```
        Integer-
        valued
    polynomials
    over upper
    triangular
    matrix rings
        A. R.
    Naghipour
Department
        of
Mathematical
    Sciences
    Shahrekord
    University.
Shahrekord,
    Iran.

\section*{Integer-valued polynomials over upper triangular matrix rings}

\author{
A. R. Naghipour \\ Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.
}

\author{
Seminar in Ring Theory \\ Oct. 5, 2023 \\ Graz, Austria
}

\section*{Outline}
```

 Integer-
 valued
 polynomials
 over upper
 triangular
 matrix rings
A. R.
Naghipour
Department
of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.
Int(M}\mp@subsup{M}{n}{}(D)
Left Ideals of
Int(T
Equalizing
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Equalizing
Ideals of

```

\section*{Introduction}
```

Ideals of

```
```

Ideals of

```

\section*{(1) Introduction}

\section*{(2) Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)}

\section*{(3) Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)}
(4) Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\) (3) Equalizing Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord, Iran.

Introduction

Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)

\section*{Notations}

Throughout the talk, unless otherwise stated, all the considered rings will be commutative rings with identity, each ring and its subrings have the same identity. Let \(R\) be a ring and \(E\) be a subset of \(R\). Then \(M_{n}(E)\) and \(T_{n}(E)\) denote the set of \(n \times n\) matrices and upper triangular matrices with entries from \(E\),

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing
Ideals of

\section*{Definitions}

If \(D\) is an integral domain and \(K\) is the field of fractions of \(D\), the ring of integer-valued polynomials over \(D\) is defined by
\[
\operatorname{Int}(D):=\{f \in K[x] \mid f(D) \subseteq D\}
\]

The first systematic study of the algebraic properties of \(\operatorname{Int}(D)\) was done in consecutive 1919 papers of Ostrowski [3] and Polya [4] of the same title. For literature on \(\operatorname{Int}(D)\) the reader is referred to Cahen and Chabert [1].

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right.\)

\section*{Definitions}

Let \(R\) be a ring and \(f(x)\) and \(g(x)\) be two elements of \(R[x]\). Then \((f g)(x)\) denotes the product of \(f(x)\) and \(g(x)\) in \(R[x]\). If \(R\) is not a commutative ring and \(\alpha \in R\), then \((f g)(\alpha)\) need not equal \(f(\alpha) g(\alpha)\). In this case, if \(f(x)=\sum_{i=1}^{n} a_{i} x^{i}\), then we may express
\[
\begin{equation*}
(f g)(x):=\sum_{i=1}^{n} a_{i} g(x) x^{i} \tag{*}
\end{equation*}
\]

Let \(R_{1}\) and \(R_{2}\) be (not necessarily commutative) rings such that \(R_{1} \subseteq R_{2}\). The set of integer-valued polynomials over \(R_{1}\) with coefficients in \(R_{2}\) is:
\[
\operatorname{Int}_{R_{2}}\left(R_{1}\right)=\left\{f \in R_{2}[X] \mid f\left(R_{1}\right) \subseteq R_{1}\right\}
\]

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right.\)

\section*{History for noncommutative case}

In 2012, Werner [6] showed:

\section*{Theorem}

Let \(D\) be an integral domain. Then the set
\[
\operatorname{Int}\left(M_{n}(D)\right):=\operatorname{Int}_{M_{n}(K)}\left(M_{n}(D)\right)
\]
where \(K\) is the field of fractions of \(D\), with ordinary addition and multiplication \((*)\) is a ring

This theorem follows from the fact that there is a set of invertible matrices that forms a basis for \(M_{n}(D)\) as a \(D\)-algebra.

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord,

Iran.

Introduction
Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

\section*{History for noncommutative case}

\section*{Example}
\[
\mathcal{U}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right\}
\]
is a basis of invertible matrices for \(M_{2}(D)\) as a \(D\)-algebra.
For \(n \geq 3\), one may take the \(n^{2}-n\) elementary matrices that differ from \(\operatorname{In}\) by having a 1 in exactly one off-diagonal entry; the identity matrix \(I_{n}\); and \(n-1\) permutation matrices, each with a single distinct fixed point. Alternatively, a different construction for \(n>2\) is given in:
[Lopez-Permouth et al., Algebras having bases consisting entirely of units. Groups, Rings, and Group Rings, Contem. Math., 499: 219-228, 2009].

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical Sciences
Shahrekord
University.
Shahrekord, Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

\section*{History for noncommutative case}

\section*{Note}

In general, there is not a set of invertible matrices that forms a basis for \(T_{n}(D)\) as a \(D\)-algebra.

\section*{Introduction}

\section*{Integer-} valued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

\section*{History for noncommutative case}

\section*{Example 1}

The set of unit elements of \(T_{2}\left(\mathbb{Z}_{2}\right)\) is
\[
\mathcal{U}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\}
\]

So \(T_{2}\left(\mathbb{Z}_{2}\right)\) can not generated by units.

\section*{Example 2}

The set of unit elements of \(T_{2}(\mathbb{Z})\) is
\[
\mathcal{U}=\left\{\left[\begin{array}{cc} 
\pm 1 & a \\
0 & \pm 1
\end{array}\right], \mid a \in \mathbb{Z}\right\}
\]


\section*{Introduction}

\section*{Integer-} valued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right.\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing
Ideals of
\(\operatorname{lnt}\left(M_{n}(D)\right)\)

\section*{Equalizing \\ Ideals of}

\section*{History for noncommutative case}

\section*{Proof of Example 2}

Let
\[
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=c_{1}\left[\begin{array}{cc}
u_{1} & a_{1} \\
0 & v_{1}
\end{array}\right]+c_{2}\left[\begin{array}{cc}
u_{2} & a_{2} \\
0 & v_{2}
\end{array}\right]+\cdots+c_{m}\left[\begin{array}{cc}
u_{m} & a_{m} \\
0 & v_{m}
\end{array}\right]
\]

So
\[
\begin{aligned}
& 1=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m} \\
& 0=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
\end{aligned}
\]

Hence
\[
1=c_{1}\left(u_{1}-v_{1}\right)+c_{2}\left(u_{2}-v_{2}\right)+\cdots+c_{m}\left(u_{m}-v_{m}\right),
\]
which is a contradiction, since \(\left(u_{i}-v_{i}\right)=0\) or \(\left(u_{i}-v_{i}\right)= \pm 2\),

\section*{Introduction}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right.\)

\section*{History for noncommutative case}

\section*{In 2017, Frisch ([2]) proved that:}

\section*{Theorem}

Let \(D\) be an integral domain. Then
\[
\operatorname{Int}\left(T_{n}(D)\right):=\operatorname{Int}_{T_{n}(K)}\left(T_{n}(D)\right),
\]
where \(K\) is the field of fractions of \(D\), with ordinary addition and multiplication \((*)\) is a ring is a ring.

For the another proof, see Sedighi et al., [5].
The aim of this talk is introduce and study the equalizing of \(\operatorname{Int}\left(M_{n}(D)\right)\) and \(\operatorname{Int}\left(T_{n}(D)\right)\).

\section*{Outline}
```

 Integer-
 valued
 polynomials
 over upper
 triangular
 matrix rings
A. R.
Naghipour
Department
of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.
Introduction
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Left Ideals of
Int(T
Equalizing
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Equahzing
Ideals of

```
(1) Introduction
(2) Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)
(3) Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)
(4) Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)
(5) Equalizing Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

\section*{Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.

Introduction

\section*{Ideals of}
\(\operatorname{Int}\left(M_{n}(D)\right)\)
Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

\section*{Notation}

Let \(\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{n^{2}}\right\}\) be a set of invertible matrices that forms a basis for \(M_{n}(D)\) as a \(D\)-algebra. Let \(\langle\mathcal{U}\rangle\) be the multiplicative subgroup of \(M_{n}(D)\) generated by \(U\). For any \(A \in M_{n}(D)\), define \(\mathcal{U}(A)=\left\{U A U^{-1} \mid U \in<\mathcal{U}>\right\}\).

\section*{Definition}

Let \(\mathfrak{a}\) be an ideal of \(D\) and let \(A \in M_{n}(D)\). Werner defined \(\mathcal{J}_{M_{n}(\mathfrak{a}), A}:=\left\{f \in \operatorname{Int}\left(M_{n}(D)\right) \mid f(B) \in M_{n}(\mathfrak{a})\right.\) for all \(B \in\) \(\mathcal{U}(A)\}\).

We recall that any ideal \(J\) of \(M_{n}(D)\) has the form \(M_{n}(\mathfrak{a})\) for a uniquely determined ideal \(\mathfrak{a}\) of \(R\).

\section*{Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)}

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

Left Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)

Equalizing
Ideals of \(\operatorname{Int}\left(M_{n}(D)\right)\)

In 2012, Werner [6] showed:

\section*{Theorem}

Let \(\mathfrak{a}\) be an ideal of \(D\) and let \(A \in M_{n}(D)\). Then \(\mathcal{J}_{M_{n}(\mathfrak{a}), A}\) is an ideal of \(\operatorname{Int}\left(M_{n}(D)\right)\)

Again, this theorem follows from the fact that there is a set of invertible matrices that forms a basis for \(M_{n}(D)\) as a \(D\)-algebra.
For more information about the properties the ideal \(\mathcal{J}_{M_{n}(\mathfrak{a}), A}\) see Werner [6].

\section*{Outline}
```

 Integer-
 valued
 polynomials
 over upper
 triangular
 matrix rings
A. R.
Naghipour
Department
of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.
Introduction
Ideals of
Int(M}\mp@subsup{M}{n}{}(D)
Left Ideals of
Int(T
Equalizing
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Equalizing
Ideals of

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right.$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right.$

Similar to the commutative case:

Definition

Let J be an ideal of $T_{n}(D)$ and let $A \in T_{n}(D)$. We define $\mathcal{J}_{J, A}:=\left\{f \in \operatorname{Int}\left(T_{n}(D)\right) \mid f(A) \in J\right\}$.

Note

Let R be a commutative ring with identity and let I be an ideal of $T_{n}(R)$. Then, we have

$$
I=\left[\begin{array}{cccc}
I_{11} & I_{12} & \ldots & I_{1 n} \tag{1}\\
0 & I_{22} & \ldots & I_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & I_{n n}
\end{array}\right]
$$

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integer-
valued
polynomials
over upper
triangular matrix rings
A. R.

Naghipour
Department of
Mathematical Sciences
Shahrekord
University.
Shahrekord, Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Note

where

$$
I_{i i} \subseteq I_{i(i+1)} \subseteq \cdots \subseteq I_{i n}
$$

and

$$
I_{i i} \subseteq I_{(i-1) i} \subseteq \cdots \subseteq I_{1 i}
$$

for all $1 \leq i \leq n$.

Theorem

Let J be an ideal of $T_{n}(D)$ and let $A \in T_{n}(D)$. Then $\mathcal{J}_{J, A}$ is a left ideal of $\operatorname{Int}\left(T_{n}(D)\right)$.

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right.$

The following example shows that the left ideal $\mathcal{J}_{I, A}$ in the above theorem may not be a right ideal.

Example

Let D be an integral domain and K is the field of fractions of D. Let \mathfrak{a} be a proper ideal of D,

$$
I=\left[\begin{array}{ll}
\mathfrak{a} & \mathfrak{a} \\
0 & \mathfrak{a}
\end{array}\right], A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],
$$

$$
f(X)=\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] X \text { and } g(X)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

Then $f(A)=0$ and hence
$f \in J_{I, A}=\left\{f \in \operatorname{Int}\left(T_{2}(D)\right) \mid f(A) \in I\right\}$.

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integer-
valued
polynomials
over upper
triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$

Example

We have
$(f g)(X)=\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] X=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
So $(f g)(A)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \notin I$. Hence $\mathcal{J}_{I, A}$ is not a right ideal of $\operatorname{Int}\left(T_{2}(D)\right)$.

Outline

```
    Integer-
    valued
    polynomials
    over upper
    triangular
matrix rings
    A. R.
    Naghipour
    Department
        of
Mathematical
    Sciences
    Shahrekord
    University.
    Shahrekord,
        Iran.
Introduction
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Left Ideals of
Int(T
Equalizing
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Equalizing
Ideals of
```

(1) Introduction
(2) Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$
(3) Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$
(4) Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$
(5) Equalizing Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$
$\mathfrak{q}_{M_{n}(\mathfrak{a})}$ is called the equalizing ideal of $M_{n}(\mathfrak{a}) \operatorname{in} \operatorname{Int}\left(M_{n}(D)\right)$.

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings

Proposition

Let \mathfrak{a} be an ideal of D and $\mathcal{U}=\left\{U_{1}, \ldots, U_{n^{2}}\right\}$ be a set of invertible matrices that forms a basis for $M_{n}(D)$ as a D-algebra. Then,
(1) $\mathfrak{q}_{M_{n}(\mathfrak{a})}$ is an ideal of $M_{n}(D)$,
(2) $\mathfrak{q}_{M_{n}(\mathfrak{a})} \subseteq M_{n}(\mathfrak{a})$,
(3) If $A-B \in \mathfrak{q}_{M_{n}(\mathfrak{a})}$, then $\mathcal{J}_{M_{n}(\mathfrak{a}), A}=\mathcal{J}_{M_{n}(\mathfrak{a}), B}$.

合
Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.
$\operatorname{Int}\left(M_{n}(D)\right)$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing
Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Integer-

valued
polynomials
over upper
triangular
matrix rings
A. R.

Naghipour
Department of
Mathematical Sciences
Shahrekord
University.
Shahrekord,
Iran.

Theorem

Let \mathfrak{a} be an ideal of D. Then we have

$$
M_{n}\left(q_{\mathfrak{a}}\right) \subseteq q_{M_{n}(\mathfrak{a})} .
$$

Introduction

Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right.$
Left ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing
Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Corollary 1

Let D be an one-dimensional, Noetherian, local domain with finite residue field and \mathfrak{a} be an ideal of D. If $\mathfrak{q}_{\mathfrak{a}} \neq 0$, then the set of distinct ideals of the form $\mathcal{J}_{M_{n}(\mathfrak{a}), A}$ is finite

Corollary 2

Let D be a Noetherian local one-dimensional domain with finite residue field, which is not unibranched. Then the set of ideal of the form $\mathcal{J}_{M_{n}(\mathfrak{m}), A}$ is finite, where \mathfrak{m} is the maximal ideal of D.

Outline

```
    Integer-
    valued
    polynomials
    over upper
    triangular
matrix rings
    A. R.
    Naghipour
    Department
        of
Mathematical
    Sciences
    Shahrekord
    University.
    Shahrekord,
        Iran.
Introduction
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
Left Ideals of
Int(Tn}(D)
Equalizing
Ideals of
Int(Mn}(D)
(5) Equalizing Ideals of \(\operatorname{Int}\left(T_{n}(D)\right)\)
```


Equalizing Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integer-
valued
polynomials
over upper
triangular
matrix rings

A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord, Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Definition

Let D be a domain. Let I be an ideal of If $T_{n}(D)$. We set

$$
\mathfrak{q}_{I}=\left\{A \in M_{n}(D) \mid f(A)-f(0) \in I, \forall f \in \operatorname{Int}\left(T_{n}(D)\right)\right\} .
$$

\mathfrak{q}_{I} is called the equalizing ideal of $I \operatorname{in} \operatorname{Int}\left(M_{n}(D)\right)$.

Equalizing Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integer-
valued
polynomials
over upper
triangular matrix rings
A. R.

Naghipour
Department of
Mathematical Sciences
Shahrekord
University.
Shahrekord, Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right)$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Theorem

Let I be an ideal of $T_{n}(D)$ and $A, B \in T_{n}(D)$. Then the following statements hold.
(1) q_{I} is an ideal of $T_{n}(D)$.
(2) $q_{I} \subseteq I$.
(3) If $A-B \in q_{I}$, then $\mathcal{J}_{I, A}=\mathcal{J}_{I, B}$.

Equalizing Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord University. Shahrekord, Iran.

Introduction
Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Lemma

Let $n>1$ and $f(X)=B_{k} X^{k}+\cdots+B_{1} X+B_{0} \in \operatorname{Int}\left(T_{n}(D)\right)$. Then the following statements hold.
(1) $B_{0} \in T_{n}(D)$.
(2) $\left(B_{1}\right)_{i j} \in D$ for all $1 \leq i \leq j \leq n-1$.

Lemma

Let \mathfrak{a} be an ideal of D. Then we have

$$
T_{n}\left(q_{\mathfrak{a}}\right) \subseteq q_{T_{n}(\mathfrak{a})}
$$

Equalizing Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord, Iran.

Introduction
Ideals of
$\operatorname{Int}\left(M_{n}(D)\right.$
Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right.$

Theorem

Let I be an ideal of $T_{n}(D)$. Then we have

$$
q_{I}=\left[\begin{array}{cccc}
q_{I_{11}} & I_{12} & \ldots & I_{1 n} \\
0 & q_{I_{22}} & \cdots & I_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & q_{I_{n n}}
\end{array}\right]
$$

One of the main result of this talk is the following corollary.

Corollary

Let I be a nonzero ideal of ideal of $T_{n}(D)$. Then we have

$$
q_{I} \neq 0
$$

Equalizing Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Some other results:

Corollary 1

Let D be an one-dimensional, Noetherian, local domain with finite residue field and \mathfrak{a} be an ideal of D. If $\mathfrak{q}_{\mathfrak{a}} \neq 0$, then the set of distinct left ideals of the form $\mathcal{J}_{T_{n}(\mathfrak{a}), A}$ is finite

Corollary 2

Let D be a Noetherian local one-dimensional domain with finite residue field, which is not unibranched. Then the set of left ideal of the form $\mathcal{J}_{T_{n}(\mathfrak{m}), A}$ is finite, where \mathfrak{m} is the maximal ideal of D.

References

Integervalued polynomials over upper triangular matrix rings
A. R.

Naghipour
Department of
Mathematical
Sciences
Shahrekord
University.
Shahrekord,
Iran.

Introduction
Ideals of $\operatorname{Int}\left(M_{n}(D)\right)$

Left Ideals of $\operatorname{Int}\left(T_{n}(D)\right)$

Equalizing Ideals of $\operatorname{Int}\left(M_{n}(D)\right.$

References

[1] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Math. Surv. Monogr., vol. 48, Amer. Math. Soc., Providence, 1997.
[2] S. Frisch, Polynomial functions on upper triangular matrix algebras, Monatsh. Math. 184 (2017), 201-215.
[3] A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpen, J. Reine Angew. Math. 149 (1919), 117-124. [4] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpen, J. Reine Angew. Math. 149 (1919), 97-116. [5] J. Sedighi Hafshejani, A. R. Naghipour and M. R.
Rismanchian, Integer-valued polynomials over block matrix algebras, J. Algebra Appl. 19(3) (2020), 2050053, 17 pp. [6] N. J. Werner, Integer-valued polynomials over matrix rings, Comm. Algebra 40 (12) (2012), 4717-4726.

Acknowlegement

```
    Integer-
    valued
    polynomials
    over upper
    triangular
matrix rings
    A. R.
    Naghipour
Department
    of
Mathematical
    Sciences
    Shahrekord
    University.
    Shahrekord,
        Iran.
Introduction
Ideals of
Int(M}\mp@subsup{M}{n}{}(D)
Left Ideals of
Int(T}\mp@subsup{T}{n}{}(D)
Equalizing
Ideals of
Int(}\mp@subsup{M}{n}{}(D)
```


Thank you for your attention

```
Introduction
Ideals of```

