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Discrete and continuous energy

Let F:[~1,1] — R.
Discrete energy: Z = {z1,...,2n} C §¢

Energy integral: ;. — Borel probability measure on S%
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Questions:
@ Which configurations minimize Ef for a given N7
@ Which probability measures minimize Ip?
o Is 0 a minimizer? Is it unique?
o Difference between discrete and continuous energies?
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Electrostatics: Thomson Problem

Thomson problem (1904)

Find the minimal energy configuration of N electrons
interacting according to Coulomb’s Law and constrained to the
sphere S?, i.e. minimize the energy

ZH z—ng

i#]

o Answer is known for N =2,3,4,5,6 and N = 12

e 5 points on S?, s = 1: triangular bi-pyramid
(R.E. Schwartz, 2013, computer-assisted proof)
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Riesz s-energies

Riesz s-energies

Find the minimal energy configuration of N points on the
sphere S? for the energies

and, if s =0,

E 1
log Z Og ‘Zz — Z]H
i#]

s =d — 1: Thompson’s problem (Coulomb/Newtonian potential)

s =log (s = 0): Smale problem, logarithmic/Fekete points

(on §2? the answer is known for N = 2,3,4,5,6 and N = 12)

s < 0: maximize!

(]

s = —1: sum of distances (Fejes-Téth Problem)
(on S2 the answer is known for N = 2,3,4,5,6 and N = 12)
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s = oo: Tammes Problem (optimal packing)

Tammes Problem (1930)

When s = oo, the problem becomes the following: find the
configuration of N points on the sphere S? which maximizes the
minimal distance between points (optimal codes). The problem
is named after a Dutch botanist who posed the problem in 1930
while studying the distribution of pores on pollen grains.

e On S? the answer is known for N =2,...,14 and N = 24.
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s = 0o: Tammes Problem (optimal packing)

Tammes Problem (1930)

When s = oo, the problem becomes the following: find the
configuration of N points on the sphere S¢ which maximizes
the minimal distance between points (optimal codes).

The problem is named after a Dutch botanist who posed the problem in

1930 while studying the distribution of pores on pollen grains.

e On S? the answer is known for N =2,...,14 and N = 24.

@ N =4 simplex
@ N = 6 octahedron
@ N = 12 icosahedron

@ N = 8 square anitprism /

NOT cube

(L. Fejes T6th)
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s = —1: Fejes T6th Problem (sum of distances)

Fejes Téth Problem on the sum of distances (1959)

Find the configurations of N points on the sphere S¢ which
maximize the sum of distances

E_((Z) =) _llai — %]l
i#j

e on S? the answer is known for N = 2,3,4,5,6 and N = 12
o Closely related to the spherical cap discrepancy (Stolarsky)
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Spherical cap discrepancy

Spherical caps: x €S% t € [-1,1]

Clz,t) ={y eS: (x,y) >t}.

Spherical cap L? discrepancy: Z = {21,22,...,28} C S¢
define

o= [ |2

§d 1

2

#(Z0 O #(20C(,1) dt do ().

- U(C(x,t))

Theorem (Beck, ’84)
There exists constants cq, Cyq > 0 such that

1

11 : e
cgN~ 27 2a S#lzn:fNDL2,cap(Z)§CdN 27 2d
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢

1 O .
N2 Z lzi—=zl + Cd[DL{cap} = const

5,j=1
:/ / o~ yll do(z)do(y).

S¢ sd
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢
2
Cd [DLQ,cap(Z)} -
| X
= | [z -ylldo(@)oty) - 75 2 Il 5l
N
Sd §d ni=1
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢
2
Cd [DLQ,cap(Z)} -
— [ [z = sl do@yiots) - 3 S b=l
Sd §d ni=1
V.
Proofs:

e K. Stolarsky (1973),

e J. Brauchart, J. Dick (2012) ,

e DB, F. Dai, R. Matzke (2018),

e H. He, K. Basu, Q. Zhao, A. Owen (2019)
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S?
2
Cd [DLQ,cap(Z)} =
— [ [z - sl do@yiots) - 5 5 a5l
St s ni=l
v
Versions:

e two-point homogeneous spaces (M. Skriganov),
e Hamming cube (A. Barg),
e Geodesic distance on the sphere (DB, F. Dai, R. Matzke;
M. Skriganov): hemisphere discrepancy — geodesic distance
General energies on the sphere (DB, F. Dai, R. Matzke)
Energies on metric spaces (DB, R. Matzke, O. Vlasiuk)

. and more
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S¢
2
Cd [DLZ,cap(Z):| =
| X
— [ [z =sldo@aotw) - 77 3 llzi = .
S §d b=l

Easy corollaries:
e ii.d. random points: ED? (Z) SN7!

L2 cap
o jittered sampling: IED%2 cap( 7)< N-1-3%
1 X
®* N2 > Nz =zl < //Hx—y\da(x)dg(y)
=1 sd Sd
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢
2
Cd |:DL2,cap(Z):| =
;N
— [ [z = sl do@yot) — 55 3 llsi= 5.
S §d ni=l

Easy corollaries:
e i.i.d. random points: ED?, (Z) < N~!

L2,cap
@ jittered sampling: IE‘,D%2 cap( AR N-l-3
o [ [lle= sl du@ntw) < [ [l -yl dota)doty)
sd sd S G
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Fuclidean distance energy integrals

Which regular Borel probability measure 1 on a compact
domain 2 C R” maximizes the energy integral

L(y) = / / & — yl|*dpu()dpa(y)

Q Q

for a given o > 07

Theorem (Bjorck (1956))

o 0 < a< 2: unique mazximizer.

o «a > 2: discrete maximizers with at most n + 1 points in the
support.
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Discreteness of minimizers for mild repulsion

For a kernel W : Ry — R define

Iy () = / / Wl - yll)dpu() dpu(y)
R R™

e W(0)=0
e W(r) <0 for r < Ry.
e W(r) >0 for r > Ry

(attractive-repulsive interaction) \—/;Q

Theorem (Carillo, Figalli, Patacchini, ’17)

Assume that W (r) =~ —r® as v — 0 with o > 2 (mild repulsion).
Then all global minimizers of Iy are discrete with finite
support.
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Arthur Schopenhauer

“A number of porcupines huddled together for warmth on a cold
day in winter; but, as they began to prick one another with their
quills, they were obliged to disperse. However the cold drove
them together again, when just the same thing happened. At
last, after many turns of huddling and dispersing, they
discovered that they would be best off by remaining at a little
distance from one another. In the same way the need of society
drives the human porcupines together, only to be mutually
L repelled by the many prickly and disagreeable qualities of their
nature. The moderate distance which they at last discover to be the only tolerable
condition of intercourse, is the code of politeness and fine manners; and those who
transgress it are roughly told—in the English phrase—to keep their distance. By this
arrangement the mutual need of warmth is only very moderately satisfied; but then
people do not get pricked. A man who has some heat in himself prefers to remain
outside, where he will neither prick other people nor get pricked himself.”

— Arthur Schopenhauer, Parerga and Paralipomena
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§. 396.

Gine Gefelliaft Stacdpelidhweine drdangte fidh, an einem
falten Wintertage, redyt nabe jufammen, um durd) die gegenfeitige
Wiarme, fid vor dem Erfrieven 3u {Hiigen. Jedody bald empfans
ben fie bie gegenfeitigen Stadjeln; weldes fie dann wieder von
einandber entfernte. 2Wann nun dad Vedirfnif der Erwirmung
fie wieder ndber sufammen bradyte, wiederolte fic) jenes aweite
Uebel; fo baf fie awifdhen beiden Leiden hin und Hergeworjen
wurben, bié fie cine magige Entfernung von einanber Heraus-
gefunben batten, in der fie ¢8 am beflen audhalten fonnten, —

Gfeibniffe, Parabeln und Fabeln. 525

So freibt bad Bediirfnif der Gefellidhaft, aud bder Leeve und
Monotonie ded eigenen Jnnern entfprungen, die Menfden u
einander; aber ibre vielen widerwartigen Cigenfdaften und uns
ertragliden Febler fofen fie wicder von einanber ab. Die mitt-
Tere Gntfernung, dic fie endlid) berausfinden, und bei welder
ein Beifammenfeyn beftebn fann, ift die Hoflidyfeit und feine
Citte.  Dem, der fid nidt in diefer Entfernung balt, ruft man
in Gngland gu: keep your distance! — Bermige derfelben
witd jwar dad Bediirfnif gegenfeitiger Crwdarmung nur unvoll-
fommen befriedigt, Dafiiv aber der Stidy bder Stadeln nidyt
empfunden. — Wer jedod) viel eigene, inneve Wivme Hat bleibt
licber aus der Gefellfhaft weg, um feine Befdywerde ju geben,
nody su empfangen.

Dmitriy Bilyk



Fuclidean distance energy integrals

Which regular Borel probability measure 1 on a compact
domain 2 C R” maximizes the energy integral

L(y) = / / & — yl|*dpu()dpa(y)

Q Q

for a given o > 07

Theorem (Bjorck (1956))

o 0 < a< 2: unique mazximizer.

o «a > 2: discrete maximizers with at most d + 1 points in the
support.
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Fuclidean distance energy integrals: sphere

Which regular Borel probability measure i on the sphere
S? ¢ R maximizes the energy integral

I(y) = / / e — yl|*dpu()dpa(y)
Sé Sd

for a given o > 07

Theorem (Bjorck (1956))

o 0 < a < 2: unique maximizer is surface measure o.
o a = 2: any measure with center of mass at 0.

e a > 2: mass % at two opposite poles.

N

o —d < « < 0: unique minimizer is surface measure o.
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The Euclidean Distance on S¢

Bjorck (1956)

—d<a<?2 a=2
o center of mass at 0
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The Geodesic Distance on S¢

DB, Dai (2019)

—d<a<l a=1
uniform o centrally symmetric
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Hamming Distance on the Hamming Cube

H¢ = {+1}¢ ¢ Vds?.
Hamming distance: dy(z,y) = #{i : @; # yi} = 1llz — y|?

O<ax<l

a=1 a>1
uniform oy Center of Mass 0 5(6p+0_p)
r"’/ //‘ V"’/ ‘ //‘.
— ! I e
s A=
‘ e / \‘./ ~

Barg, DB, Matzke
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Chordal Distance on RP?

Chordal distance on RP?: p(z,y) = /1 — |z - y|?

—d<a<?2 oa=2 o> 2
1sotropic
uniform o probability measures WONB

Anderson, Dostert, Grabner, Matzke, Stepaniuk;
DB, Ferizovi¢, Glazyrin, Matzke, Park, Vlasiuk.
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Repulsive vs. attractive-repulsive potentials

Graph of F(t), t=z-y

—

Repulsive potential ban) Attractive-repulsive potential

t={

X=- X =y
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Sum of acute angles

Fejes T6th Problem about the sum of acute angles

Find the configurations of N points on the sphere S which

maximize the sum X

ZQ(%ZJ‘% ?‘
i#] ‘

6(z,y) = min{d(x, y), 7 — d(z,)} d

is the acute (non-obtuse) angle between the lines generated by
vectors x,y € S%. It is conjectured that the periodically
repeated orthonormal basis of R*t! is a maximizer, e.g., for
d=2, N =25,

Pl

where

{e1,e2,€e3,€e1,e2} is a maximizer.

@ Fejes Té6th solved for small values of N < 6 on S2.

@ Solved on S!. Open for d > 2.
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Continuous version (energy integral)

Conjecture

The energy integral

Io(u)2//9(m,y)du(w)du(y),

S¢ sd

where
0(x,y) = min{d(z,y), ™ — d(x,y)}

is the acute (non-obtuse) angle between the lines generated by
vectors x,y € S?, is maximized by the uniform measure on an
orthonormal basis

1
= —— e, -
HONB d+1; e
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Known results

d+1

1 T d
g L —-N 5, )= %
° Ip(pons) 9<d+1; ) 2 d+1
e F. Fodor, V. Vigh, T. Zarnocz (2016): d =2, Ip(n) < 3%
o DB, R. Matzke (2019): d > 2, Iy(u) < — 69
. Z . - = .
’ =50 =5 T 50+ 1)
e D. Gorbachev, D. Lepetkov (2022): d = 2,
To(p) < 1.08326. ...
e In particular, on S?:
™ 69 3T
1, 1.08326... < ——— = 1.110796... — = 1.178097....
() < 1.08326... < T 796... < 78097

Conjectured maximum in d = 2 is § = 1.047198....
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Recent results: continuous version

Theorem
R. McCann, T. Lim (2022)/
DB, A. Glazyrin, R. Matzke, J. Park, O. Vlasiuk (2022)

There exists 1 < ag < 2 such that for all & > a4 energy integral

/ (6, ) du(e)du(y)
Sd Sd

is maximized by the uniform measure on an orthonormal basis

1 d+1
=4 = — O, .
1% ONB d+1;el
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New results

Theorem (DB, R. Matzke, J. Nathe (2024))

Let d > 2. For a € (—d, —d + 2], the uniform surface measure o
on the sphere S* minimizes the energy integral I,(p) among all
Borel probability measures.

Theorem (DB, R. Matzke, J. Nathe (2024))

Let d =1, i.e. consider the energy I,(p) on the circle S*. For

—1 < a <0, the uniform measure o on S' is the unique (up to
central symmetry) minimizer of I, (), while for 0 < a < 1 it is
the unique mazximaizer.
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Geodesic Distance on RP?

_ 1 ONE
J: { & GA
o (_da_(d_2)] (_(d_2)71) 1 (1700)
orthogonally
d=1 o N/A symmetric LON B
W
J>1 (abs. cont.) 9 Conjecture: | (o > 2)
o {nonB,?} | HONB
Table: The current state of the problem
ov8?
one’
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Frame potential

Unit norm tight frames (UNTFs)
A set of points Z = {z1,..., 2y} C S ! is a tight frame iff for

any = € R?
N
3 o = el

or, equivalently,

Theorem (Benedetto, Fickus, 2003)

A set Z ={z,...,2n} C S is a tight frame in R? if and
only if Z is a local minimizer of the frame potential:

N
FP(Z) =) |(zi,2)*

ij=1
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Welch bounds

o Welch, ‘74:
Let {z1,...,2x} be unit vectors in C%, k € N, then

d+k—1
N2 Z ‘ quzj |2k ( - >

i,0=1

o Sidelnikov ’74, Venkov ’81:
Let {z1,...,2n} C ST! be unit vectors in R%, k € N, then

1-3...(2k—1)
- L2V P> Lo (0) =
J\TQMZ:lKZ“ZJ>| 2L 0) = gy L d k=)

o Same for k = 1, better for k£ > 1.
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p-frame energy

Let F(t) = |t|P with p > 0. Consider

e = [ [ lewlPdut)duty)
Sd*l Sd*l
Minimizers:
e p =2: “frame energy” (Benedetto, Fickus, ’13)
o “tight frames” (incl. ONB, simplex)
o o (more generally, all isotropic measures p).
e 0 < p < 2: ONB (but not other frames or o)
(Ehler, Okoudjou, ’12)
e p > 2, p=2k: o, spherical designs.
e p>2 butp#2k: 777
e Conjecture: all minimizers of the p-frame energy are
discrete measures.
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Tight designs and 600-cell as Minimizers

Theorem (DB, Glazyrin, M., Park, Vlasiuk)

If C is a tight (2m + 1)-design on S%~! and p € (2m — 2,2m),
then p = #% > zec Oz 18 a minimizer of Liypp.

d |C p-range Configuration

d 2d (0,2) cross polytope

2 2k (2k — 4,2k — 2) 2k-gon

3 12 (2,4) icosahedron

4 120 (8,10) 600-cell

7 56 (2,4) kissing configuration
8 240 (4,6) Eg roots

23 552 (2,4) equiangular lines
23 | 4600 (4,6) kissing configuration
24 | 196560 (8,10) Leech lattice

Dmitriy Bilyk

Energy on the sphere



Minimizers of the p-frame potentials

Tight designs

A spherical (2m + 1)-design is tight if it is centrally symmetric
and there are m + 1 different distances between its distinct
points.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, '19)

If C is a tight (2m + 1)-design on S™' and p € (2m — 2,2m),
then p = ﬁ Y e 9z s a minimizer of the p-frame energy.
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Minimizers of the p-frame potentials

Tight designs

A spherical (2m + 1)-design is tight if it is centrally symmetric
and there are m + 1 different distances between its distinct
points.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, '19)

If C is a tight (2m + 1)-design on S™' and p € (2m — 2,2m),
then p = ﬁ Y e 9z s a minimizer of the p-frame energy.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, '19)

Suppose p & 2N, and p is a minimizer of the p-frame energy.
Then the support of u has empty interior.
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