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Semidomains

Definition. A semiring S is a (nonempty) set endowed with two binary operations denoted by
‘+’ and ‘·’ and called addition and multiplication, respectively, such that the following
conditions hold:

1. (S ,+) is a commutative monoid with its identity element denoted by 0;
2. (S , ·) is a commutative semigroup with an identity element denoted by 1;
3. b · (c + d) = b · c + b · d for all b, c , d ∈ S .

Definition. A semidomain is a subsemiring of an integral domain.

Remark: For a semidomain S , the additive group gp(S ,+) is the smallest integral domain
containing S ; we denote it by G(S).

Examples of Semidomains
• integral domains,
• Puiseux monoids that are closed under multiplication and contain 1,
• N0, N0[x ], N0[x , x−1], N0[[x ]]

3 / 65



Semidomains

Definition. A semiring S is a (nonempty) set endowed with two binary operations denoted by
‘+’ and ‘·’ and called addition and multiplication, respectively, such that the following
conditions hold:

1. (S ,+) is a commutative monoid with its identity element denoted by 0;
2. (S , ·) is a commutative semigroup with an identity element denoted by 1;
3. b · (c + d) = b · c + b · d for all b, c , d ∈ S .

Definition. A semidomain is a subsemiring of an integral domain.

Remark: For a semidomain S , the additive group gp(S ,+) is the smallest integral domain
containing S ; we denote it by G(S).

Examples of Semidomains
• integral domains,
• Puiseux monoids that are closed under multiplication and contain 1,
• N0, N0[x ], N0[x , x−1], N0[[x ]]

4 / 65



Semidomains

Definition. A semiring S is a (nonempty) set endowed with two binary operations denoted by
‘+’ and ‘·’ and called addition and multiplication, respectively, such that the following
conditions hold:

1. (S ,+) is a commutative monoid with its identity element denoted by 0;
2. (S , ·) is a commutative semigroup with an identity element denoted by 1;
3. b · (c + d) = b · c + b · d for all b, c , d ∈ S .

Definition. A semidomain is a subsemiring of an integral domain.

Remark: For a semidomain S , the additive group gp(S ,+) is the smallest integral domain
containing S ; we denote it by G(S).

Examples of Semidomains
• integral domains,
• Puiseux monoids that are closed under multiplication and contain 1,
• N0, N0[x ], N0[x , x−1], N0[[x ]]

5 / 65



Factorization Properties of Semidomains

A semidomain S consists of two monoids, namely, the additive monoid (S ,+) and the
multiplicative monoid (S \ {0}, ·); we denote the latter monoid as S∗.

Definitions

(a) The set of additive (resp., multiplicative) atoms of S is denoted by A+(S) (resp., A(S)).

(b) A semidomain S is atomic if the monoid S∗ is atomic.

(c) A semidomain S is a bounded factorization semidomain (BFS) if the monoid S∗ is a BFM.

(d) A semidomain S is a finite factorization semidomain (FFS) if the monoid S∗ is an FFM.

(e) A semidomain S is a unique factorization semidomain (UFS) if the monoid S∗ is a UFM.
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Polynomial Semidomains

Definition. The set consisting of all polynomials with coefficients in a semidomain S is also a
semidomain, which we denote by S [x ] and call the semidomain of polynomials over S .

Remarks:
• If R is an integral domain containing a semidomain S then the elements of S [x ] are

polynomials in R[x ].

• For a polynomial f = cnx
kn + · · ·+ c0x

k0 written in canonical form, we set
Supp(f ) := {kn, . . . , k0}.
• Given a semidomain S , we define the semidomain of Laurent polynomials over S in a

similar way, and we denote it by S [x , x−1].

• Given a semidomain S , we define the semidomain of power series over S in a similar way,
and we denote it by S [[x ]].

• Given a semidomain S , we define the semidomain of Laurent series over S in a similar
way, and we denote it by S [[x , x−1]].

8 / 65



Polynomial Semidomains

Definition. The set consisting of all polynomials with coefficients in a semidomain S is also a
semidomain, which we denote by S [x ] and call the semidomain of polynomials over S .

Remarks:
• If R is an integral domain containing a semidomain S then the elements of S [x ] are

polynomials in R[x ].

• For a polynomial f = cnx
kn + · · ·+ c0x

k0 written in canonical form, we set
Supp(f ) := {kn, . . . , k0}.
• Given a semidomain S , we define the semidomain of Laurent polynomials over S in a

similar way, and we denote it by S [x , x−1].

• Given a semidomain S , we define the semidomain of power series over S in a similar way,
and we denote it by S [[x ]].

• Given a semidomain S , we define the semidomain of Laurent series over S in a similar
way, and we denote it by S [[x , x−1]].

9 / 65



Polynomial Semidomains

Definition. The set consisting of all polynomials with coefficients in a semidomain S is also a
semidomain, which we denote by S [x ] and call the semidomain of polynomials over S .

Remarks:
• If R is an integral domain containing a semidomain S then the elements of S [x ] are

polynomials in R[x ].

• For a polynomial f = cnx
kn + · · ·+ c0x

k0 written in canonical form, we set
Supp(f ) := {kn, . . . , k0}.

• Given a semidomain S , we define the semidomain of Laurent polynomials over S in a
similar way, and we denote it by S [x , x−1].

• Given a semidomain S , we define the semidomain of power series over S in a similar way,
and we denote it by S [[x ]].

• Given a semidomain S , we define the semidomain of Laurent series over S in a similar
way, and we denote it by S [[x , x−1]].

10 / 65



Polynomial Semidomains

Definition. The set consisting of all polynomials with coefficients in a semidomain S is also a
semidomain, which we denote by S [x ] and call the semidomain of polynomials over S .

Remarks:
• If R is an integral domain containing a semidomain S then the elements of S [x ] are

polynomials in R[x ].

• For a polynomial f = cnx
kn + · · ·+ c0x

k0 written in canonical form, we set
Supp(f ) := {kn, . . . , k0}.
• Given a semidomain S , we define the semidomain of Laurent polynomials over S in a

similar way, and we denote it by S [x , x−1].

• Given a semidomain S , we define the semidomain of power series over S in a similar way,
and we denote it by S [[x ]].

• Given a semidomain S , we define the semidomain of Laurent series over S in a similar
way, and we denote it by S [[x , x−1]].

11 / 65



Polynomial Semidomains

Definition. The set consisting of all polynomials with coefficients in a semidomain S is also a
semidomain, which we denote by S [x ] and call the semidomain of polynomials over S .

Remarks:
• If R is an integral domain containing a semidomain S then the elements of S [x ] are

polynomials in R[x ].

• For a polynomial f = cnx
kn + · · ·+ c0x

k0 written in canonical form, we set
Supp(f ) := {kn, . . . , k0}.
• Given a semidomain S , we define the semidomain of Laurent polynomials over S in a

similar way, and we denote it by S [x , x−1].

• Given a semidomain S , we define the semidomain of power series over S in a similar way,
and we denote it by S [[x ]].

• Given a semidomain S , we define the semidomain of Laurent series over S in a similar
way, and we denote it by S [[x , x−1]].

12 / 65



Polynomial Semidomains

Definition. The set consisting of all polynomials with coefficients in a semidomain S is also a
semidomain, which we denote by S [x ] and call the semidomain of polynomials over S .

Remarks:
• If R is an integral domain containing a semidomain S then the elements of S [x ] are

polynomials in R[x ].

• For a polynomial f = cnx
kn + · · ·+ c0x

k0 written in canonical form, we set
Supp(f ) := {kn, . . . , k0}.
• Given a semidomain S , we define the semidomain of Laurent polynomials over S in a

similar way, and we denote it by S [x , x−1].

• Given a semidomain S , we define the semidomain of power series over S in a similar way,
and we denote it by S [[x ]].

• Given a semidomain S , we define the semidomain of Laurent series over S in a similar
way, and we denote it by S [[x , x−1]].

13 / 65



Unique Factorization Property

Theorem (folklore)

Let R be an integral domain. Then R is a UFD if and only if R[x ] is a UFD.

Example. In the semidomain N0[x ], we have two factorizations of x5 + x4 + x3 + x2 + x + 1,
namely,

(x + 1)(x4 + x2 + 1) and (x2 + x + 1)(x3 + 1).

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S is a UFD if and only if S [x ] is a UFS.

Open Question (Baeth-Chapman-Gotti)

Is N0 the only “honest” semidomain S satisfying that (S ,+) and S∗ are both UFMs?

14 / 65



Unique Factorization Property

Theorem (folklore)

Let R be an integral domain. Then R is a UFD if and only if R[x ] is a UFD.

Example. In the semidomain N0[x ], we have two factorizations of x5 + x4 + x3 + x2 + x + 1,
namely,

(x + 1)(x4 + x2 + 1) and (x2 + x + 1)(x3 + 1).

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S is a UFD if and only if S [x ] is a UFS.

Open Question (Baeth-Chapman-Gotti)

Is N0 the only “honest” semidomain S satisfying that (S ,+) and S∗ are both UFMs?

15 / 65



Unique Factorization Property

Theorem (folklore)

Let R be an integral domain. Then R is a UFD if and only if R[x ] is a UFD.

Example. In the semidomain N0[x ], we have two factorizations of x5 + x4 + x3 + x2 + x + 1,
namely,

(x + 1)(x4 + x2 + 1) and (x2 + x + 1)(x3 + 1).

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S is a UFD if and only if S [x ] is a UFS.

Open Question (Baeth-Chapman-Gotti)

Is N0 the only “honest” semidomain S satisfying that (S ,+) and S∗ are both UFMs?

16 / 65



Unique Factorization Property

Theorem (folklore)

Let R be an integral domain. Then R is a UFD if and only if R[x ] is a UFD.

Example. In the semidomain N0[x ], we have two factorizations of x5 + x4 + x3 + x2 + x + 1,
namely,

(x + 1)(x4 + x2 + 1) and (x2 + x + 1)(x3 + 1).

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S is a UFD if and only if S [x ] is a UFS.

Open Question (Baeth-Chapman-Gotti)

Is N0 the only “honest” semidomain S satisfying that (S ,+) and S∗ are both UFMs?

17 / 65



Bounded and Finite Factorization Properties

Example. Let M be a BFM torsion-free monoid that is not an FFM. Then N0[x ;M] is a BFS
that is not an FFS.

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S is a BFS if and only if S [x ] is a BFS.

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S is an FFS if and only if S [x ] is an FFS.
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ACCP

In the context of integral domains, it is known that the ACCP ascends to polynomial
extensions. However, this is not true in the more general context of commutative rings with
identity (Heinzer and Lantz, 1994).

Theorem (Gotti-P., 2022)

Let S be a semidomain. Then S satisfies the ACCP if and only if S [x ] satisfies the ACCP.

What about the power series extensions of semidomains?

Example. Consider the power series semidomain N0[[x ]]. It does not satisfy the ACCP. Indeed,

∞∑
n=0

xn·2
k

=
(

1 + x2
k
) ∞∑

n=0

xn·2
k+1
.
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Elasticity

Let M be an atomic monoid. The elasticity of an element b ∈ M \ U(M), denoted by ρ(b), is
defined as

ρ(b) =
sup L(b)

inf L(b)
.

By convention, we set ρ(u) = 1 for every u ∈ M×. In addition, the elasticity of the monoid M
is defined to be

ρ(M) := sup{ρ(b) | b ∈ M}.

On the other hand, the set of elasticities of M is R(M) := {ρ(b) | b ∈ M}, and M is said to
have full elasticity provided that R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)].

Proposition (Gotti-P., 2022)

Let S be a semidomain such that S [x ] is atomic. Then S [x ] has full and infinite elasticity
provided that (S ,+) is reduced.
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Goldbach Conjecture for Polynomials

The Goldbach Conjecture: Every positive even integer bigger than 2 can be written as the
sum of two prime numbers.

Theorem (Hayes, 1965)

Every polynomial f ∈ Z[x ] with degree n ≥ 1 can be expressed as the sum of two irreducible
polynomials.

Theorem (Effinger-Hayes, 1991)

Every odd monic polynomial f of degree n ≥ 2 over every finite field Fq (except the case
f = x2 + α with q even) can be expressed as the sum of three irreducible polynomials.

Theorem (Pollack, 2011)

Let D be a Noetherian domain with infinitely many maximal ideals. Every polynomial
f ∈ D[x ] can be expressed as the sum of two irreducible polynomials.
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Goldbach Conjecture for Z[x ]
Theorem (Hayes, 1965)

Every polynomial f ∈ Z[x ] with degree n ≥ 1 can be expressed as the sum of two irreducible
polynomials.

Remarks:
• Hayes proved this result using only Eisenstein’s criterion.
• Being able to subtract makes the problem easier.

10 = 5 + 5

= 3 + 7
x2 + x + 1 =

(
x2 + 1

)
+ x

=
(
x2 + 2

)
+ (x − 1)

...
...

• We do not recover the Goldbach conjecture by considering polynomials of degree 0 in the
previous statement.
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Goldbach Conjecture for N0[x , x
−1]

Theorem (Liao-P., 2023)

Every polynomial f ∈ N0[x , x−1] can be written as the sum of two irreducibles provided that
f (1) > 3 and |Supp(f )| > 1.

Remarks:

• Since N0[x , x−1]× = {xk | k ∈ Z}, we can think of a polynomial in N0[x , x−1] as a formal
sum of units. Then, as in the Goldbach conjecture, proving this involves partitioning a
fixed set of units into two subsets, each one of which represents an irreducible.

• Note that f ∈ N0[x , x−1] is irreducible when f (1) is a prime number. Therefore, if the
Goldbach conjecture were true, then our statement would hold for Laurent polynomials
f ∈ N0[x , x−1] satisfying that f (1) is an even number strictly greater than 2.

• A similar statement does not hold for polynomials with positive integer coefficients as
x5 + x4 + x3 + x2 cannot be written as the sum of two irreducibles.
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fixed set of units into two subsets, each one of which represents an irreducible.

• Note that f ∈ N0[x , x−1] is irreducible when f (1) is a prime number. Therefore, if the
Goldbach conjecture were true, then our statement would hold for Laurent polynomials
f ∈ N0[x , x−1] satisfying that f (1) is an even number strictly greater than 2.

• A similar statement does not hold for polynomials with positive integer coefficients as
x5 + x4 + x3 + x2 cannot be written as the sum of two irreducibles.
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f (1) > 3 and |Supp(f )| > 1.

Remarks:

• Conditions f (1) > 3 and |Supp(f )| > 1 are needed.

Ex: The polynomial x2 + x + 1 cannot be expressed as the sum of two irreducibles.

• The proof of this theorem uses facts about the distribution of primes in Z.

Open Question

Can we write every element of N0[[x , x−1]] as the sum of at most two irreducibles?
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Goldbach Conjecture for Laurent Polynomials

Theorem (Kaplan-P., 202?)

Let S be an additively reduced and additively atomic semidomain. The following statements
are equivalent:

1. A+(S) = S×;

2. every f ∈ S [x , x−1] with |Supp(f )| > 1 can be expressed as the sum of at most 2
irreducibles;

3. there exists k ∈ N such that every f ∈ S [x , x−1] with |Supp(f )| > 1 can be expressed as
the sum of at most k irreducibles.

Moreover, if any of the previous statements hold and f ∈ S [x , x−1] does not have one of the
following forms:

(a) f = axk0 + bxk1, where either a ∈ S× or b ∈ S×;

(b) f = axk0 + bxk1 + cxk2 , where a, b, c ∈ S×,

then f is the sum of exactly two irreducible polynomials in S [x , x−1].
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Goldbach Conjecture for Polynomial Semidomains

Theorem (Kaplan-P., 202?)

Let S be an additively reduced and additively atomic semidomain. The following statements
are equivalent:

1. A+(S) = S×;

2. every f ∈ S [[x , x−1]] with |Supp(f )| > 1 can be expressed as the sum of at most 3
irreducibles;

3. there exists k ∈ N such that every f ∈ S [[x , x−1]] with |Supp(f )| > 1 can be expressed as
the sum of at most k irreducibles.

Open Question

Can we write every element of S [[x , x−1]] as the sum of at most two irreducibles (assuming S
is additively reduced and additively atomic)?
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Number of Goldbach Decompositions

Example. Consider the additive monoid M = 〈(23)k | k ∈ Z〉, which is clearly reduced. It is
known that M is atomic and A(M) = {rk | k ∈ Z}. Observe that M is a semidomain.

Denoting this semidomain by S , we have that A+(S) = S×.The polynomial f = 4
3x + 2 has

infinitely many Goldbach decompositions in S [x , x−1]. In fact, using the identity
2(23)n = 3(23)n+1, it is not hard to show that, for every n ∈ N, we can write 4

3 = (23)n + sn for
some sn ∈ S∗. Thus, for every n ∈ N, we have that

f =

[(
2

3

)n

x + 1

]
+ [snx + 1] ,

where each summand between brackets is irreducible.

Proposition (Kaplan-P., 202?)

Let S be an additively reduced and additively atomic semidomain for which A+(S) = S×.
Suppose that f ∈ S [[x , x−1]] is not a polynomial. Then we can write f as the sum of at most
three irreducibles in, at least, 2ℵ0 ways.
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Integer-Valued Polynomials on Semidomains

Definition. Let S be a semidomain with quotient field F(S), and let Int(S) be the set of
integer-valued polynomials on S , that is,

Int(S) := {g ∈ F(S)[x ] : g(S) ⊆ S}.

Remarks:
• Note that S ⊆ S [x ] ⊆ Int(S) ⊆ Int(G(S)).

• In general, Int(S ,G(S)) 6= Int(S).

• In many instances, Int(S) 6= S [x ]. For instance, suppose that S is an “honest”
semidomain (i.e., not an integral domain) satisfying that, for all s, s ′ ∈ S , either
s − s ′ ∈ S or s ′ − s ∈ S (e.g., N0, R0). Then Int(S) 6= S [x ] as (x − 1)2 ∈ Int(S).

Open Question

Let S be a semidomain that is not an integral domain. Is Int(S) 6= S [x ]?
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Integer-Valued Polynomials on Semidomains

Example. Consider the semidomain Int(N0) whose elements we refer to as natural-valued
polynomials.

Facts:

• G(Int(N0)) = Int(Z).

• Not all elements of Int(N0) can be expressed as N-linear combinations of
{(X

n

)
: n ∈ N0

}
.

• Int(N0) is an FFS with infinite elasticity.

Example. Consider the semidomain Int(R≥0) whose elements we refer to as
positive-real-valued polynomials.

Facts:

• Int(R≥0) = {f ∈ R[x ] : f has no positive real roots}.
• A (Int (R≥0)) = {x + r : r ∈ R≥0} ∪ {(x − c)(x − c) : c ∈ C \ R}.
• Int(R≥0) is a UFS.
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The End

Thank you!
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