^3$, $x_3 A = x_5$, $x_4 A = x_6$

Let
$$
\mathbf{x} = \{x_1, x_2, x_3, x_4\}.
$$

\nLet $B = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{pmatrix}$, $\rho_1 = \{1, 1\}$ and $\rho_2 = \{1, 3, 3, 1\}$, $\rho_3 = \rho_4 = \{1, 1\}$
\nIf $h = x_4^5 + 1$, $h = (x_3 + 1)^3$, $h = x_2 + 1$, $h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $\{h = x_4^5 + 1, h = (x_3 + 1)^3, h = x_2 + 1, h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $h = x_4 + 1, h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $h = x_4 + 1, h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $h = x_4 + 1, h = x_4 + 1$, $h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $h = x_4 + 1, h = x_4 + 1$. Write: $h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $h = x_4 + 1, h = x_4 + 1$, $h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2^3$.
\nIf $h = x_4 + 1, h = x_4 + 1$, $h = x_1 + 1$. Write: $h = r_1 \cdots r_5$, and $h = g_2$

- The class groups of generalized cluster and cluster algebras (that are Krull domains) are always finitely generated.
- Cluster algebras does not have torsion, while generalised cluster algebra may have torsion.
- It is possible to realize every finitely generated abelian group as class group of a generalized cluster algebra.

- The class groups of generalized cluster and cluster algebras (that are Krull domains) are always finitely generated.
- **Cluster algebras does not have torsion, while generalised cluster algebra may have** torsion.
- \blacksquare It is possible to realize every finitely generated abelian group as class group of a generalized cluster algebra.

Open questions:

- In Is there a characterization of (generalized) cluster algebras that are Krull domains?
- Can we say something more about the arithmetic of generalized cluster algebras?

[Class groups of generalized cluster algebras](#page-71-0)

Thank you for your attention!