Arithmetics of Flatness for Monoids

Gerhard Angermüller

Ring Theory Seminar Universität Graz, April 18, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

- A non-empty set A is called an H-act, if there is a map H×A→A, (s,a) → sa such that 1a = a and (st)a = s(ta) for all s, t ∈ H and a ∈ A.
- A map $\varphi : A \to B$ with *H*-acts *A*, *B* is a morphism of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$.

Let R be a domain and M an R-module. Then $R^{\bullet} := R \setminus \{0\}$ is a monoid and M is an R^{\bullet} -act. If M is torsion-free and $\neq \{0\}$, then $M^{\bullet} := M \setminus \{0\}$ is an R^{\bullet} -act too.

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

- A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$.
- A map $\varphi : A \to B$ with *H*-acts *A*, *B* is a *morphism* of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$.

Let R be a domain and M an R-module. Then $R^{\bullet} := R \setminus \{0\}$ is a monoid and M is an R^{\bullet} -act. If M is torsion-free and $\neq \{0\}$, then $M^{\bullet} := M \setminus \{0\}$ is an R^{\bullet} -act too.

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

- A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$.
- A map $\varphi : A \to B$ with *H*-acts *A*, *B* is a *morphism* of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$.

Let R be a domain and M an R-module. Then $R^{\bullet} := R \setminus \{0\}$ is a monoid and M is an R^{\bullet} -act. If M is torsion-free and $\neq \{0\}$, then $M^{\bullet} := M \setminus \{0\}$ is an R^{\bullet} -act too.

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

- A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$.
- A map $\varphi : A \to B$ with *H*-acts *A*, *B* is a *morphism* of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$.

Let R be a domain and M an R-module. Then $R^{\bullet} := R \setminus \{0\}$ is a monoid and M is an R^{\bullet} -act. If M is torsion-free and $\neq \{0\}$, then $M^{\bullet} := M \setminus \{0\}$ is an R^{\bullet} -act too.

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

- A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$.
- A map $\varphi : A \to B$ with *H*-acts *A*, *B* is a *morphism* of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$.

Let R be a domain and M an R-module. Then $R^{\bullet} := R \setminus \{0\}$ is a monoid and M is an R^{\bullet} -act. If M is torsion-free and $\neq \{0\}$, then $M^{\bullet} := M \setminus \{0\}$ is an R^{\bullet} -act too.

Tensor Product Let *A*, *B* be *H*-acts.

- A map $\rho : A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$.
- An H-act T together with an H-balanced map τ : A × B → T is called (the) tensor product of A and B (over H) if for every set X every H-balanced map ρ : A × B → X factors uniquely through τ; it is denoted by A ⊗ B.

FACTS:

- The tensor product of *A* and *B* exists and is unique up to isomorphism.
- For all $a, a' \in A$, $b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = s_1a_1$, $s_1b = t_1b_1$, $t_ia_i = s_{i+1}a_{i+1}$, $s_{i+1}b_i = t_{i+1}b_{i+1}$ for $i = 1, \ldots, n-1$, and $t_na_n = s_{n+1}a'$, $s_{n+1}b_n = b'$.

Tensor Product

Let A, B be H-acts.

• A map $\rho : A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$.

 An H-act T together with an H-balanced map τ : A × B → T is called (the) tensor product of A and B (over H) if for every set X every H-balanced map ρ : A × B → X factors uniquely through τ; it is denoted by A ⊗ B.

FACTS:

- The tensor product of *A* and *B* exists and is unique up to isomorphism.
- For all $a, a' \in A$, $b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = s_1a_1$, $s_1b = t_1b_1$, $t_ia_i = s_{i+1}a_{i+1}$, $s_{i+1}b_i = t_{i+1}b_{i+1}$ for $i = 1, \ldots, n-1$, and $t_na_n = s_{n+1}a'$, $s_{n+1}b_n = b'$.

Tensor Product

Let A, B be H-acts.

- A map $\rho : A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$.
- An H-act T together with an H-balanced map τ : A × B → T is called (the) tensor product of A and B (over H) if for every set X every H-balanced map ρ : A × B → X factors uniquely through τ; it is denoted by A ⊗ B.

FACTS

- The tensor product of *A* and *B* exists and is unique up to isomorphism.
- For all $a, a' \in A$, $b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = s_1 a_1$, $s_1 b = t_1 b_1$, $t_i a_i = s_{i+1} a_{i+1}$, $s_{i+1} b_i = t_{i+1} b_{i+1}$ for $i = 1, \ldots, n-1$, and $t_n a_n = s_{n+1}a'$, $s_{n+1}b_n = b'$.

Tensor Product

Let A, B be H-acts.

- A map $\rho : A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$.
- An H-act T together with an H-balanced map τ : A × B → T is called (the) tensor product of A and B (over H) if for every set X every H-balanced map ρ : A × B → X factors uniquely through τ; it is denoted by A ⊗ B.

FACTS:

• The tensor product of A and B exists and is unique up to isomorphism.

• For all $a, a' \in A$, $b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = s_1a_1$, $s_1b = t_1b_1$, $t_ia_i = s_{i+1}a_{i+1}$, $s_{i+1}b_i = t_{i+1}b_{i+1}$ for $i = 1, \ldots, n-1$, and $t_na_n = s_{n+1}a'$, $s_{n+1}b_n = b'$.

Tensor Product

Let A, B be H-acts.

- A map $\rho : A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$.
- An H-act T together with an H-balanced map τ : A × B → T is called (the) tensor product of A and B (over H) if for every set X every H-balanced map ρ : A × B → X factors uniquely through τ; it is denoted by A ⊗ B.

FACTS:

- The tensor product of A and B exists and is unique up to isomorphism.
- For all $a, a' \in A$, $b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = s_1a_1$, $s_1b = t_1b_1$, $t_ia_i = s_{i+1}a_{i+1}$, $s_{i+1}b_i = t_{i+1}b_{i+1}$ for $i = 1, \ldots, n-1$, and $t_na_n = s_{n+1}a'$, $s_{n+1}b_n = b'$.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

• *flat* if $A \otimes -$ preserves monomorphisms,

- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if *A*⊗− preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if *A*⊗− preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,

• *principally weakly flat* if A ⊗ − preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if *A*⊗− preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if A ⊗ − preserves all embeddings of principal ideals into *H*.

Properties

Theorem

Let H be a monoid and A an H-Act. Then the following conditions are equivalent: (1) A is flat, (2) A is weakly flat, (3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc. (4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that sa = tbthere exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc. (5) A is torsion-free and for all ideals I and J of H: $(I \cap J)A = IA \cap JA$. (6) For all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc, b = vc and us = vt.

Properties

Corollary

Let T be a submonoid of a monoid H. Then $T^{-1}H$ is a flat H-act.

Corollary

Let $\varphi : H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H v w$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

Properties

Corollary

Let T be a submonoid of a monoid H. Then $T^{-1}H$ is a flat H-act.

Corollary

Let $\varphi : H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.

In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

Properties

Corollary

Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (1) D is a flat H-act,
- (2) $D = (H \cap D^{\times})^{-1}H$,
- (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$,
- (4) $(H:_H x)D = D$ for every $x \in D$.

Corollary

For every monoid H the following conditions are equivalent:

- (1) H is a valuation monoid,
- (2) every torsion free H-act is flat,
- every overmonoid of H is a flat H-act.

Properties

Corollary

Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (1) *D* is a flat *H*-act,
- (2) $D = (H \cap D^{\times})^{-1}H$,
- (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$,
- (4) $(H:_H x)D = D$ for every $x \in D$.

Corollary

For every monoid H the following conditions are equivalent:

- (1) H is a valuation monoid,
- (2) every torsion free H-act is flat,
- (3) every overmonoid of H is a flat H-act.

Properties

An *H*-act *A* is called *strongly faithful* if for all $s, t \in H$ the equality sa = ta for some $a \in A$ implies s = t.

Let *R* be a domain and *M* a torsion-free *R*-module \neq {0}. Then *M*[•] is a strongly faithful torsion-free *R*[•]-act.

Corollary

Let H be a monoid and A a strongly faithful H-Act. Then the following conditions are equivalent:

(1) A is flat,

(2) for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc and b = vc.

An *H*-act *A* is called *locally cyclic* if for any $a, b \in A$ there is some $c \in A$ such that $Ha, Hb \subseteq Hc$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

An *H*-act *A* is called *strongly faithful* if for all $s, t \in H$ the equality sa = ta for some $a \in A$ implies s = t. Let *R* be a domain and *M* a torsion-free *R*-module $\neq \{0\}$. Then M^{\bullet} is a strongly faithful torsion-free R^{\bullet} -act.

Corollary

Let H be a monoid and A a strongly faithful H-Act. Then the following conditions are equivalent:

(1) *A* is flat,

(2) for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc and b = vc.

An *H*-act *A* is called *locally cyclic* if for any $a, b \in A$ there is some $c \in A$ such that $Ha, Hb \subseteq Hc$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

An *H*-act *A* is called *strongly faithful* if for all $s, t \in H$ the equality sa = ta for some $a \in A$ implies s = t. Let *R* be a domain and *M* a torsion-free *R*-module $\neq \{0\}$. Then M^{\bullet} is a strongly faithful torsion-free R^{\bullet} -act.

Corollary

Let H be a monoid and A a strongly faithful H-Act. Then the following conditions are equivalent:

(1) A is flat, (2) for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc and b = vc.

An *H*-act *A* is called *locally cyclic* if for any $a, b \in A$ there is some $c \in A$ such that $Ha, Hb \subseteq Hc$.

Properties

An *H*-act *A* is called *strongly faithful* if for all $s, t \in H$ the equality sa = ta for some $a \in A$ implies s = t. Let *R* be a domain and *M* a torsion-free *R*-module $\neq \{0\}$. Then M^{\bullet} is a strongly faithful torsion-free R^{\bullet} -act.

Corollary

Let H be a monoid and A a strongly faithful H-Act. Then the following conditions are equivalent:

(1) A is flat, (2) for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc and b = vc.

An *H*-act *A* is called *locally cyclic* if for any $a, b \in A$ there is some $c \in A$ such that $Ha, Hb \subseteq Hc$.

Properties

Corollary

Let H be a monoid and A a strongly faithful torsion-free H-Act. Then the following conditions are equivalent:

- (1) A is flat,
- (2) $q(H)x \cap A$ is locally cyclic for each $x \in A$.

Corollary

Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. Then the following conditions are equivalent:

- (1) D is a flat H-act,
- (2) $D = T^{-1}H$ for some submonoid T of H,
- (3) D is a locally cyclic H-act.

Let *R* be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain *S* of *R*, such that $S \neq T^{-1}R$ for every multiplicatively closed subset *T* of *R*, i.e. *S* is a flat *R*-module, but *S*[•] is not a flat *R*[•]-act.

Properties

Corollary

Let H be a monoid and A a strongly faithful torsion-free H-Act. Then the following conditions are equivalent:

- (1) A is flat,
- (2) $q(H)x \cap A$ is locally cyclic for each $x \in A$.

Corollary

Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. Then the following conditions are equivalent:

- (1) D is a flat H-act,
- (2) $D = T^{-1}H$ for some submonoid T of H,
- (3) D is a locally cyclic H-act.

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R, such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R, i.e. S is a flat R-module, but S^{\bullet} is not a flat R^{\bullet} -act.

Properties

Corollary

Let H be a monoid and A a strongly faithful torsion-free H-Act. Then the following conditions are equivalent:

- (1) A is flat,
- (2) $q(H)x \cap A$ is locally cyclic for each $x \in A$.

Corollary

Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. Then the following conditions are equivalent:

- (1) D is a flat H-act,
- (2) $D = T^{-1}H$ for some submonoid T of H,
- (3) D is a locally cyclic H-act.

Let *R* be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain *S* of *R*, such that $S \neq T^{-1}R$ for every multiplicatively closed subset *T* of *R*, i.e. *S* is a flat *R*-module, but *S*[•] is not a flat *R*[•]-act.

Properties

Corollary

Let H be a monoid and A a strongly faithful torsion-free H-Act. Then the following conditions are equivalent:

- (1) A is flat,
- (2) $q(H)x \cap A$ is locally cyclic for each $x \in A$.

Corollary

Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. Then the following conditions are equivalent:

- (1) D is a flat H-act,
- (2) $D = T^{-1}H$ for some submonoid T of H,
- (3) D is a locally cyclic H-act.

Let *R* be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain *S* of *R*, such that $S \neq T^{-1}R$ for every multiplicatively closed subset *T* of *R*, i.e. *S* is a flat *R*-module, but *S*[•] is not a flat *R*[•]-act.

Factorable Acts

Let *H* be a monoid, *A* be an *H*-act and $a \in A$..

- An element h∈ H (resp. b∈ A) is called an H-divisor of a (resp. an A-divisor of a), if a = hc for some c∈ A (resp. a = sb for some s∈ H); h (resp. b) is called a greatest H-divisor (resp. a smallest A-divisor) of a, if any H-divisor of a divides h (resp. b is an A-divisor of any A-divisor of a).
- *a* is called *irreducible* if any *H*-divisor of *a* is a unit of *H*.
- a is called *primitive* if a is a smallest A-divisor of any element of Ha.
- A is called *atomic*, if any element of A has an irreducible A-divisor.
- A is called *factorable*, if any element of A has a smallest A-divisor.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Factorable Acts

Let *H* be a monoid, *A* be an *H*-act and $a \in A$..

- An element h∈ H (resp. b∈ A) is called an H-divisor of a (resp. an A-divisor of a), if a = hc for some c∈ A (resp. a = sb for some s∈ H); h (resp. b) is called a greatest H-divisor (resp. a smallest A-divisor) of a, if any H-divisor of a divides h (resp. b is an A-divisor of any A-divisor of a).
- a is called *irreducible* if any *H*-divisor of a is a unit of *H*.
- a is called *primitive* if a is a smallest A-divisor of any element of Ha.
- A is called *atomic*, if any element of A has an irreducible A-divisor.
- A is called *factorable*, if any element of A has a smallest A-divisor.

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへで

Factorable Acts

Let *H* be a monoid, *A* be an *H*-act and $a \in A$..

- An element h∈ H (resp. b∈ A) is called an H-divisor of a (resp. an A-divisor of a), if a = hc for some c∈ A (resp. a = sb for some s∈ H); h (resp. b) is called a greatest H-divisor (resp. a smallest A-divisor) of a, if any H-divisor of a divides h (resp. b is an A-divisor of any A-divisor of a).
- a is called *irreducible* if any H-divisor of a is a unit of H.
- a is called *primitive* if a is a smallest A-divisor of any element of Ha.
- A is called *atomic*, if any element of A has an irreducible A-divisor.
- A is called *factorable*, if any element of A has a smallest A-divisor.

Factorable Acts

Let *H* be a monoid, *A* be an *H*-act and $a \in A$..

- An element h∈ H (resp. b∈ A) is called an H-divisor of a (resp. an A-divisor of a), if a = hc for some c∈ A (resp. a = sb for some s∈ H); h (resp. b) is called a greatest H-divisor (resp. a smallest A-divisor) of a, if any H-divisor of a divides h (resp. b is an A-divisor of any A-divisor of a).
- a is called *irreducible* if any H-divisor of a is a unit of H.
- a is called *primitive* if a is a smallest A-divisor of any element of Ha.
- A is called *atomic*, if any element of A has an irreducible A-divisor.
- A is called *factorable*, if any element of A has a smallest A-divisor.

Factorable Acts

Let *H* be a monoid, *A* be an *H*-act and $a \in A$..

- An element h∈ H (resp. b∈ A) is called an H-divisor of a (resp. an A-divisor of a), if a = hc for some c∈ A (resp. a = sb for some s∈ H); h (resp. b) is called a greatest H-divisor (resp. a smallest A-divisor) of a, if any H-divisor of a divides h (resp. b is an A-divisor of any A-divisor of a).
- a is called *irreducible* if any H-divisor of a is a unit of H.
- a is called primitive if a is a smallest A-divisor of any element of Ha.
- A is called *atomic*, if any element of A has an irreducible A-divisor.
- A is called *factorable*, if any element of A has a smallest A-divisor.

Factorable Acts

Let *H* be a monoid, *A* be an *H*-act and $a \in A$..

- An element h∈ H (resp. b∈ A) is called an H-divisor of a (resp. an A-divisor of a), if a = hc for some c∈ A (resp. a = sb for some s∈ H); h (resp. b) is called a greatest H-divisor (resp. a smallest A-divisor) of a, if any H-divisor of a divides h (resp. b is an A-divisor of any A-divisor of a).
- a is called *irreducible* if any H-divisor of a is a unit of H.
- a is called *primitive* if a is a smallest A-divisor of any element of Ha.
- A is called *atomic*, if any element of A has an irreducible A-divisor.
- A is called *factorable*, if any element of A has a smallest A-divisor.

Factorable Acts

FACTS: Let H be a monoid, A be an H-act and $a \in A$.

- Any greatest *H*-divisor of *a* is unique up to units of *H*.
- Any smallest *A*-divisor of *a* is unique up to units of *H*, if *A* is strongly faithful.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. The following conditions are equivalent:

- (1) A is factorable,
- (2) every element of A has a greatest H-divisor,
- (3) every $a \in A$ has a representation a = hb with $h \in H$, b an irreducible
- element of A and this representation is unique up to a unit of H,
- (4) A is atomic and every irreducible element of A is primitive,
- (5) every element of A has a primitive H-divisor.

Factorable Acts

FACTS: Let H be a monoid, A be an H-act and $a \in A$.

- Any greatest *H*-divisor of *a* is unique up to units of *H*.
- Any smallest *A*-divisor of *a* is unique up to units of *H*, if *A* is strongly faithful.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. The following conditions are equivalent:

- (1) A is factorable,
- (2) every element of A has a greatest H-divisor,
- (3) every $a \in A$ has a representation a = hb with $h \in H$, b an irreducible
- element of A and this representation is unique up to a unit of H,
- (4) A is atomic and every irreducible element of A is primitive,
- (5) every element of A has a primitive H-divisor.

Factorable Acts

FACTS: Let H be a monoid, A be an H-act and $a \in A$.

- Any greatest *H*-divisor of *a* is unique up to units of *H*.
- Any smallest *A*-divisor of *a* is unique up to units of *H*, if *A* is strongly faithful.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. The following conditions are equivalent:

(1) A is factorable,

(2) every element of A has a greatest H-divisor,

(3) every $a \in A$ has a representation a = hb with $h \in H$, b an irreducible

element of A and this representation is unique up to a unit of H,

(4) A is atomic and every irreducible element of A is primitive,

(5) every element of A has a primitive H-divisor.

Factorable Acts

FACTS: Let H be a monoid, A be an H-act and $a \in A$.

- Any greatest *H*-divisor of *a* is unique up to units of *H*.
- Any smallest *A*-divisor of *a* is unique up to units of *H*, if *A* is strongly faithful.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. The following conditions are equivalent:

- (1) A is factorable,
- (2) every element of A has a greatest H-divisor,

(3) every $a \in A$ has a representation a = hb with $h \in H$, b an irreducible

element of A and this representation is unique up to a unit of H,

- (4) A is atomic and every irreducible element of A is primitive,
- (5) every element of A has a primitive H-divisor.

Factorable Acts

Corollary

Let H be a monoid. H is a GCD-monoid if and only if $H \times H$ is a factorable H-act.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. The following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (1) A is factorable,
- (2) A is flat and atomic,
- (3) $q(H) \times \cap A$ is cyclic for every $x \in A$.

Factorable Acts

Corollary

Let H be a monoid. H is a GCD-monoid if and only if $H \times H$ is a factorable H-act.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. The following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (1) A is factorable,
- (2) A is flat and atomic,
- (3) $q(H)x \cap A$ is cyclic for every $x \in A$.

Domains

Let *R* be a domain and *M* a torsion-free *R*-module $\neq \{0\}$. Then: *M* is a factorable *R*-module if and only if M^{\bullet} is a factorable *R*[•]-act. *M* is an atomic *R*-module if and only if M^{\bullet} is an atomic R^{\bullet} -act.

Corollary

Let R be a domain with quotient field K and M a torsion-free R-module $\neq \{0\}$. The following conditions are equivalent: (1) M is a factorable R-module, (2) M[•] is a flat R[•]-act and M is an atomic R-module, (3) $K_X \cap M$ is a cyclic R-module for every $x \in M$.

Domains

Let *R* be a domain and *M* a torsion-free *R*-module $\neq \{0\}$. Then: *M* is a factorable *R*-module if and only if M^{\bullet} is a factorable *R*[•]-act. *M* is an atomic *R*-module if and only if M^{\bullet} is an atomic R^{\bullet} -act.

Corollary

Let R be a domain with quotient field K and M a torsion-free R-module $\neq \{0\}$. The following conditions are equivalent: (1) M is a factorable R-module, (2) M^{\bullet} is a flat R^{\bullet} -act and M is an atomic R-module, (3) $Kx \cap M$ is a cyclic R-module for every $x \in M$.

Pre-Schreier Acts

Let H be a monoid and A be a strongly faithful torsion-free H-act.

• A is a pre-Schreier H-act if for every equality ua = vb with $u, v \in H$ and $a, b \in A$ there are $r, s, t \in H$ and $c \in A$ such that u = rt, v = rs, a = sc and b = tc; (r, s, t, c) is called a *refinement of ua* = vb.

• *H* is a *pre-Schreier monoid* if *H* is a pre-Schreier *H*-act.

Example

Every GCD-monoid is pre-Schreier.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. a) If A is pre-Schreier, then A is flat.

b) If H is pre-Schreier and A is flat, then A is pre-Schreier.

Corollary

Pre-Schreier Acts

Let H be a monoid and A be a strongly faithful torsion-free H-act.

- A is a pre-Schreier H-act if for every equality ua = vb with u, v ∈ H and a, b ∈ A there are r, s, t ∈ H and c ∈ A such that u = rt, v = rs, a = sc and b = tc; (r, s, t, c) is called a refinement of ua = vb.
- *H* is a *pre-Schreier monoid* if *H* is a pre-Schreier *H*-act.

Example

Every GCD-monoid is pre-Schreier.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. a) If A is pre-Schreier, then A is flat.

b) If H is pre-Schreier and A is flat, then A is pre-Schreier.

Corollary

Pre-Schreier Acts

Let H be a monoid and A be a strongly faithful torsion-free H-act.

- A is a pre-Schreier H-act if for every equality ua = vb with $u, v \in H$ and $a, b \in A$ there are $r, s, t \in H$ and $c \in A$ such that u = rt, v = rs, a = sc and b = tc; (r, s, t, c) is called a *refinement of ua* = vb.
- *H* is a *pre-Schreier monoid* if *H* is a pre-Schreier *H*-act.

Example

Every GCD-monoid is pre-Schreier.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. a) If A is pre-Schreier, then A is flat.

b) If H is pre-Schreier and A is flat, then A is pre-Schreier.

Corollary

Pre-Schreier Acts

Let H be a monoid and A be a strongly faithful torsion-free H-act.

- A is a pre-Schreier H-act if for every equality ua = vb with $u, v \in H$ and $a, b \in A$ there are $r, s, t \in H$ and $c \in A$ such that u = rt, v = rs, a = sc and b = tc; (r, s, t, c) is called a *refinement of ua* = vb.
- *H* is a *pre-Schreier monoid* if *H* is a pre-Schreier *H*-act.

Example

Every GCD-monoid is pre-Schreier.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. a) If A is pre-Schreier, then A is flat.

b) If H is pre-Schreier and A is flat, then A is pre-Schreier.

Corollary

Pre-Schreier Acts

Let H be a monoid and A be a strongly faithful torsion-free H-act.

- A is a pre-Schreier H-act if for every equality ua = vb with $u, v \in H$ and $a, b \in A$ there are $r, s, t \in H$ and $c \in A$ such that u = rt, v = rs, a = sc and b = tc; (r, s, t, c) is called a *refinement of ua* = vb.
- *H* is a *pre-Schreier monoid* if *H* is a pre-Schreier *H*-act.

Example

Every GCD-monoid is pre-Schreier.

Theorem

Let H be a monoid and A be a strongly faithful torsion-free H-act. a) If A is pre-Schreier, then A is flat.

b) If H is pre-Schreier and A is flat, then A is pre-Schreier.

Corollary

Pre-Schreier Acts

Theorem

Let H be an atomic monoid and T be the submonoid of H generated by the nonprime atoms of H.

- a) $T^{-1}H$ is a factorial monoid.
- b) Every pre-Schreier H-act is a pre-Schreier $T^{-1}H$ -act.
- c) Every pre-Schreier $T^{-1}H$ -act is a pre-Schreier H-act.

d) The pre-Schreier H-acts are exactly the strongly faithful flat $T^{-1}H$ -acts.

Theorem

Let H be a monoid and I a finite set. H is pre-Schreier if and only if H^I is pre-Schreier.

Theorem

Let H be a monoid. H is a GCD-monoid if and only if H^H is pre-Schreier

Pre-Schreier Acts

Theorem

Let H be an atomic monoid and T be the submonoid of H generated by the nonprime atoms of H.

- a) $T^{-1}H$ is a factorial monoid.
- b) Every pre-Schreier H-act is a pre-Schreier $T^{-1}H$ -act.
- c) Every pre-Schreier $T^{-1}H$ -act is a pre-Schreier H-act.

d) The pre-Schreier H-acts are exactly the strongly faithful flat T^{-1} H-acts.

Theorem

Let H be a monoid and I a finite set. H is pre-Schreier if and only if H^{I} is pre-Schreier.

Theorem

Let H be a monoid. H is a GCD-monoid if and only if H^H is pre-Schreie

Pre-Schreier Acts

Theorem

Let H be an atomic monoid and T be the submonoid of H generated by the nonprime atoms of H.

- a) $T^{-1}H$ is a factorial monoid.
- b) Every pre-Schreier H-act is a pre-Schreier $T^{-1}H$ -act.
- c) Every pre-Schreier $T^{-1}H$ -act is a pre-Schreier H-act.

d) The pre-Schreier H-acts are exactly the strongly faithful flat T^{-1} H-acts.

Theorem

Let H be a monoid and I a finite set. H is pre-Schreier if and only if H^{I} is pre-Schreier.

Theorem

Let H be a monoid. H is a GCD-monoid if and only if H^H is pre-Schreier.

Pre-Schreier Modules

Corollary

Let R be a domain and M a torsion-free R-module $\neq \{0\}$. a) If M is a pre-Schreier R-module, then M[•] is a flat R[•]-act. b) If R is a pre-Schreier domain and M[•] is a flat R[•]-act, then M is a pre-Schreier R-module.

There are examples of factorial domains R and pre-Schreier R-modules M which are not flat; by a), M° is a flat R° -act. If R is a pre-Schreier domain and M a flat R-module, then M is a pre-Schreier R-module, i.e. M° is a flat R° -act.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pre-Schreier Modules

Corollary

Let R be a domain and M a torsion-free R-module $\neq \{0\}$. a) If M is a pre-Schreier R-module, then M[•] is a flat R[•]-act. b) If R is a pre-Schreier domain and M[•] is a flat R[•]-act, then M is a pre-Schreier R-module.

There are examples of factorial domains R and pre-Schreier R-modules M which are not flat; by a), M^{\bullet} is a flat R^{\bullet} -act. If R is a pre-Schreier domain and M a flat R-module, then M is a pre-Schreier R-module, i.e. M^{\bullet} is a flat R^{\bullet} -act.

Pre-Schreier Modules

Corollary

Let R be a domain and M a torsion-free R-module $\neq \{0\}$. a) If M is a pre-Schreier R-module, then M[•] is a flat R[•]-act. b) If R is a pre-Schreier domain and M[•] is a flat R[•]-act, then M is a pre-Schreier R-module.

There are examples of factorial domains R and pre-Schreier R-modules M which are not flat; by a), M^{\bullet} is a flat R^{\bullet} -act. If R is a pre-Schreier domain and M a flat R-module, then M is a pre-Schreier R-module, i.e. M^{\bullet} is a flat R^{\bullet} -act.

References

- Stenström, B.; *Flatness and localization of monoids*, Mathematische Nachrichten 48 (1971) 315-333
- Bulman-Fleming, S., McDowell, K., Renshaw, J.; *Some observations on left absolutely flat monoids*, Semigroup Forum 41 (1990) 165-171
- Kilp, M., Knauer, U., Mikhalev, A. V.; Monoids, Acts and Categories, Expositions in Mathematics 29 (2000) de Gruyter
- Geroldinger, A., Halter-Koch, F.; *Arithmetical Theory of Monoid Homomorphisms*, Semigroup Forum 48 (1994) 333-362
- Angermüller, G.; *Unique factorization in torsion-free modules*. In: Rings, Polynomials and Modules, 13-31 (2017) Springer
- Dumitrescu, T., Epure, M.; A Schreier Type Property for Modules, Journal of Algebra and Its Applications (2023) https://doi.org/10.1142/S0219498824501251

Thank you.