Energy minimization problems on the sphere

Dmitriy Bilyk
University of Minnesota

TU Graz
Graz, Austria

Fulbright-NAWI Graz Visiting Professors 2024
welcome event

March 7, 2024

Discrete and continuous energy

Let $F:[-1,1] \rightarrow \mathbb{R}$.
Discrete energy: $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
E_{F}(Z)=\frac{1}{N^{2}} \sum_{i, j=1}^{N} F\left(z_{i} \cdot z_{j}\right)
$$

Energy integral: μ - Borel probability measure on \mathbb{S}^{d}

$$
\begin{aligned}
& \qquad I_{F}(\mu)=\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} F(x \cdot y) d \mu(x) d \mu(y), \\
& \text { i.e. } E_{F}(Z)=I_{F}\left(\frac{1}{N} \sum \delta_{z_{i}}\right)
\end{aligned}
$$

Questions:

- Which configurations minimize E_{F} for a given N ?
- Which probability measures minimize I_{F} ?
- Is σ a minimizer? Is it unique?
- Difference between discrete and continuous energies?

Electrostatics: Thomson Problem

Thomson problem (1904)

Find the minimal energy configuration of N electrons interacting according to Coulomb's Law and constrained to the sphere \mathbb{S}^{2}, i.e. minimize the energy

$$
\sum_{i \neq j} \frac{1}{\left\|z_{i}-z_{j}\right\|}
$$

- Answer is known for $N=2,3,4,5,6$ and $N=12$
- 5 points on $\mathbb{S}^{2}, s=1$: triangular bi-pyramid (R.E. Schwartz, 2013, computer-assisted proof)

Riesz s-energies

Riesz s-energies

Find the minimal energy configuration of N points on the sphere \mathbb{S}^{d} for the energies

$$
E_{s}(Z)=\sum_{i \neq j} \frac{1}{\left\|z_{i}-z_{j}\right\|^{s}} \quad(s>0)
$$

and, if $s=0$,

$$
E_{\log }(Z)=\sum_{i \neq j} \log \frac{1}{\left\|z_{i}-z_{j}\right\|}
$$

- $s=d-1$: Thompson's problem (Coulomb/Newtonian potential)
- $s=\log (s=0)$: Smale problem, logarithmic/Fekete points (on \mathbb{S}^{2} the answer is known for $N=2,3,4,5,6$ and $N=12$)
- $s<0$: maximize!
- $s=-1$: sum of distances (Fejes-Tóth Problem)
(on \mathbb{S}^{2} the answer is known for $N=2,3,4,5,6$ and $N=12$)

$s=\infty:$ Tammes Problem (optimal packing)

Tammes Problem (1930)

When $s=\infty$, the problem becomes the following: find the configuration of N points on the sphere \mathbb{S}^{d} which maximizes the minimal distance between points (optimal codes). The problem is named after a Dutch botanist who posed the problem in 1930 while studying the distribution of pores on pollen grains.

- On \mathbb{S}^{2} the answer is known for $N=2, \ldots, 14$ and $N=24$.

$s=\infty:$ Tammes Problem (optimal packing)

Tammes Problem (1930)

When $s=\infty$, the problem becomes the following: find the configuration of N points on the sphere \mathbb{S}^{d} which maximizes the minimal distance between points (optimal codes).
The problem is named after a Dutch botanist who posed the problem in 1930 while studying the distribution of pores on pollen grains.

- On \mathbb{S}^{2} the answer is known for $N=2, \ldots, 14$ and $N=24$.
- $N=4$ simplex
- $N=6$ octahedron
- $N=12$ icosahedron
- $N=8$ square anitprism NOT cube
(L. Fejes Tóth)

$s=-1:$ Fejes Tóth Problem (sum of distances)

Fejes Tóth Problem on the sum of distances (1959)

Find the configurations of N points on the sphere \mathbb{S}^{d} which maximize the sum of distances

$$
E_{-1}(Z)=\sum_{i \neq j}\left\|z_{i}-z_{j}\right\| .
$$

- on \mathbb{S}^{2} the answer is known for $N=2,3,4,5,6$ and $N=12$
- Closely related to the spherical cap discrepancy (Stolarsky)

Spherical cap discrepancy

Spherical caps: $\quad x \in \mathbb{S}^{d}, t \in[-1,1]$

$$
C(x, t)=\left\{y \in \mathbb{S}^{d}:\langle x, y\rangle \geq t\right\}
$$

Spherical cap L^{2} discrepancy: $Z=\left\{z_{1}, z_{2}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$ define

$$
D_{L^{2}, c a p}^{2}(Z)=\int_{\mathbb{S}^{d}} \int_{-1}^{1}\left|\frac{\#(Z \cap C(x, t))}{N}-\sigma(C(x, t))\right|^{2} d t d \sigma(x)
$$

Theorem (Beck, '84)

There exists constants $c_{d}, C_{d}>0$ such that

$$
c_{d} N^{-\frac{1}{2}-\frac{1}{2 d}} \leq \inf _{\# Z=N} D_{L^{2}, c a p}(Z) \leq C_{d} N^{-\frac{1}{2}-\frac{1}{2 d}}
$$

Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
\begin{array}{r}
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\|+c_{d}\left[D_{L^{2}, c a p}\right]^{2}=\text { const } \\
=\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y) .
\end{array}
$$

Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
\begin{aligned}
& c_{d}\left[D_{L^{2}, c a p}(Z)\right]^{2}= \\
& =\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)-\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\| .
\end{aligned}
$$

Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
\begin{aligned}
& c_{d}\left[D_{L^{2}, c a p}(Z)\right]^{2}= \\
& =\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)-\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\| .
\end{aligned}
$$

Proofs:

- K. Stolarsky (1973),
- J. Brauchart, J. Dick (2012) ,
- DB, F. Dai, R. Matzke (2018),
- H. He, K. Basu, Q. Zhao, A. Owen (2019)

Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
\begin{aligned}
& c_{d}\left[D_{L^{2}, c a p}(Z)\right]^{2}= \\
& =\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)-\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\| .
\end{aligned}
$$

Versions:

- two-point homogeneous spaces (M. Skriganov),
- Hamming cube (A. Barg),
- Geodesic distance on the sphere (DB, F. Dai, R. Matzke; M. Skriganov): hemisphere discrepancy \rightarrow geodesic distance
- General energies on the sphere (DB, F. Dai, R. Matzke)
- Energies on metric spaces (DB, R. Matzke, O. Vlasiuk)
- ... and more

Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
\begin{aligned}
& c_{d}\left[D_{L^{2}, c a p}(Z)\right]^{2}= \\
& =\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)-\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\| .
\end{aligned}
$$

Easy corollaries:

- i.i.d. random points: $\mathbb{E} D_{L^{2}, \text { cap }}^{2}(Z) \lesssim N^{-1}$
- jittered sampling: $\mathbb{E} D_{L^{2}, c a p}^{2}(Z) \lesssim N^{-1-\frac{1}{d}}$
- $\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\| \leq \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)$

Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$

$$
\begin{aligned}
& c_{d}\left[D_{L^{2}, c a p}(Z)\right]^{2}= \\
& =\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)-\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left\|z_{i}-z_{j}\right\| .
\end{aligned}
$$

Easy corollaries:

- i.i.d. random points: $\mathbb{E} D_{L^{2}, \text { cap }}^{2}(Z) \lesssim N^{-1}$
- jittered sampling: $\mathbb{E} D_{L^{2}, \text { cap }}^{2}(Z) \lesssim N^{-1-\frac{1}{d}}$
- $\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \mu(x) d \mu(y) \leq \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\| d \sigma(x) d \sigma(y)$

Euclidean distance energy integrals

Which regular Borel probability measure μ on a compact domain $\Omega \subset \mathbb{R}^{n}$ maximizes the energy integral

$$
I_{\alpha}(\mu)=\int_{\Omega} \int_{\Omega}\|x-y\|^{\alpha} d \mu(x) d \mu(y)
$$

for a given $\alpha>0$?

Theorem (Björck (1956))

- $0<\alpha<2$: unique maximizer.
- $\alpha>2$: discrete maximizers with at most $n+1$ points in the support.

Discreteness of minimizers for mild repulsion

For a kernel $W: \mathbb{R}_{+} \rightarrow \mathbb{R}$ define

$$
I_{W}(\mu)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} W(\|x-y\|) d \mu(x) d \mu(y)
$$

- $W(0)=0$
- $W(r)<0$ for $r<R_{0}$.
- $W(r)>0$ for $r>R_{0}$
(attractive-repulsive interaction)

Theorem (Carillo, Figalli, Patacchini, '17)

Assume that $W(r) \approx-r^{\alpha}$ as $r \rightarrow 0$ with $\alpha>2$ (mild repulsion). Then all global minimizers of I_{W} are discrete with finite support.

Arthur Schopenhauer

"A number of porcupines huddled together for warmth on a cold day in winter; but, as they began to prick one another with their quills, they were obliged to disperse. However the cold drove them together again, when just the same thing happened. At last, after many turns of huddling and dispersing, they discovered that they would be best off by remaining at a little distance from one another. In the same way the need of society drives the human porcupines together, only to be mutually repelled by the many prickly and disagreeable qualities of their nature. The moderate distance which they at last discover to be the only tolerable condition of intercourse, is the code of politeness and fine manners; and those who transgress it are roughly told-in the English phrase-to keep their distance. By this arrangement the mutual need of warmth is only very moderately satisfied; but then people do not get pricked. A man who has some heat in himself prefers to remain outside, where he will neither prick other people nor get pricked himself."

- Arthur Schopenhauer, Parerga and Paralipomena
§. 396.
©ine Gejellidaft Stadelfidweine brängte fidd, an cinem falten Wintertage, redit nabe zujammen, um burd bie gegenjeitige $\mathfrak{B a}$ rme, fid vor bem Grfrieren zu ídüsen. Sebod balb empfan, ben fie bie gegenfeitigen Stackeln; weldes fie bann wieber von einanber entfernte. Wiann nun bag̉ Bebűrfní ber Erwärmung fie wieber näber zujammen bradte, wiebergolte fid jenes̊ zweite Uebet; io bak fie zwifden beiben Seiben gin unb bergeworjen wurben, bis fie eine mägige Entfernung von einanber beraus, gefunben batten, in ber fie ef am beften ausgalten fonnten. -

> Breidniffe, 耳arabetn umb gabetn.

525
So treibt baz̉ Bebürfnig ber Gejellidaft, aus ber Reere und $\mathfrak{M o n o t o n i e}$ be夭 eigenen Sunern entiprungen, bie Meníhen zu einanber; aber ibre vielen wiberwartigen Eigenidaften und uns erträgliden febler ftopen fie wieber von einanber $\mathfrak{a b}$. Die mitt= lere Entfernung, bie fie endid) beraufinben, und bei welder ein Beifammenfeyn beftebn fann, if bie söflidfeit unb feine Sitte. $\mathfrak{D c m}$, Der fid nidt in Diefer Entfernung bält, ruft man in England zu: keep your distance! - Bermöge berfelben wirb zwar baé Bebürfní gegenfeitiger Erwarmung nur unvoll. fommen befriebigt, bafür aber ber Stid ber Stadein nidt empfunben. - $\mathfrak{B e r}$ jebod viel eigene, innere $\mathfrak{Z B a ̈ r m e}$ gat bleibt lieber aus ber ©jefellfdaft weg, um feine Befdwerbe ju geben, nod јu empfangen.

Euclidean distance energy integrals

Which regular Borel probability measure μ on a compact domain $\Omega \subset \mathbb{R}^{n}$ maximizes the energy integral

$$
I_{\alpha}(\mu)=\int_{\Omega} \int_{\Omega}\|x-y\|^{\alpha} d \mu(x) d \mu(y)
$$

for a given $\alpha>0$?

Theorem (Björck (1956))

- $0<\alpha<2$: unique maximizer.
- $\alpha>2$: discrete maximizers with at most $d+1$ points in the support.

Euclidean distance energy integrals: sphere

Which regular Borel probability measure μ on the sphere $\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ maximizes the energy integral

$$
I_{\alpha}(\mu)=\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\|^{\alpha} d \mu(x) d \mu(y)
$$

for a given $\alpha>0$?

Theorem (Björck (1956))

- $0<\alpha<2$: unique maximizer is surface measure σ.
- $\alpha=2$: any measure with center of mass at 0 .
- $\alpha>2$: mass $\frac{1}{2}$ at two opposite poles.
- $-d<\alpha \leq 0$: unique minimizer is surface measure σ.

The Euclidean Distance on \mathbb{S}^{d}

Björck (1956)

$-d<\alpha<2$	$\alpha=2$	$\alpha>2$
σ	center of mass at 0	$\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right)$

The Geodesic Distance on \mathbb{S}^{d}

DB, Dai (2019)

$-d<\alpha<1$	$\alpha=1$	$\alpha>1$
uniform σ	centrally symmetric	$\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right)$

Hamming Distance on the Hamming Cube

$H^{d}=\{ \pm 1\}^{d} \subset \sqrt{d} \mathbb{S}^{d-1}$.
Hamming distance: $d_{H}(x, y)=\#\left\{i: x_{i} \neq y_{i}\right\}=\frac{1}{4}\|x-y\|^{2}$

Barg, DB, Matzke

Chordal Distance on $\mathbb{R P}^{d}$

Chordal distance on $\mathbb{R}^{d}: \rho(x, y)=\sqrt{1-|x \cdot y|^{2}}$

$-d<\alpha<2$	$\alpha=2$	$\alpha>2$
uniform σ	probability measures	$\mu_{O N B}$

Anderson, Dostert, Grabner, Matzke, Stepaniuk;
DB, Ferizović, Glazyrin, Matzke, Park, Vlasiuk.

Repulsive vs. attractive-repulsive potentials

Graph of $F(t), \quad t=x \cdot y$

Sum of acute angles

Fejes Tóth Problem about the sum of acute angles

Find the configurations of N points on the sphere \mathbb{S}^{d} which maximize the sum

$$
\text { where } \frac{\sum_{i \neq j} \theta\left(z_{i}, z_{j}\right),}{\theta(x, y)}=\min \{d(x, y), \pi-d(x, y)\}
$$

is the acute (non-obtuse) angle between the lines generated by vectors $x, y \in \mathbb{S}^{d}$. It is conjectured that the periodically repeated orthonormal basis of \mathbb{R}^{d+1} is a maximizer, e.g., for $d=2, N=5$,

$$
\left\{e_{1}, e_{2}, e_{3}, e_{1}, e_{2}\right\} \text { is a maximizer. }
$$

- Fejes Tóth solved for small values of $N \leq 6$ on \mathbb{S}^{2}.
- Solved on \mathbb{S}^{1}. Open for $d \geq 2$.

Continuous version (energy integral)

Conjecture

The energy integral

$$
I_{\theta}(\mu)=\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \theta(x, y) d \mu(x) d \mu(y)
$$

where

$$
\theta(x, y)=\min \{d(x, y), \pi-d(x, y)\}
$$

is the acute (non-obtuse) angle between the lines generated by vectors $x, y \in \mathbb{S}^{d}$, is maximized by the uniform measure on an orthonormal basis

$$
\mu_{O N B}=\frac{1}{d+1} \sum_{i=1}^{d+1} \delta_{e_{i}} .
$$

- $I_{\theta}\left(\mu_{O N B}\right)=I_{\theta}\left(\frac{1}{d+1} \sum_{i=1}^{d+1} \delta_{e_{i}}\right)=\frac{\pi}{2} \cdot \frac{d}{d+1}$.
- F. Fodor, V. Vígh, T. Zarnocz (2016): $\quad d=2, I_{\theta}(\mu) \leq \frac{3 \pi}{8}$.
- DB, R. Matzke (2019): $d \geq 2, I_{\theta}(\mu) \leq \frac{\pi}{2}-\frac{69}{50(d+1)}$.
- D. Gorbachev, D. Lepetkov (2022): $d=2$, $I_{\theta}(\mu) \leq 1.08326 \ldots$
- In particular, on \mathbb{S}^{2} :

$$
I_{\theta}(\mu)<1.08326 \ldots<\frac{\pi}{2}-\frac{69}{150}=1.110796 \ldots<\frac{3 \pi}{8}=1.178097 \ldots
$$

- Conjectured maximum in $d=2$ is $\frac{\pi}{3}=1.047198 \ldots$.

Recent results: continuous version

Theorem
R. McCann, T. Lim (2022)/

DB, A. Glazyrin, R. Matzke, J. Park, O. Vlasiuk (2022)
There exists $1 \leq \alpha_{d}<2$ such that for all $\alpha>\alpha_{d}$ energy integral

$$
\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}(\theta(x, y))^{\alpha} d \mu(x) d \mu(y)
$$

is maximized by the uniform measure on an orthonormal basis

$$
\mu=\delta_{O N B}=\frac{1}{d+1} \sum_{i=1}^{d+1} \delta_{e_{i}} .
$$

New results

Theorem (DB, R. Matzke, J. Nathe (2024))

Let $d \geq 2$. For $\alpha \in(-d,-d+2]$, the uniform surface measure σ on the sphere \mathbb{S}^{d} minimizes the energy integral $I_{\alpha}(\mu)$ among all Borel probability measures.

Theorem (DB, R. Matzke, J. Nathe (2024))

Let $d=1$, i.e. consider the energy $I_{\alpha}(\mu)$ on the circle \mathbb{S}^{1}. For $-1<\alpha \leq 0$, the uniform measure σ on \mathbb{S}^{1} is the unique (up to central symmetry) minimizer of $I_{\alpha}(\mu)$, while for $0<\alpha<1$ it is the unique maximizer.

Geodesic Distance on $\mathbb{R P}^{d}$

α	$(-d,-(d-2)]$	$(-(d-2), 1)$	1	$(1, \infty)$
$d=1$	σ	$\mathrm{~N} / \mathrm{A}$	orthogonally symmetric μ	$\mu_{O N B}$
$d>1$	(abs. cont.)	$?$	Conjecture: $\left\{\mu_{O N B}, ?\right\}$	$(\alpha \geq 2)$ $\mu_{O N B}$

Table: The current state of the problem

Frame potential

Unit norm tight frames (UNTFs)

A set of points $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d-1}$ is a tight frame iff for any $x \in \mathbb{R}^{d}$

$$
\sum_{k}\left|\left\langle x, z_{k}\right\rangle\right|^{2}=\frac{N}{d}\|x\|^{2}
$$

or, equivalently,

$$
x=\frac{d}{N} \sum\left\langle x, z_{k}\right\rangle z_{k}
$$

Theorem (Benedetto, Fickus, 2003)

A set $Z=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d-1}$ is a tight frame in \mathbb{R}^{d} if and only if Z is a local minimizer of the frame potential:

$$
F P(Z)=\sum_{i, j=1}^{N}\left|\left\langle z_{i}, z_{j}\right\rangle\right|^{2}
$$

Welch bounds

- Welch, '74:

Let $\left\{z_{1}, \ldots, z_{N}\right\}$ be unit vectors in $\mathbb{C}^{d}, k \in \mathbb{N}$, then

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left|\left\langle z_{i}, z_{j}\right\rangle\right|^{2 k} \geq\binom{ d+k-1}{k}^{-1}
$$

- Sidelnikov '74, Venkov '81:

Let $\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d-1}$ be unit vectors in $\mathbb{R}^{d}, k \in \mathbb{N}$, then

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left|\left\langle z_{i}, z_{j}\right\rangle\right|^{2 k} \geq I_{t^{2 k}}(\sigma)=\frac{1 \cdot 3 \ldots(2 k-1)}{d \cdot(d+2) \ldots(d+2 k-2)} .
$$

- Same for $k=1$, better for $k>1$.

p-frame energy

Let $F(t)=|t|^{p}$ with $p>0$. Consider

$$
I_{F}(\mu)=\int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}}|\langle x, y\rangle|^{p} d \mu(x) d \mu(y)
$$

Minimizers:

- $p=2$: "frame energy" (Benedetto, Fickus, '13)
- "tight frames" (incl. ONB, simplex)
- σ (more generally, all isotropic measures μ).
- $0<p<2$: ONB (but not other frames or σ)
(Ehler, Okoudjou, '12)
- $p>2, p=2 k: \sigma$, spherical designs.
- $p>2$, but $p \neq 2 k$: ???
- Conjecture: all minimizers of the p-frame energy are discrete measures.

Tight designs and 600-cell as Minimizers

Theorem (DB, Glazyrin, M., Park, Vlasiuk)

If C is a tight $(2 m+1)$-design on \mathbb{S}^{d-1} and $p \in(2 m-2,2 m)$, then $\mu=\frac{1}{\# C} \sum_{x \in C} \delta_{x}$ is a minimizer of $I_{|t|^{p}}$.

d	$\|C\|$	p-range	Configuration
d	$2 d$	$(0,2)$	cross polytope
2	$2 k$	$(2 k-4,2 k-2)$	$2 k$-gon
3	12	$(2,4)$	icosahedron
4	120	$(8,10)$	600 -cell
7	56	$(2,4)$	kissing configuration
8	240	$(4,6)$	E_{8} roots
23	552	$(2,4)$	equiangular lines
23	4600	$(4,6)$	kissing configuration
24	196560	$(8,10)$	Leech lattice

Minimizers of the p-frame potentials

Tight designs

A spherical $(2 m+1)$-design is tight if it is centrally symmetric and there are $m+1$ different distances between its distinct points.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, '19)

If C is a tight $(2 m+1)$-design on \mathbb{S}^{d-1} and $p \in(2 m-2,2 m)$, then $\mu=\frac{1}{|C|} \sum_{x \in C} \delta_{x}$ is a minimizer of the p-frame energy.

Minimizers of the p-frame potentials

Tight designs

A spherical $(2 m+1)$-design is tight if it is centrally symmetric and there are $m+1$ different distances between its distinct points.

> Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, '19)
> If C is a tight $(2 m+1)$-design on \mathbb{S}^{d-1} and $p \in(2 m-2,2 m)$, then $\mu=\frac{1}{|C|} \sum_{x \in C} \delta_{x}$ is a minimizer of the p-frame energy.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, '19)

Suppose $p \notin 2 \mathbb{N}$, and μ is a minimizer of the p-frame energy. Then the support of μ has empty interior.

