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Basic notions

Let G be an additive finite abelian group and exp(G ) the exponent
of G . Let

• S = g1 . . . gℓ be a sequence over G ,
• F(G ) be the monoid of all sequences over G ,
• B(G ) the monoid of all zero-sum sequences over G ,
• A(G ) the set of all minimal zero-sum sequences over G , and
• A∗(G ) the set of all non-empty zero-sum free sequences over
G .
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Cross number
• The cross number of S = g1 . . . gℓ is defined by

k(S) =
ℓ∑

i=1

1
ord(gi )

∈ Q≥0,

• the (large) cross number of G is defined by

K(G ) = max{k(S) | S ∈ A(G )} ,

• and the (small) cross number of G is defined by

k(G ) = max{k(S) | S ∈ A∗(G )} .

• Note that 1
exp(G) + k(G ) ≤ K(G ).
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Remarks-I

• The term cross number K(G ) was coined by a German
Mathematician Ulrich Krause in 1984 when he showed that
K(G ) = 1 if and only if G is cyclic group of prime power order.

• Cross numbers of certain zero-sum sequences are invariants
which describe the arithmetic of Krull monoids.
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Lower bounds

Let G = Cq1 ⊕ . . .⊕ Cqr be a direct sum decomposition of G into
cyclic groups of prime power order.

Set

k∗(G ) :=
r∑

i=1

qi − 1
qi

and K∗(G ) :=
1

exp(G )
+ k∗(G ) .

Suppose (e1, . . . , er ) is a generating set of G with ord(ei ) = qi for
each i ∈ [1, r ] then

• S = eq1−1
1 . . . eqr−1

r (e1 + . . .+ er ) ∈ A(G ) has cross number
K∗(G ),

• T = S(e1 + . . .+ er )
−1 ∈ A∗(G ) has cross number k∗(G ).
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Conjecture

K∗(G ) ≤ K(G ) and k∗(G ) ≤ k(G ) (A)

Question: When does the equality hold in (A)?
Note: if K(G ) = K∗(G ), then k(G ) = k∗(G ) due to the following
easy to observe relation

1
exp(G )

+ k(G ) ≤ K(G ) = K∗(G ) =
1

exp(G )
+ k∗(G )

• The precise value of K(G ) is not known in general and in addition
no counterexample is known so far for which the inequality is strict.
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Remarks-II
• (Krause - Zahlten, 1991) There is equality in (A) for p-groups

(proof uses group algebra Fp[G ]), for cyclic groups with
exp(G ) = pnq or pqr , or p2q2.

Moreover, they conjectured that the equality holds in (A) for
all cyclic abelian groups G .

• (Geroldinger - Schneider, 1994) Equality holds in (A) for
G = C r

p ⊕ C s
q for p-large (w.r.t q).

• (Kim, 2015) Equality holds in (A) for G = Hp ⊕ Cqk where Hp

is a p-group.
(Girard (2008), Geroldinger - Grynkiewicz (2009), He (2014)
also contributed towards this question)

• (B. - Schmid, ongoing) 1. Let H be a finite abelian group of
odd order. If K(H) = K∗(H) and

∑
d |exp(H)

1
d < 2, then

K(C2 ⊕ H) = K∗(C2 ⊕ H).
2. Let G = C 2

2 ⊕ Gp where Gp is a p-group for some odd
prime p. Then K∗(G ) = K(G ).
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Conjecture (Kleitman - Lemke, 1989)
For a finite group G , any sequence S of |G | elements contain a
zero-sum subsequence S ′ with k(S ′) ≤ 1.

This was proved for abelian groups by Geroldinger (1991) and by
Elledge-Hurlbert (2005) via graph pebblings. The inverse problem
was recently studied by Zhong (2021).
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Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).

Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.
• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.
• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.

• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.
• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)

• H is said to be factorial if each a ∈ H has only one
factorization.

• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.

• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.
• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.

• H is said to be length-factorial if it is atomic and each two
distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.
• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.

** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Recall

Let H be a monoid (multiplicatively written, commutative,
cancellative).
Let a ∈ H such that a = u1 · · · uk for u1, . . . , uk atoms/irreducible
elements of H. Then

• k is said to be a factorization length of a.
• L(a) the set of lengths of a (⊂ N)
• H is said to be factorial if each a ∈ H has only one

factorization.
• H is said to be half-factorial if |L(a)| = 1 for each a ∈ H.
• H is said to be length-factorial if it is atomic and each two

distinct factorizations of any element have distinct
factorization lengths.
** An atomic monoid is factorial if and only if it is
half-factorial and length-factorial.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Lemma (Skula - Zaks, 1976)
Let G0 ⊂ G be a non-empty subset. Then TFAE.
• G0 is half-factorial.
• k(S) = 1 for all S ∈ A(G0).
• L(S) = {k(S)} for all S ∈ A(G0).
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Lemma
Let G0 ⊂ G be a non-empty subset.
• If there is an S ∈ A(G0) with k(S) = 1 and | supp(S)| ≥ 2 then
G0 is not length-factorial.
• If there are distinct S1,S2 ∈ A(G0) with k(S1) ̸= 1 and
k(S2) ̸= 1, then G0 is not length-factorial.
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Theorem (Characterization of length-factoriality)
Let G0 ⊂ G such that ⟨G0⟩ = G and g ∈ ⟨G0 \ {g}⟩ for all g ∈ G0.
TFAE

a. G0 is length-factorial but not factorial.
b. G0 \ {0} = {e1, . . . , er} where (e1, . . . , er ) is a basis of G ,

r ∈ N and ord(ei ) = n ≥ 2 for all i ∈ [1, r ] and r + 1 ̸= n.
In particular, G ∼= C r

n .
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A list of some sets of invariants

1. L(H) = {L(a) : a ∈ H} the system of sets of lengths,
2. ∆(L) =

⋃
L∈L∆(L) ⊂ N the set of distances of L,

3. R(L) = {ρ(L) : L ∈ L} ⊂ Q≥1 the set of elasticities of L,
4. Ca(H) = {c(a) : a ∈ H with c(a) > 0} ⊂ N the set of

catenary degrees, ......
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Notation

• We denote by

W(G ) = {k(S) | S ∈ A(G )}

the set of cross numbers of all minimal zero-sum sequences
over G

• and by
w(G ) = {k(S) | S ∈ A∗(G )}

the set of cross numbers of all non-empty zero-sum free
sequences over G .
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Quick observation

Given any element g ∈ G ,

S = g(−g) ∈ A(G )
=⇒ k(S) = 2

ord(g) ∈ W(G ).
Since exp(G ) ≥ ord(g) for every g ∈ G
=⇒ 2

exp(G) ≤
2

ord(g) is the smallest possible cross number of a
minimal zero-sum sequence over G . Therefore,

W(G ) ⊆ 1
exp(G )

[2, exp(G )K(G )]

and similarly

w(G ) ⊆ 1
exp(G )

[1, exp(G )k(G )] .
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Cross numbers up to 1 and beyond

• Let W≤1(G ) = {k(S) | S ∈ A(G ), k(S) ≤ 1} ⊆ W(G ).

Then
1. (Chapman-Geroldinger, 1996) • For every finite abelian group

G of odd order W≤1(G ) = 1
exp(G) [2, exp(G )].

• W(G ) = W≤1(G ) = 1
exp(G) [2, exp(G )] for all G ∼= Cpk when

p is an odd prime and W(G ) = W≤1(G ) = 2
exp(G) [1,

exp(G)
2 ]

when p = 2.
2. (Baginski et al., 2004) Determined W(C2pk ) and W(Cpq) for

distinct primes p and q
(e.g., W(C2pk ) =

2
2pk [1, 3p

k − 1],
W(C3p) =

1
3p{[2, 6p − p − 2] \ {6p − p − 3}},

W(C5×7) =
1
35{[2, 59] \ {56, 57, 58}}.......).
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Lemma
Let G be a finite abelian group. We have

1
exp(G )

[1, exp(G )− 1] ⊆ w(G ) .
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Our results

Theorem (1)
Let G = Cn1 ⊕ . . .⊕ Cnr be a finite abelian p-group with
1 = n0 < n1 | . . . | nr .

1. Suppose that p is either odd or that p = 2 with nr−1 = nr .
Then
W(G ) = 1

exp(G) [2, exp(G )K(G )] and
w(G ) = 1

exp(G) [1, exp(G )k(G )].

2. Suppose p = 2 and nr−1 < nr .
Then
W(G ) = 2

exp(G) [1,
exp(G)

2 K(G )] and
w(G ) = 1

exp(G) [1, exp(G )k(G )].
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Theorem (2)
Let G = C2pk with k ∈ N and let p be a prime. Then

W(C2pk ) =
2

exp(G )
[1,

exp(G )

2
K(G )]

and
w(C2pk ) =

1
exp(G )

[1, exp(G )k(G )] .



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Theorem (3)

1. Let G = G1 ⊕ . . .⊕ Gs , where s ∈ N, exp(Gi ) = n for all
i ∈ [1, s]. Then

1
n
[1, (n − 1)s] ⊆ w(G ) .

2. Let G be a finite abelian group with exp(G ) = n ≥ 2. Then
there exist constants c, s∗ ∈ N such that, for all s ≥ s∗,

[1, s exp(G )k(G )− c] ⊆ exp(G )w(G s) .

In particular, if k(G s) = sk(G ), then exp(G )w(G s) is an
interval, apart from a globally bounded upper part.
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The second statement states that, in groups where the rank is large
with respect to the exponent, exp(G )w(G ) is an interval, apart
from a globally bounded upper part.

More precisely, there is a
global constant c ∈ N such that
exp(G )w(G ) ∩ [1,maxw(G )− c] = [1,maxw(G )− c].
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Proposition (1)
Let G and G ′ be finite abelian groups.

1. Let |G |, |G ′| ≥ 3. If W(G ) = W(G ′) then exp(G ) = exp(G ′)
and K(G ) = K(G ′).

2. Let G be a p-group for some odd prime p. We have
W(G ) = W(G ′) if and only if exp(G ) = exp(G ′) and
K(G ) = K(G ′).

3. Let G be a finite abelian p-group for some prime p. We have
w(G ) = w(G ′) if and only if exp(G ) = exp(G ′) and
k(G ) = k(G ′).

Note: If |G |, |G ′| ∈ {1, 2}, then W(G ) = W(G ′) = {1} but
exp(G ), exp(G ′) ∈ {0, 2}.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Remarks-III

• Let p = 2 and Gp = Cpk1 ⊕ . . .⊕ Cpkr with 1 ≤ k1 ≤ . . . ≤ kr .
Let G = Gp with kr−1 = kr and G ′ = Gp with kr−1 ̸= kr . Then
exp(G ) = exp(G ′) and for suitable choices of r and ki ’s it is
possible to have K(G ) = K(G ′) too (indeed, for instance take
G = C 3

4 and G ′ = C 3
2 ⊕ C4 then exp(G ) = exp(G ′) = 4 and

K(G ) = K(G ′) = 10
4 ) but in any case, Theorem (1) tells that

W(G ) ̸= W(G ′). Thus the Proposition (1).2 only works for odd
primes.
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Question: For some groups G ,G ′, does exp(G ) = exp(G ′),
K(G ) = K(G ′) and W(G ) = W(G ′) implies G ,G ′ have same ranks?

NO!
For instance, if G = C 4

3 ⊕ C9 and G ′ = C 4
9 then W(G ) = W(G ′) by

Theorem (1) but G and G ′ have different rank. Therefore,
exp(G ) = exp(G ′), K(G ) = K(G ′) and W(G ) = W(G ′) does not
give any relation between rank of G and the rank of G ′.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Question: For some groups G ,G ′, does exp(G ) = exp(G ′),
K(G ) = K(G ′) and W(G ) = W(G ′) implies G ,G ′ have same ranks?
NO!

For instance, if G = C 4
3 ⊕ C9 and G ′ = C 4

9 then W(G ) = W(G ′) by
Theorem (1) but G and G ′ have different rank. Therefore,
exp(G ) = exp(G ′), K(G ) = K(G ′) and W(G ) = W(G ′) does not
give any relation between rank of G and the rank of G ′.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Question: For some groups G ,G ′, does exp(G ) = exp(G ′),
K(G ) = K(G ′) and W(G ) = W(G ′) implies G ,G ′ have same ranks?
NO!
For instance, if G = C 4

3 ⊕ C9 and G ′ = C 4
9 then W(G ) = W(G ′) by

Theorem (1) but G and G ′ have different rank. Therefore,
exp(G ) = exp(G ′), K(G ) = K(G ′) and W(G ) = W(G ′) does not
give any relation between rank of G and the rank of G ′.



Cross Numbers Role of K(G) in Factorization Theory Sets of Cross Numbers

Proposition (2)
Let p, q be odd primes, then W(Cpq) =

1
pq + w(Cpq)
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Note that their is no direct connection between W(G ) and w(G )
for many other groups. For instance,

1. if G ∼= C2k for some k ∈ N then by Theorem (1) we have
W(G ) = 2

2k [1, 2
k−1] and w(G ) = 1

2k [1, 2
k − 1] Now, for some

l = λ
2k ∈ w(C2k ) with λ even, clearly l + 1

2k /∈ W(C2k ).
2. if G ∼= C2pk for some odd prime p and some k ∈ N . Then by

Theorem (2) W(G ) = 2
2pk [1,

3pk−1
2 ] and

w(G ) = 1
2pk [1, 3p

k − 2]. Thus for some λ
2pk ∈ w(G ) with λ

even, λ+1
2pk is not a cross number of any minimal zero-sum

sequence over C2pk . Another message of this example is that
both primes p and q being odd is a necessary condition in
above proposition.
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Structure of W(G ) and w(G )

• Are exp(G )W(G ) and exp(G )w(G ) intervals? If not, is there a
visible gap structure?
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Thank you for your attention!
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