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Discrete and continuous energy

Let F : [�1, 1] ! R.
Discrete energy: Z = {z1, ..., zN} ⇢ Sd

EF (Z) =
1

N2

NX

i,j=1

F (zi · zj)

Energy integral: µ – Borel probability measure on Sd

IF (µ) =

Z

Sd

Z

Sd

F (x · y) dµ(x)dµ(y),

i.e. EF (Z) = IF

✓
1

N

X
�zi

◆

Questions:
Which configurations minimize EF for a given N?
Which probability measures minimize IF ?
Is � a minimizer? Is it unique?
Di↵erence between discrete and continuous energies?

Dmitriy Bilyk Energy on the sphere



Electrostatics: Thomson Problem

Thomson problem (1904)

Find the minimal energy configuration of N electrons
interacting according to Coulomb’s Law and constrained to the
sphere S2, i.e. minimize the energy

X

i 6=j

1

kzi � zjk

Answer is known for N = 2, 3, 4, 5, 6 and N = 12

5 points on S2, s = 1: triangular bi-pyramid
(R.E. Schwartz, 2013, computer-assisted proof)
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Riesz s-energies

Riesz s-energies

Find the minimal energy configuration of N points on the
sphere Sd for the energies

Es(Z) =
X

i 6=j

1

kzi � zjks
(s > 0)

and, if s = 0,

Elog(Z) =
X

i 6=j

log
1

kzi � zjk

s = d� 1: Thompson’s problem (Coulomb/Newtonian potential)

s = log (s = 0): Smale problem, logarithmic/Fekete points
(on S2 the answer is known for N = 2, 3, 4, 5, 6 and N = 12)

s < 0: maximize!

s = �1: sum of distances (Fejes-Tóth Problem)
(on S2 the answer is known for N = 2, 3, 4, 5, 6 and N = 12)
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s = 1: Tammes Problem (optimal packing)

Tammes Problem (1930)

When s = 1, the problem becomes the following: find the
configuration of N points on the sphere Sd which maximizes the
minimal distance between points (optimal codes). The problem
is named after a Dutch botanist who posed the problem in 1930
while studying the distribution of pores on pollen grains.

On S2 the answer is known for N = 2, . . . , 14 and N = 24.
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s = 1: Tammes Problem (optimal packing)

Tammes Problem (1930)

When s = 1, the problem becomes the following: find the
configuration of N points on the sphere Sd which maximizes

the minimal distance between points (optimal codes).
The problem is named after a Dutch botanist who posed the problem in

1930 while studying the distribution of pores on pollen grains.

On S2 the answer is known for N = 2, . . . , 14 and N = 24.

N = 4 simplex

N = 6 octahedron

N = 12 icosahedron

N = 8 square anitprism

NOT cube

(L. Fejes Tóth)
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s = �1: Fejes Tóth Problem (sum of distances)

Fejes Tóth Problem on the sum of distances (1959)

Find the configurations of N points on the sphere Sd which
maximize the sum of distances

E�1(Z) =
X

i 6=j

kzi � zjk.

on S2 the answer is known for N = 2, 3, 4, 5, 6 and N = 12

Closely related to the spherical cap discrepancy (Stolarsky)
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Spherical cap discrepancy

Spherical caps: x 2 Sd, t 2 [�1, 1]

C(x, t) = {y 2 Sd : hx, yi � t}.

Spherical cap L
2
discrepancy: Z = {z1, z2, ..., zN} ⇢ Sd

define

D
2
L2,cap(Z) =

Z

Sd

1Z

�1

�����
#
�
Z \ C(x, t)

�

N
� �

�
C(x, t)

�
�����

2

dt d�(x).

Theorem (Beck, ’84)

There exists constants cd, Cd > 0 such that

cdN
� 1

2�
1
2d  inf

#Z=N
DL2,cap(Z)  CdN

� 1
2�

1
2d .
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1, ..., zN} ⇢ Sd

1

N2

NX

i,j=1

kzi�zjk + cd

h
DL2,cap

i2
= const

=

Z

Sd

Z

Sd

kx� yk d�(x)d�(y).

Proofs:

K. Stolarsky (1973),
J. Brauchart, J. Dick (2012) ,
DB, F. Dai, R. Matzke (2018),
H. He, K. Basu, Q. Zhao, A. Owen (2019)
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1, ..., zN} ⇢ Sd

cd

h
DL2,cap(Z)

i2
=

=

Z

Sd

Z

Sd

kx� yk d�(x)d�(y) � 1

N2

NX

i,j=1

kzi � zjk.

Proofs:

K. Stolarsky (1973),
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H. He, K. Basu, Q. Zhao, A. Owen (2019)
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1, ..., zN} ⇢ Sd

cd

h
DL2,cap(Z)

i2
=

=

Z

Sd

Z

Sd

kx� yk d�(x)d�(y) � 1

N2

NX

i,j=1

kzi � zjk.

Versions:

two-point homogeneous spaces (M. Skriganov),
Hamming cube (A. Barg),
Geodesic distance on the sphere (DB, F. Dai, R. Matzke;
M. Skriganov): hemisphere discrepancy ! geodesic distance

General energies on the sphere (DB, F. Dai, R. Matzke)
Energies on metric spaces (DB, R. Matzke, O. Vlasiuk)
... and more
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1, ..., zN} ⇢ Sd

cd

h
DL2,cap(Z)

i2
=

=

Z

Sd

Z

Sd

kx� yk d�(x)d�(y) � 1

N2

NX

i,j=1

kzi � zjk.

Easy corollaries:

i.i.d. random points: ED2
L2,cap(Z) . N

�1

jittered sampling: ED2
L2,cap(Z) . N

�1� 1
d

1

N2

NX

i,j=1

kzi � zjk 
Z

Sd

Z

Sd

kx� yk d�(x)d�(y)
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Discrepancy and sum of distances: Stolarsky Principle

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1, ..., zN} ⇢ Sd

cd

h
DL2,cap(Z)

i2
=

=

Z

Sd

Z

Sd

kx� yk d�(x)d�(y) � 1

N2

NX

i,j=1

kzi � zjk.

Easy corollaries:

i.i.d. random points: ED2
L2,cap(Z) . N

�1

jittered sampling: ED2
L2,cap(Z) . N

�1� 1
d

Z

Sd

Z

Sd

kx� yk dµ(x)dµ(y) 
Z

Sd

Z

Sd

kx� yk d�(x)d�(y)
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Euclidean distance energy integrals

Which regular Borel probability measure µ on a compact
domain ⌦ ⇢ Rn

maximizes the energy integral

I↵(µ) =

Z

⌦

Z

⌦

kx� yk↵dµ(x)dµ(y)

for a given ↵ > 0?

Theorem (Björck (1956))

0 < ↵ < 2: unique maximizer.

↵ > 2: discrete maximizers with at most n+ 1 points in the
support.
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Discreteness of minimizers for mild repulsion

For a kernel W : R+ ! R define

IW (µ) =

Z

Rn

Z

Rn

W (kx� yk)dµ(x) dµ(y)

W (0) = 0

W (r) < 0 for r < R0.

W (r) > 0 for r > R0

(attractive-repulsive interaction)

Theorem (Carillo, Figalli, Patacchini, ’17)

Assume that W (r) ⇡ �r
↵ as r ! 0 with ↵ > 2 (mild repulsion).

Then all global minimizers of IW are discrete with finite
support.
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Euclidean distance energy integrals

Which regular Borel probability measure µ on a compact
domain ⌦ ⇢ Rn

maximizes the energy integral

I↵(µ) =

Z

⌦

Z

⌦

kx� yk↵dµ(x)dµ(y)

for a given ↵ > 0?

Theorem (Björck (1956))

0 < ↵ < 2: unique maximizer.

↵ > 2: discrete maximizers with at most d+ 1 points in the
support.
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Euclidean distance energy integrals: sphere

Which regular Borel probability measure µ on the sphere
Sd ⇢ Rd+1

maximizes the energy integral

I↵(µ) =

Z

Sd

Z

Sd

kx� yk↵dµ(x)dµ(y)

for a given ↵ > 0?

Theorem (Björck (1956))

0 < ↵ < 2: unique maximizer is surface measure �.

↵ = 2: any measure with center of mass at 0.

↵ > 2: mass 1
2 at two opposite poles.

�d < ↵  0: unique minimizer is surface measure �.

Dmitriy Bilyk Energy on the sphere

-
·
t

-----

·

t



The Euclidean Distance on Sd

Björck (1956)

�d < ↵ < 2 ↵ = 2 ↵ > 2
� center of mass at 0 1

2(�p + ��p)
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The Geodesic Distance on Sd

DB, Dai (2019)

�d < ↵ < 1 ↵ = 1 ↵ > 1
uniform � centrally symmetric 1

2(�p + ��p)
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Hamming Distance on the Hamming Cube

H
d = {±1}d ⇢

p
d Sd�1.

Hamming distance: dH(x, y) = #{i : xi 6= yi} = 1
4kx� yk2

0 < ↵ < 1 ↵ = 1 ↵ > 1
uniform �H Center of Mass 0 1

2(�p + ��p)
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Chordal Distance on RPd

Chordal distance on RPd: ⇢(x, y) =
p

1� |x · y|2

�d < ↵ < 2 ↵ = 2 ↵ > 2

uniform �

isotropic
probability measures µONB
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Repulsive vs. attractive-repulsive potentials

Graph of F (t), t = x · y

Repulsive potential Attractive-repulsive potential
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Sum of acute angles

Fejes Tóth Problem about the sum of acute angles

Find the configurations of N points on the sphere Sd which
maximize the sum X

i 6=j

✓(zi, zj),

where
✓(x, y) = min{d(x, y),⇡ � d(x, y)}

is the acute (non-obtuse) angle between the lines generated by
vectors x, y 2 Sd. It is conjectured that the periodically
repeated orthonormal basis of Rd+1 is a maximizer, e.g., for
d = 2, N = 5,

{e1, e2, e3, e1, e2} is a maximizer.

Fejes Tóth solved for small values of N  6 on S2.

Solved on S1. Open for d � 2.
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Continuous version (energy integral)

Conjecture

The energy integral

I✓(µ) =

Z

Sd

Z

Sd

✓(x, y)dµ(x)dµ(y),

where
✓(x, y) = min{d(x, y),⇡ � d(x, y)}

is the acute (non-obtuse) angle between the lines generated by
vectors x, y 2 Sd, is maximized by the uniform measure on an
orthonormal basis

µONB =
1

d+ 1

d+1X

i=1

�ei .
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Known results

I✓

�
µONB

�
= I✓

✓
1

d+ 1

d+1X

i=1

�ei

◆
=

⇡

2
· d

d+ 1
.

F. Fodor, V. Vı́gh, T. Zarnocz (2016): d = 2, I✓(µ) 
3⇡

8
.

DB, R. Matzke (2019): d � 2, I✓(µ) 
⇡

2
� 69

50(d+ 1)
.

D. Gorbachev, D. Lepetkov (2022): d = 2,
I✓(µ)  1.08326 . . . .

In particular, on S2:

I✓(µ) < 1.08326... <
⇡

2
� 69

150
= 1.110796... <

3⇡

8
= 1.178097... .

Conjectured maximum in d = 2 is ⇡
3 = 1.047198... .
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Recent results: continuous version

Theorem
R. McCann, T. Lim (2022)/
DB, A. Glazyrin, R. Matzke, J. Park, O. Vlasiuk (2022)

There exists 1  ↵d < 2 such that for all ↵ > ↵d energy integral
Z

Sd

Z

Sd

�
✓(x, y)

�↵
dµ(x)dµ(y)

is maximized by the uniform measure on an orthonormal basis

µ = �ONB =
1

d+ 1

d+1X

i=1

�ei .
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New results

Theorem (DB, R. Matzke, J. Nathe (2024))

Let d � 2. For ↵ 2 (�d,�d+ 2], the uniform surface measure �

on the sphere Sd minimizes the energy integral I↵(µ) among all
Borel probability measures.

Theorem (DB, R. Matzke, J. Nathe (2024))

Let d = 1, i.e. consider the energy I↵(µ) on the circle S1. For
�1 < ↵  0, the uniform measure � on S1 is the unique (up to
central symmetry) minimizer of I↵(µ), while for 0 < ↵ < 1 it is
the unique maximizer.
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Geodesic Distance on RPd

↵ (�d,�(d� 2)] (�(d� 2), 1) 1 (1,1)

d = 1 � N/A
orthogonally
symmetric

µ

µONB

d > 1
(abs. cont.)

�
?

Conjecture:
{µONB, ?}

(↵ � 2)
µONB

Table: The current state of the problem
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Frame potential

Unit norm tight frames (UNTFs)

A set of points Z = {z1, . . . , zN} ⇢ Sd�1 is a tight frame i↵ for
any x 2 Rd

X

k

|hx, zki|2 =
N

d
kxk2,

or, equivalently,

x =
d

N

X
hx, zki zk.

Theorem (Benedetto, Fickus, 2003)

A set Z = {z1, . . . , zN} ⇢ Sd�1 is a tight frame in Rd if and
only if Z is a local minimizer of the frame potential:

FP (Z) =
NX

i,j=1

|hzi, zji|2.
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Welch bounds

Welch, ‘74:

Let {z1, . . . , zN} be unit vectors in Cd, k 2 N, then

1

N2

NX

i,j=1

|hzi, zji|2k �
✓
d+ k � 1

k

◆�1

.

Sidelnikov ’74, Venkov ’81:

Let {z1, . . . , zN} ⇢ Sd�1 be unit vectors in Rd, k 2 N, then

1

N2

NX

i,j=1

|hzi, zji|2k � It2k(�) =
1 · 3 . . . (2k � 1)

d · (d+ 2) . . . (d+ 2k � 2)
.

Same for k = 1, better for k > 1.
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p-frame energy

Let F (t) = |t|p with p > 0. Consider

IF (µ) =

Z

Sd�1

Z

Sd�1

|hx, yi|pdµ(x)dµ(y)

Minimizers:

p = 2: “frame energy” (Benedetto, Fickus, ’13)
“tight frames” (incl. ONB, simplex)
� (more generally, all isotropic measures µ).

0 < p < 2: ONB (but not other frames or �)
(Ehler, Okoudjou, ’12)

p > 2, p = 2k: �, spherical designs.

p > 2, but p 6= 2k: ???
Conjecture: all minimizers of the p-frame energy are
discrete measures.
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Tight designs and 600-cell as Minimizers

Theorem (DB, Glazyrin, M., Park, Vlasiuk)

If C is a tight (2m+ 1)-design on Sd�1 and p 2 (2m� 2, 2m),
then µ = 1

#C

P
x2C �x is a minimizer of I|t|p.

d |C| p-range Configuration
d 2d (0, 2) cross polytope
2 2k (2k � 4, 2k � 2) 2k-gon
3 12 (2, 4) icosahedron
4 120 (8, 10) 600-cell
7 56 (2, 4) kissing configuration
8 240 (4, 6) E8 roots
23 552 (2, 4) equiangular lines
23 4600 (4, 6) kissing configuration
24 196560 (8, 10) Leech lattice
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Minimizers of the p-frame potentials

Tight designs

A spherical (2m+ 1)-design is tight if it is centrally symmetric
and there are m+ 1 di↵erent distances between its distinct
points.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, ’19)

If C is a tight (2m+ 1)-design on Sd�1 and p 2 (2m� 2, 2m),
then µ = 1

|C|
P

x2C �x is a minimizer of the p-frame energy.

Theorem (DB, Glazyrin, Matzke, Park, Vlasiuk, ’19)

Suppose p 62 2N, and µ is a minimizer of the p-frame energy.
Then the support of µ has empty interior.
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