Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Integer-valued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

> Seminar in Ring Theory Oct. 5 , 2023 Graz, Austria

Outline

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of Int $(M_n(D))$ Left Ideals of Int $(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

1 Introduction

2 Ideals of $Int(M_n(D))$

3 Left Ideals of $Int(T_n(D))$

4 Equalizing Ideals of $Int(M_n(D))$

5 Equalizing Ideals of $Int(T_n(D))$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Iran

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Equalizing Ideals of

Notations

Throughout the talk, unless otherwise stated, all the considered rings will be commutative rings with identity, each ring and its subrings have the same identity. Let R be a ring and E be a subset of R. Then $M_n(E)$ and $T_n(E)$ denote the set of $n \times n$ matrices and upper triangular matrices with entries from E,

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jran

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing Ideals of

Definitions

If D is an integral domain and K is the field of fractions of D, the ring of integer-valued polynomials over D is defined by

$$\operatorname{Int}(D) := \{ f \in K[x] | f(D) \subseteq D \}.$$

The first systematic study of the algebraic properties of Int(D) was done in consecutive 1919 papers of Ostrowski [3] and Polya [4] of the same title. For literature on Int(D) the reader is referred to Cahen and Chabert [1].

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jran

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing Ideals of

Definitions

Let R be a ring and f(x) and g(x) be two elements of R[x]. Then (fg)(x) denotes the product of f(x) and g(x) in R[x]. If R is not a commutative ring and $\alpha \in R$, then $(fg)(\alpha)$ need not equal $f(\alpha)g(\alpha)$. In this case, if $f(x) = \sum_{i=1}^{n} a_i x^i$, then we may express

$$(fg)(x) := \sum_{i=1}^{n} a_i g(x) x^i$$
 (*)

Let R_1 and R_2 be (not necessarily commutative) rings such that $R_1 \subseteq R_2$. The set of integer-valued polynomials over R_1 with coefficients in R_2 is:

 $Int_{R_2}(R_1) = \{ f \in R_2[X] | f(R_1) \subseteq R_1 \}.$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jiran.

Introduction

Ideals of Int $(M_n(D))$ Left Ideals of Int $(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

History for noncommutative case

In 2012, Werner [6] showed:

Theorem

Let D be an integral domain. Then the set

$$\operatorname{Int}(M_n(D)) := \operatorname{Int}_{M_n(K)}(M_n(D)),$$

where K is the field of fractions of D, with ordinary addition and multiplication (*) is a ring

This theorem follows from the fact that there is a set of invertible matrices that forms a basis for $M_n(D)$ as a D-algebra.

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jahrekord

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Equalizing Ideals of

History for noncommutative case

Example

$$\mathcal{U} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

is a basis of invertible matrices for $M_2(D)$ as a D-algebra.

For $n \ge 3$, one may take the $n^2 - n$ elementary matrices that differ from In by having a 1 in exactly one off-diagonal entry; the identity matrix I_n ; and n - 1 permutation matrices, each with a single distinct fixed point. Alternatively, a different construction for n > 2 is given in: [Lopez-Permouth et al., Algebras having bases consisting entirely of units. Groups, Rings, and Group Rings, Contem. Math., 499: 219–228, 2009].

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Equalizing

History for noncommutative case

Note

In general, there is not a set of invertible matrices that forms a basis for $T_n(D)$ as a D-algebra.

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

History for noncommutative case

Example 1

The set of unit elements of $T_2(\mathbb{Z}_2)$ is

$$\mathcal{U} = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \}.$$

So $T_2(\mathbb{Z}_2)$ can not generated by units.

Example 2

The set of unit elements of $T_2(\mathbb{Z})$ is

$$\mathcal{U} = \{ \begin{bmatrix} \pm 1 & a \\ 0 & \pm 1 \end{bmatrix}, |a \in \mathbb{Z} \}.$$

 $C = T(\pi)$ can not concreted by units

9/32

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Equalizing

History for noncommutative case

Proof of Example 2

Let

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = c_1 \begin{bmatrix} u_1 & a_1 \\ 0 & v_1 \end{bmatrix} + c_2 \begin{bmatrix} u_2 & a_2 \\ 0 & v_2 \end{bmatrix} + \dots + c_m \begin{bmatrix} u_m & a_m \\ 0 & v_m \end{bmatrix}$$

So
$$1 = c_1 u_1 + c_2 u_2 + \dots + c_m u_m,$$

$$0 = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Hence

$$1 = c_1(u_1 - v_1) + c_2(u_2 - v_2) + \dots + c_m(u_m - v_m),$$

which is a contradiction, since $(u_i - v_i) = 0$ or $(u_i - v_i) = \pm 2$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jiran.

Introduction

Ideals of Int $(M_n(D)$ Left Ideals of Int $(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing Ideals of

History for noncommutative case

In 2017, Frisch ([2]) proved that:

Theorem

Let D be an integral domain. Then

$$\operatorname{Int}(T_n(D)) := \operatorname{Int}_{T_n(K)}(T_n(D)),$$

where K is the field of fractions of D, with ordinary addition and multiplication (*) is a ring is a ring.

For the another proof, see Sedighi et al., [5]. The aim of this talk is introduce and study the equalizing of $Int(M_n(D))$ and $Int(T_n(D))$.

Outline

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Equalizing

1 Introduction

2 Ideals of $Int(M_n(D))$

3 Left Ideals of $Int(T_n(D))$

• Equalizing Ideals of $Int(M_n(D))$

5 Equalizing Ideals of $Int(T_n(D))$

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 12/32

Ideals of $Int(M_n(D))$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Iniversity.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Notation

Let $\mathcal{U} = \{U_1, U_2, \dots, U_{n^2}\}$ be a set of invertible matrices that forms a basis for $M_n(D)$ as a *D*-algebra. Let $\langle \mathcal{U} \rangle$ be the multiplicative subgroup of $M_n(D)$ generated by U. For any $A \in M_n(D)$, define $\mathcal{U}(A) = \{UAU^{-1} | U \in \langle \mathcal{U} \rangle\}$.

Definition

Let \mathfrak{a} be an ideal of D and let $A \in M_n(D)$. Werner defined $\mathcal{J}_{M_n(\mathfrak{a}),A} := \{f \in \operatorname{Int}(M_n(D)) | f(B) \in M_n(\mathfrak{a}) \text{ for all } B \in \mathcal{U}(A)\}.$

We **recall** that any ideal J of $M_n(D)$ has the form $M_n(\mathfrak{a})$ for a uniquely determined ideal \mathfrak{a} of R.

Ideals of $Int(M_n(D))$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

In 2012, Werner [6] showed:

Theorem

Let a be an ideal of D and let $A \in M_n(D)$. Then $\mathcal{J}_{M_n(a),A}$ is an ideal of $Int(M_n(D))$

Again, this theorem follows from the fact that there is a set of invertible matrices that forms a basis for $M_n(D)$ as a D-algebra.

For more information about the properties the ideal $\mathcal{J}_{M_n(\mathfrak{a}),A}$ see Werner [6].

Outline

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Equalizing

1 Introduction

2 Ideals of $Int(M_n(D))$

3 Left Ideals of $Int(T_n(D))$

4 Equalizing Ideals of $Int(M_n(D))$

5 Equalizing Ideals of $Int(T_n(D))$

<ロ > < 部 > < E > < E > E の Q @ 15/32

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Similar to the commutative case:

Definition

Let J be an ideal of $T_n(D)$ and let $A \in T_n(D)$. We define $\mathcal{J}_{J,A} := \{f \in \operatorname{Int}(T_n(D)) | f(A) \in J\}.$

Note

Let R be a commutative ring with identity and let I be an ideal of ${\cal T}_n(R).$ Then, we have

$$I = \begin{bmatrix} I_{11} & I_{12} & \dots & I_{1n} \\ 0 & I_{22} & \dots & I_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & I_{nn} \end{bmatrix},$$

(1)

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Note	
where	
	$I_{ii} \subseteq I_{i(i+1)} \subseteq \cdots \subseteq I_{in}$
and	
	$I_{ii} \subseteq I_{(i-1)i} \subseteq \dots \subseteq I_{1i}$
for all $1 < i < n$.	

Theorem

Let J be an ideal of $T_n(D)$ and let $A\in T_n(D).$ Then $\mathcal{J}_{J,A}$ is a left ideal of $\mathrm{Int}(T_n(D)).$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jiran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

The following example shows that the left ideal $\mathcal{J}_{I,A}$ in the above theorem may not be a right ideal.

Example

Let D be an integral domain and K is the field of fractions of D. Let \mathfrak{a} be a proper ideal of D,

$$I = \begin{bmatrix} \mathfrak{a} & \mathfrak{a} \\ 0 & \mathfrak{a} \end{bmatrix}, A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$f(X) = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} X \text{ and } g(X) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Then f(A) = 0 and hence $f \in J_{I,A} = \{f \in \operatorname{Int}(T_2(D)) | f(A) \in I\}.$

イロト イポト イヨト イヨト

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Example

We have

$$(fg)(X) = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

So $(fg)(A) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \notin I$. Hence $\mathcal{J}_{I,A}$ is not a right ideal of $\operatorname{Int}(T_2(D))$.

Outline

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

1 Introduction

2 Ideals of $Int(M_n(D))$

3 Left Ideals of $Int(T_n(D))$

4 Equalizing Ideals of $Int(M_n(D))$

5 Equalizing Ideals of $Int(T_n(D))$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Iniversity.

Introduction

Ideals of $Int(M_n(D))$ Left Ideals of

Equalizing Ideals of $Int(M_n(D))$

Equalizing Ideals of

Definition

Let D be a domain. If \mathfrak{a} is an ideal of D and $\mathcal{U} = \{U_1, \ldots, U_{n^2}\}$ is a set of invertible matrices that forms a basis for $M_n(D)$ as a D-algebra, then we set

$$\mathfrak{q}_{M_n(\mathfrak{a})} = \{A \in M_n(D) | f(UAU^{-1}) - f(0) \in M_n(\mathfrak{a}) \\ \forall U \in \langle \mathcal{U} \rangle, \forall f \in \mathrm{Int}(M_n(D)) \}.$$

 $\mathfrak{q}_{M_n(\mathfrak{a})}$ is called the equalizing ideal of $M_n(\mathfrak{a})$ in $\mathrm{Int}(M_n(D))$.

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Proposition

Let a be an ideal of D and $\mathcal{U}=\{U_1,\ldots,U_{n^2}\}$ be a set of invertible matrices that forms a basis for $M_n(D)$ as a D-algebra. Then,

(1) $\mathfrak{q}_{M_n(\mathfrak{a})}$ is an ideal of $M_n(D)$,

(2) $\mathfrak{q}_{M_n(\mathfrak{a})} \subseteq M_n(\mathfrak{a})$,

(3) If
$$A - B \in \mathfrak{q}_{M_n(\mathfrak{a})}$$
, then $\mathcal{J}_{M_n(\mathfrak{a}),A} = \mathcal{J}_{M_n(\mathfrak{a}),B}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing

Theorem

Let \mathfrak{a} be an ideal of D. Then we have

 $M_n(q_\mathfrak{a}) \subseteq q_{M_n(\mathfrak{a})}.$

<ロ > < 部 > < E > < E > E の Q C 23/32

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Iran

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizing Ideals of

Corollary 1

Let D be an one-dimensional, Noetherian, local domain with finite residue field and \mathfrak{a} be an ideal of D. If $\mathfrak{q}_{\mathfrak{a}} \neq 0$, then the set of distinct ideals of the form $\mathcal{J}_{M_n(\mathfrak{a}),A}$ is finite

Corollary 2

Let D be a Noetherian local one-dimensional domain with finite residue field, which is not unibranched. Then the set of ideal of the form $\mathcal{J}_{M_n(\mathfrak{m}),A}$ is finite, where \mathfrak{m} is the maximal ideal of D.

Outline

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of Int $(M_n(D))$ Left Ideals of

Equalizing Ideals of $Int(M_n(D))$

Equalizin

1 Introduction

2 Ideals of $Int(M_n(D))$

3 Left Ideals of $Int(T_n(D))$

• Equalizing Ideals of $Int(M_n(D))$

5 Equalizing Ideals of $Int(T_n(D))$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Lanrekord

Introduction

Ideals of Int $(M_n(D)$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Definition

Let D be a domain. Let I be an ideal of If $T_n(D)$. We set

$$\mathfrak{q}_I = \{A \in M_n(D) | f(A) - f(0) \in I, \forall f \in \operatorname{Int}(T_n(D)) \}.$$

イロト イポト イヨト イヨト

3

26 / 32

 \mathfrak{q}_I is called the equalizing ideal of I in $\operatorname{Int}(M_n(D))$.

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D)$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Theorem

Let I be an ideal of $T_n(D)$ and $A,B\in T_n(D).$ Then the following statements hold.

イロト イポト イヨト イヨト

3

27 / 32

```
(1) q_I is an ideal of T_n(D).
```

(2)
$$q_I \subseteq I$$

(3) If $A - B \in q_I$, then $\mathcal{J}_{I,A} = \mathcal{J}_{I,B}$.

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D)$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Lemma

Let n > 1 and $f(X) = B_k X^k + \cdots + B_1 X + B_0 \in Int(T_n(D))$. Then the following statements hold.

 $(1) B_0 \in T_n(D).$

(2) $(B_1)_{ij} \in D$ for all $1 \le i \le j \le n - 1$.

Lemma

Let \mathfrak{a} be an ideal of D. Then we have

 $T_n(q_\mathfrak{a}) \subseteq q_{T_n(\mathfrak{a})}.$

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

Theorem

Let I be an ideal of $T_n(D)$. Then we have

$$q_{I} = \begin{bmatrix} q_{I_{11}} & I_{12} & \dots & I_{1n} \\ 0 & q_{I_{22}} & \dots & I_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & q_{I_{nn}} \end{bmatrix}.$$

One of the main result of this talk is the following corollary.

Corollary

Let I be a nonzero ideal of ideal of $T_n(D)$. Then we have

 $q_I \neq 0.$

イロト イポト イヨト イヨト

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University, Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D)$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Some other results:

Corollary 1

Let D be an one-dimensional, Noetherian, local domain with finite residue field and \mathfrak{a} be an ideal of D. If $\mathfrak{q}_{\mathfrak{a}} \neq 0$, then the set of distinct left ideals of the form $\mathcal{J}_{T_n(\mathfrak{a}),A}$ is finite

Corollary 2

Let D be a Noetherian local one-dimensional domain with finite residue field, which is not unibranched. Then the set of left ideal of the form $\mathcal{J}_{T_n(\mathfrak{m}),A}$ is finite, where \mathfrak{m} is the maximal ideal of D.

References

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord Jahrekord Jahrekord

ntroduction

Ideals of Int $(M_n(D))$ Left Ideals of Int $(T_n(D))$

Equalizing Ideals of $Int(M_n(D)$

References

 P.-J. Cahen and J.-L. Chabert, *Integer-Valued Polynomials*, Math. Surv. Monogr., vol. **48**, Amer. Math. Soc., Providence, 1997.
 S. Frisch, Polynomial functions on upper triangular matrix

algebras, Monatsh. Math. 184 (2017), 201-215.

[3] A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpen, J. Reine Angew. Math. 149 (1919), 117–124.
[4] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpen, J. Reine Angew. Math. 149 (1919), 97–116.
[5] J. Sedighi Hafshejani, A. R. Naghipour and M. R. Rismanchian, Integer-valued polynomials over block matrix algebras, J. Algebra Appl. 19(3) (2020), 2050053, 17 pp.
[6] N. J. Werner, Integer-valued polynomials over matrix rings, Comm. Algebra 40 (12) (2012), 4717-4726.

Acknowlegement

Integervalued polynomials over upper triangular matrix rings

A. R. Naghipour Department of Mathematical Sciences Shahrekord University. Shahrekord, Iran.

Introduction

Ideals of $Int(M_n(D))$

Left Ideals of $Int(T_n(D))$

Equalizing Ideals of $Int(M_n(D))$

Equalizi

Thank you for your attention

4 ロ ト < 回 ト < 三 ト < 三 ト < 三 の < C
32 / 32
</p>