

Polynomial functions on a class of finite noncommutative rings

A Ali Abdulkader Al-Maktry¹ Susan F. El-Deken², ¹TU Graz University

²Helwan University

Ring Theory Seminar University of Graz 25 April 2024

Outline

- 1. Basics
- 2. Dual numbers
- 3. Polynomial functions on $R[\beta_1, \ldots, \beta_k]$
- 4. Permutation polynomials on $R[\beta_1, \ldots, \beta_k]$
 - The case R is a chain ring
- 5. The group of pure polynomial permutations
- 6. The stabilizer group of R

Basics

Definition 1

Let *R* be a non-commutative ring, and $g = \sum_{i=0}^{n} a_i x^i \in R[x]$. Then:

- 1. The polynomial *g* induces a function $F \colon R \longrightarrow R$ by right substitution $F(a) = f(a) = \sum_{i=0}^{n} a_i a^i$ for the variable *x*. We call *F* a (right)polynomial function on *R*. If *F* is a bijection, we call *F* a polynomial permutation and *f* is a permutation polynomial.
- 2. By $[g]_R$, we denote the (right) polynomial function induced by g on R. When the ring is understood, we write [g].
- 3. If $f \in R[x]$ such that f and g induce the same (right)function on R, i.e. [g] = [f], then we abbreviate this with $g \triangleq f$ on R.
- 4. We define $\mathcal{F}(R) = \{[g] \mid g \in R[x]\}$, and

 $\mathcal{P}(R) = \{[f] \mid [f] \text{ is a permutation of } R \text{ and } f \in R[x]\}.$

• $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.
- We can not endorse $\mathcal{F}(R)$ with pointwise multiplication "*".

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.
- We can not endorse $\mathcal{F}(R)$ with pointwise multiplication "*".

4

Remark 2

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.
- We can not endorse *F*(*R*) with pointwise multiplication "∗".
 Because, substitution is not a homomorphism. Indeed, we can find *f*, *g* ∈ *R*[*x*] and *r* ∈ *R* such that

$$h(r) \neq f(r)g(r)$$
, where $h = fg$,

that is

$$[fg] \neq [f] * [g].$$

Definition 3

Let
$$f, g \in R[x]$$
. Let $f(x) = \sum_{j=0}^{n} a_j x^j$. Then
1. $(fg)(x) = \sum_{j=0}^{n} a_j g(x) x^j$;
2. $(fg)(r) = \sum_{j=0}^{n} a_j g(r) r^j$ for every $r \in R$.

- 3. $f \in R[x]$ is called null polynomial on R if f(r) = 0 for every $r \in R$. We write $f \triangleq 0$ on R.
- 4. We define: $N_R = \{f \in R[x] \mid f \triangleq 0 \text{ on } R\}$.

Let R be a finite non-commutative ring. Then

- 1. N_R is a left ideal of R[x];
- 2. N_R is an ideal of R[x] if and only if N_R is an R-right module.

Remark 5

 If every element in R can be written as a sum of units (for example semisimple rings and local rings), then N_R is an ideal [Werner, 2014].

Let R be a finite non-commutative ring. Then

- 1. N_R is a left ideal of R[x];
- 2. N_R is an ideal of R[x] if and only if N_R is an R-right module.

- If every element in R can be written as a sum of units (for example semisimple rings and local rings), then N_R is an ideal [Werner, 2014].
- A result of [Stewart, 1972] infers that every element of a finite ring R is a sum of units if only if R/J(R) has no factor ring isomorphic to F₂ × F₂.

Let R be a finite non-commutative ring. Then

- 1. N_R is a left ideal of R[x];
- 2. N_R is an ideal of R[x] if and only if N_R is an R-right module.

- If every element in R can be written as a sum of units (for example semisimple rings and local rings), then N_R is an ideal [Werner, 2014].
- A result of [Stewart, 1972] infers that every element of a finite ring R is a sum of units if only if R/J(R) has no factor ring isomorphic to F₂ × F₂.
- When R is the ring of upper triangular (lower) over commutative ring A, N_R is an ideal [Frisch, 2017].

Proposition 6

Let *R* be a finite non-commutative ring. Define an operation "·" on $\mathcal{F}(R)$ by letting $F \cdot F_1 = [fg]$, where $f, g \in R[x]$ such that F = [f] and $[g] = F_1$. Then "·" is well defined if and only if N_R is a two sided ideal; in this case $\mathcal{F}(R)$ is a ring endorsed with multiplication "·" and pointwise addition.

Definition 7

Let *R* be a non-commutative ring and let *T* be the ideal of the polynomial ring $R[x_1, \ldots, x_k]$ generated by the set $\{x_i x_j \mid i, j \in \{1, \ldots, k\}\}$. We call the quotient ring $R[x_1, \ldots, x_k]/T$ the ring of dual numbers of *k* variables over *R*. We write $R[\beta_1, \ldots, \beta_k]$ for $R[x_1, \ldots, x_k]/T$, where β_i denotes $x_i + T$.

- $R[\beta_1, \ldots, \beta_k]$ is a free *R*-algebra with basis $\{1, \beta_1, \ldots, \beta_k\}$. We have, $R[\beta_1, \ldots, \beta_k] = \{r_0 + \sum_{i=1}^k r_i \beta_i \mid r_0, r_i \in R, \text{ with } \beta_i \beta_j = 0 \text{ for } 1 \le i, j \le k\}.$
- We call the coefficient of 1 the "constant coefficient".
- Every polynomial f ∈ R[β₁,...,β_k][x] has a unique representation f = f₀ + ∑_{i=1}^k f_i β_i, where f₀, f₁,..., f_k ∈ R[x].
 (a₀ + ∑_{i=1}^k a_i β_i)(b₀ + ∑_{i=1}^k b_i β_i) = a₀b₀ + ∑_{i=1}^k (a₀b_i + a_ib₀) β_i for every a_i, b_i ∈ R.

Proposition 9

Let R be a non-commutative ring. Then the following statements hold.

Dual numbers

If *R* is commutative, then by binomial theorem, for any $f \in R[x]$ and $a, b_i \in R$,

$$f(\mathbf{a} + \sum_{i=1}^{k} b_i \beta_i) = f(\mathbf{a}) + \sum_{i=1}^{k} f'(\mathbf{a}) b_i \beta_i.$$

Dual numbers

If *R* is commutative, then by binomial theorem, for any $f \in R[x]$ and $a, b_i \in R$,

$$f(a + \sum_{i=1}^{\kappa} b_i \beta_i) = f(a) + \sum_{i=1}^{\kappa} f'(a) b_i \beta_i.$$

Definition 10

Let $f = \sum_{j=0}^{n} a_j x^j \in R[x]$. Then we assign to f a unique polynomial $\lambda_f(y, z)$ in the non-commutative variables y and z defined by

$$\lambda_f(y, z) = \sum_{j=1}^n \sum_{r=1}^j a_j y^{r-1} z y^{j-r}.$$

We call λ_f the assigned polynomial of (to) *f*.

Fact 11

Let $r, s, w \in R$. Let f and $g \in R[x]$. Then 1. $\lambda_{rf+sq} = \lambda_{rf} + \lambda_{sq};$ 2. $\lambda_{fr+as} = \lambda_{fr} + \lambda_{as};$ 3. $\lambda_f = 0$ if and only if f is constant: 4. $\lambda_f(0, z) = a_1 z$ and $\lambda_f(y, 1) = f'(y)$, where $f(x) = \sum_{i=1}^n a_i x^i$; 5. $\lambda_f(y, 0) = 0$: 6. $\lambda_f(\mathbf{r}, \mathbf{s} \pm \mathbf{w}) = \lambda_f(\mathbf{r}, \mathbf{s}) \pm \lambda_f(\mathbf{r}, \mathbf{w}).$

From now on let R_k denote $R[\beta_1, \ldots, \beta_k]$.

Lemma 12

Let *R* be a ring and $a, b_1, \ldots, b_k \in R$.

1. If $f \in R[x]$ and λ_f is its assigned polynomial then

$$f(\mathbf{a} + \sum_{i=1}^{k} b_i \beta_i) = f(\mathbf{a}) + \sum_{i=1}^{k} \lambda_f(\mathbf{a}, b_i) \beta_i$$

2. If
$$f = f_0 + \sum_{i=1}^{k} f_i \beta_i$$
, where $f_0, ..., f_k \in R[x]$, then

$$f(\boldsymbol{a} + \sum_{i=1}^{k} \boldsymbol{b}_{i} \beta_{i}) = f_{0}(\boldsymbol{a}) + \sum_{i=1}^{k} (\lambda_{f_{0}}(\boldsymbol{a}, \boldsymbol{b}_{i}) + f_{i}(\boldsymbol{a})) \beta_{i}.$$

Definition 13

Let $f = \sum_{j=0}^{n} a_j x^j \in R[x]$ and $\lambda_f(y, z)$ be its assigned polynomial. Then

1. the assigned λ_f induces (defines) a function $F \colon R \times R \longrightarrow R$

$$F(a,b) = \lambda_f(a,b) = \sum_{j=1}^n \sum_{r=1}^j a_j a^{r-1} b a^{j-r},$$

which we denote by $[\lambda_f(y, z)];$

2. for every $a \in R$ the polynomial $\lambda_f(a, z) = \sum_{j=1}^n \sum_{r=1}^j a_j a^{r-1} z a^{j-r}$ defines a function $F_a \colon R \longrightarrow R$ by $F_a(b) = \lambda_f(a, b)$, which we denote by $[\lambda_f(a, z)]$.

Definition 14

- 1. Let $f \in R[x]$ and let λ_f be its assigned polynomial. We call λ_f is null if $\lambda_f(a, b) = 0$ for every $a, b \in R$. We write $[\lambda_f(y, z)] = 0$.
- 2. We define AN_R as: $AN_R = \{f \in N_R \mid [\lambda_f(y, z)] = 0\}$.
- 3. We define N'_R as: $N'_R = \{f \in N_R \mid f' \in N_R\}$.

- 1. Obviously, AN_R and N'_R are left ideals of R[x] with AN_R , $N'_R \subseteq N_R$.
- 2. Let $f \in AN_R$. Then $[\lambda_f(y, z)] = 0 \Rightarrow \lambda_f(a, 1) = f'(a) = 0$ for every $a \in R$. Hence $f \in N'_R$, and $AN_R \subseteq N'_R \subseteq N_R$.
- 3. When R is commutative: the condition on λ_f in the definition of AN_R is equivalent to $f' \in N_R$. So, $AN_R = N'_R$ over commutative rings.

Theorem 16

Let N_R and AN_R be as in Definition 14. Then

1.
$$N_{R_k} = AN_R + \sum_{i=1}^{k} N_R \beta_i;$$

2. N_{R_k} is an ideal of $R_k[x]$ if and only if AN_R and N_R are ideals of R[x].

Corollary 17

Let
$$f = f_0 + \sum_{i=1}^{\kappa} f_i \beta_i$$
, where $f_0, \dots, f_k \in R[x]$. Then the following are equivalent
1. $f \in N_{R_k}$ (i.e. f is a null polynomial on R_k);
2. $f_0, f_i \beta_i \in N_{R_k}$ for $i = 1, \dots, k$;
3. $[\lambda_{f_0}(y, z)] = 0$ and $f_i \in N_R$ for $i = 0, \dots, k$.

Let
$$f = f_0 + \sum_{i=1}^{k} f_i \beta_i$$
 and $g = g_0 + \sum_{i=1}^{k} g_i \beta_i$, where $f_0, \dots, f_k, g_0, \dots, g_k \in R[x]$.
Then $f \triangleq g$ on R_k if and only if the following conditions hold:
1. $[\lambda_{f_0}(y, z)] = [\lambda_{g_0}(y, z)];$
2. $[f_i]_R = [g_i]_R$ for $i = 0, \dots, k$.

17

Let
$$f = f_0 + \sum_{i=1}^{k} f_i \beta_i$$
 and $g = g_0 + \sum_{i=1}^{k} g_i \beta_i$, where $f_0, \dots, f_k, g_0, \dots, g_k \in R[x]$.
Then $f \triangleq g$ on R_k if and only if the following conditions hold:
1. $[\lambda_{f_0}(y, z)] = [\lambda_{g_0}(y, z)];$
2. $[f_i]_R = [g_i]_R$ for $i = 0, \dots, k$.
Or equivalently:

Or equivalently:

•
$$f_0 \equiv g_0 \mod AN_R;$$

•
$$f_i \equiv g_i \mod N_R$$
 for $i = 1, \ldots, k$.

Proposition 19

Let R be a finite non-commutative. The following statements are equivalent

- 1. every element of R is a sum of units;
- 2. every element of R_k is a sum of units;
- 3. R/J(R) has no factor ring isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$;
- 4. $R_k/J(R_k)$ has no factor ring isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$.

Proposition 19

Let R be a finite non-commutative. The following statements are equivalent

- 1. every element of R is a sum of units;
- 2. every element of R_k is a sum of units;
- 3. R/J(R) has no factor ring isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$;
- 4. $R_k/J(R_k)$ has no factor ring isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$.

Proof.

By Remark 5, we need only show only (3) \Leftrightarrow (4). By Proposition 9, $J(R_k) = J(R) + \sum_{i=1}^k \beta_i R$. Then one easily sees that $R_k/J(R_k) = (R + \sum_{i=1}^k \beta_i R)/(J(R) + \sum_{i=1}^k \beta_i R) \cong R/J(R).$

Suppose that R (alternatively R_k) satisfies the condition of Proposition 19. Then

- 1. N_{R_k} is an ideal of $R_k[x]$;
- 2. N_R and AN_R are ideals of R[x].

Suppose that R (alternatively R_k) satisfies the condition of Proposition 19. Then

- 1. N_{R_k} is an ideal of $R_k[x]$;
- 2. N_R and AN_R are ideals of R[x].

From now on we consider a non-commutative ring *R* in which N_R and AN_R are ideals of R[x] (equivalently N_{R_k} is an ideal of $R_k[x]$).

Proposition 21

The number of polynomial functions on R_k is given by

$$|\mathcal{F}(R_k)| = \begin{bmatrix} R[x] \colon AN_R \end{bmatrix} \begin{bmatrix} R[x] \colon N_R \end{bmatrix}^k = \begin{bmatrix} N_R \colon AN_R \end{bmatrix} |\mathcal{F}(R)|^{k+1}$$

Proposition 21

The number of polynomial functions on R_k is given by

$$\mathcal{F}(R_k)| = \left[R[x]: AN_R\right] \left[R[x]: N_R\right]^k = \left[N_R: AN_R\right] |\mathcal{F}(R)|^{k+1}$$

Corollary 22

Let $F \in \mathcal{F}(R)$ be fixed.

 $[N_R: AN_R] = |\{[\lambda_f(y, z)] \mid f \in R[x] \text{ such that } [f]_R = F\}|.$

Theorem 23

Let *R* be a finite non-commutative ring. Let $f = f_0 + \sum_{i=1}^{K} f_i \beta_i$, where

 $f_0, \ldots, f_k \in R[x]$. Then the following statements are equivalent:

- 1. *f* is a permutation polynomial on R_k ;
- 2. f_0 is a permutation polynomial on R_k ;
- 3. f_0 is a permutation polynomial on R and $[\lambda_{f_0}(y, z)]$ is a local permutation on R in z.

Theorem 23

Let *R* be a finite non-commutative ring. Let $f = f_0 + \sum_{i=1}^{K} f_i \beta_i$, where

 $f_0, \ldots, f_k \in R[x]$. Then the following statements are equivalent:

- 1. *f* is a permutation polynomial on R_k ;
- 2. f_0 is a permutation polynomial on R_k ;
- 3. f_0 is a permutation polynomial on R and $[\lambda_{f_0}(y, z)]$ is a local permutation on R in z.

Definition 24

A function $G: R \times R \longrightarrow R$ a local permutation in the second coordinate, if for every $a \in R$ the function $G_a: R \longrightarrow R$, $r \rightarrow G(a, r)$, is bijective.

Remark and Question 25

- 1. If R is a commutative ring, then the condition on $\lambda_{f_0}(y, z)$ ($f_0 \in R[x]$) in Theorem 23 is equivalent to f'_0 maps R to its group of units.
- In the special case R is a local commutative that is not a field, the condition on f₀ is redundant, that is f₀ is a permutation polynomial on R_k if and only if f₀ is a permutation polynomial on R ([Al-Maktry, 2023, Proposition 4.7]).
- 3. The previous point motivates us to ask the following question in the non-commutative case:

Let *R* be a finite non-commutative local rings does the condition on $\lambda_{f_0}(y, z)$ ($f_0 \in R[x]$) in Theorem 23 is redundant?

Let $f_0, \ldots, f_k \in R[x]$. The following statements are equivalent:

- 1. $f = f_0 + \sum_{i=1}^{k} f_i \beta_i$ is a permutation polynomial on R_k ;
- 2. $f_0 + f_i \beta_i$ is a permutation polynomial on $R[\beta_i]$ for every $i \in \{1, ..., k\}$;
- 3. f_0 is a permutation polynomial on $R[\beta_i]$ for every $i \in \{1, \ldots, k\}$.
- 4. $f_0 + \sum_{i=1}^{j} f_i \beta_i$ is a permutation polynomial on R_i for every $1 \le j \le k$ and $l \ge j$;
- 5. f_0 is a permutation polynomial on R_j for every $j \ge 1$.

24

Remark 27

For the ring of Matrices of dimension n over a finite local ring R, $M_n(R)$, Brawley proved the following criteria [Brawley, 1976, Theorem 2]: Let $f \in R[x]$ and let $\overline{f} \in \mathbb{F}_q[x]$ be the image of f in $\mathbb{F}_q[x]$, where $\mathbb{F}_q = R/M$. Then f is a permutation polynomial on $M_n(R)$ if and only if

- 1. \overline{f} is a permutation polynomial on $M_n(\mathbb{F}_q)$, and
- 2. the function $[\lambda_{\overline{f}}(y, z)]$ is a local permutation of $M_n(\mathbb{F}_q)$ in z.

Proposition 28

Let R be a finite non-commutative ring. Let L be the number of pairs of functions (F, H) such that

1. $F: R \longrightarrow R$ is bijective;

2. *H*: $R \times R \longrightarrow R$ is a local permutation in the second coordinate;

occurring as $([f]_R, [\lambda_f(y, z)])$ for some $f \in R[x]$. Then the number of polynomial permutations on R_k is given by

 $|\mathcal{P}(\boldsymbol{R}_k)| = L \cdot |\mathcal{F}(\boldsymbol{R})|^k.$

Finite local rings

- A finite ring R is called a local ring if the set M of all zero-divisors of R is an ideal (two-sided ideal) of R.
- *M* is the unique maximal ideal of *R*, and there exists a minimal positive integer *N* such that *M^N* = {0}.
- The characteristic of the ring $Char(R) = p^c$ ($1 \le c \le N$) (*p* prime).

•
$$R/M = \mathbb{F}_q$$
 where $q = p^w$ ($w \ge 1$).

- If c = N, R is commutative (not vice versa).
- If the lattice of left ideals (right ideals) is a chain, *R* is called a chain.
- In a chain ring: $M^i = t^i R = Rt^i$ for some element $t \in M \setminus M^2$ (i = 0, 1, ..., N).

See [Nechaev, 2008]

The case *R* is a chain ring

Lemma 29

Let *R* be a finite chain ring and let $f \in R[x]$. The following statements hold

1. R is semi-commutative;

2. $f(a + m) = f(a) + \lambda_f(a, m)$ for every $a, m \in R$ with $m^2 = 0$.

The case *R* is a chain ring

Lemma 29

Let *R* be a finite chain ring and let $f \in R[x]$. The following statements hold

1. R is semi-commutative;

2. $f(a + m) = f(a) + \lambda_f(a, m)$ for every $a, m \in R$ with $m^2 = 0$.

From now on, whenever *R* is a chain ring, we assume $Char(R) = p^{c}$ with c > 1.

The case *R* is a chain ring

Proposition 30

Let R be a finite-non commutative chain ring, and let $f \in R[x]$ be a permutation polynomial on R. Then the following statements hold

1. $f'(a) \neq 0 \mod M$ for every $a \in R$;

2. $[\lambda_f(y, z)]$ is a local permutation in z.

The case *R* is a chain ring

Theorem 31

29

Let *R* be a finite chain. Let $f = f_0 + \sum_{i=1}^{k} f_i \beta_i$, where $f_0, \ldots, f_k \in R[x]$. Then the following statements are equivalent:

- 1. *f* is a permutation polynomial on R_k ;
- 2. f_0 is a permutation polynomial on R_k ;

3. f_0 is a permutation polynomial on R.

Proof.

(1)= (2) \Rightarrow (3) by Theorem 23. (3) \Rightarrow (2) by Proposition 30.

Let $k \ge 1$. The set $\mathcal{P}_R(R_k) = \{F \in \mathcal{P}(R_k) \mid F = [f]_{R_k} \text{ for some } f \in R[x]\}$ is a subgroup of the group $\mathcal{P}(R_k)$. We call $\mathcal{P}_R(R_k)$ the group of pure polynomial permutations.

Fact 33

Let $k, i \geq 1$. Then $\mathcal{P}_R(R_i) \cong \mathcal{P}_R(R_k)$.

Let $k \ge 1$. The set $\mathcal{P}_R(R_k) = \{F \in \mathcal{P}(R_k) \mid F = [f]_{R_k} \text{ for some } f \in R[x]\}$ is a subgroup of the group $\mathcal{P}(R_k)$. We call $\mathcal{P}_R(R_k)$ the group of pure polynomial permutations.

Fact 33

Let
$$k, i \geq 1$$
. Then $\mathcal{P}_R(R_i) \cong \mathcal{P}_R(R_k)$.

Definition 34

The set
$$\mathcal{P}_x = \{F \in \mathcal{P}(R_k) \mid F = [x + \sum_{i=1}^k f_i \beta_i]_{R_k}$$
, where $f_1, \ldots, f_k \in R[x]\}$ is a subgroup of the group $\mathcal{P}(R_k)$.

Theorem 35

Let $\mathcal{P}(R_k)$ be the group of polynomial permutations on R_k . Then

1.
$$\mathcal{P}(\mathbf{R}_k) = \mathcal{P}_x \rtimes \mathcal{P}_{\mathbf{R}}(\mathbf{R}_k);$$

2. $|\mathcal{P}(\mathbf{R}_k)| = |\mathcal{P}_{\mathbf{R}}(\mathbf{R}_k)||\mathcal{F}(\mathbf{R})|^k$.

Theorem 35

Let $\mathcal{P}(R_k)$ be the group of polynomial permutations on R_k . Then

1.
$$\mathcal{P}(\mathbf{R}_k) = \mathcal{P}_X \rtimes \mathcal{P}_{\mathbf{R}}(\mathbf{R}_k);$$

2. $|\mathcal{P}(\mathbf{R}_k)| = |\mathcal{P}_{\mathbf{R}}(\mathbf{R}_k)||\mathcal{F}(\mathbf{R})|$

Corollary 36

 $|\mathcal{P}_{R}(R_{k})| = |\{([f]_{R}, [\lambda(y, z)]) \mid f \in R[x], [f]_{R} \in \mathcal{P}(R) \text{ and } [\lambda(y, z)] L. P. in z\}|.$

In particular, when R is a chain ring,

 $|\mathcal{P}_{R}(R_{k})| = |\{([f]_{R}, [\lambda(y, z)]) \mid f \in R[x], [f]_{R} \in \mathcal{P}(R)\}|.$

Let
$$St_k(R) = \{F \in \mathcal{P}(R_k) \mid F(a) = a \text{ for every } a \in R\}.$$

Proposition 38

Let R be a finite ring. Then

$$St_k(R) = \{F \in \mathcal{P}(R_k) \mid F \text{ is induced by } x + h(x), h \in N_R\}.$$

Let
$$St_k(R) = \{F \in \mathcal{P}(R_k) \mid F(a) = a \text{ for every } a \in R\}.$$

Proposition 38

Let R be a finite ring. Then

 $St_k(R) = \{F \in \mathcal{P}(R_k) \mid F \text{ is induced by } x + h(x), h \in N_R\}.$

Theorem 39

Let $k, i \geq 1$. Then $St_k(R) \cong St_i(R)$.

Proposition 40

The stabilizer group $St_k(R)$ is a normal subgroup of the group $\mathcal{P}_R(R_k)$. Furthermore, if every element of $\mathcal{P}(R)$ is the restriction to R of an element of $\mathcal{P}_R(R_k)$, then

 $\mathcal{P}_{\mathcal{R}}(\mathcal{R}_k)/\mathcal{S}t_k(\mathcal{R})\cong \mathcal{P}(\mathcal{R}).$

Proposition 40

The stabilizer group $St_k(R)$ is a normal subgroup of the group $\mathcal{P}_R(R_k)$. Furthermore, if every element of $\mathcal{P}(R)$ is the restriction to R of an element of $\mathcal{P}_R(R_k)$, then

$$\mathcal{P}_{\mathcal{R}}(\mathcal{R}_k)/St_k(\mathcal{R})\cong \mathcal{P}(\mathcal{R}).$$

Theorem 41

Let R be a chain ring. Then:

- 1. each element of $\mathcal{P}(R)$ appears as a restriction on R of some $G \in \mathcal{P}_R(R_k)$;
- 2. $St_k(R)$ is a normal subgroup of $\mathcal{P}_R(R_k)$ and

 $\mathcal{P}_{R}(R_{k})/St_{k}(R)\cong \mathcal{P}(R).$

Let $\Psi: \mathcal{P}_R(R_k) \longrightarrow \mathcal{P}(R)$ be the map defined by $\Psi(F) = [f]_R$, where $F = [f]_{R_k}$.

Corollary 42

The number of polynomial permutations on R_k is given by

 $|\mathcal{P}(\boldsymbol{R}_k)| = |\mathcal{F}(\boldsymbol{R})|^k \cdot |\Psi(\mathcal{P}_{\boldsymbol{R}}(\boldsymbol{R}_k))| \cdot |\boldsymbol{S}t_k(\boldsymbol{R})|.$

In particular, when R is a finite chain ring,

 $|\mathcal{P}(\boldsymbol{R}_k)| = |\mathcal{F}(\boldsymbol{R})|^k \cdot |\mathcal{P}(\boldsymbol{R})| \cdot |\boldsymbol{S}t_k(\boldsymbol{R})|.$

Corollary 43

Let $F \in \Psi(\mathcal{P}_R(R_k)) \subseteq \mathcal{P}(R)$ be fixed. Then

 $|St_k(R)| = |\{[\lambda_g(y, z)] | g \in R[x], [g]_{R_k} \in \mathcal{P}_R(R_k) \text{ and } [g]_R = F\}|.$

When R is chain ring, we fixed $F \in \mathcal{P}(R)$. Then

 $|St_k(R)| = |\{[\lambda_g(y, z)] | g \in R[x], and [g]_R = F\}|.$

For $n \ge 1$, we define

$$N_R(< n) = \{g \in R[x] \mid g \in N_R \text{ with } \deg g < n\}, \text{ and }$$

 $AN_R(< n) = \{g \in R[x] \mid g \in AN_R \text{ with } \deg g < n\}.$

Proposition 45

1. $|St_k(R)| = |\{[\lambda_g(y, z)] | g \in N_R \text{ and } [g + x]_{R_k} \in \mathcal{P}_R(R_k)\}|.$

2. If there exists a monic null polynomial on R_k in R[x] of degree n, then:

■ $|St_k(R)| = |\{[\lambda_g(y, z)] \mid g \in N_R \text{ and } [g+x]_{R_k} \in \mathcal{P}_R(R_k) \text{ with } \deg g < n\}|;$

■
$$|St_k(R)| \le [N_R : AN_R] = \frac{|N_R($$

Theorem 46

Let R be a finite chain.

- 1. $|St_k(R)| = |\{[\lambda_g(y, z)] | g \in N_R\}|.$
- 2. If there exists a monic null polynomial on R_k in R[x] of degree n, then:
 - $|St_k(R)| = |\{[\lambda_g(y, z)] \mid g \in N_R \text{ and } \deg g < n\}|;$

•
$$|St_k(R)| = [N_R : AN_R] = \frac{|N_R(.$$

[Al-Maktry, 2023] Al-Maktry, A. A. A. (2023).

Polynomial functions over dual numbers of several variables.

```
J. Algebra Appl., 22(11):Paper No. 2350231.
```

[Brawley, 1976] Brawley, J. V. (1976).

Polynomials over a ring that permute the matrices over that ring.

```
J. Algebra, 38(1):93–99.
```

```
[Frisch, 2017] Frisch, S. (2017).
```

Polynomial functions on upper triangular matrix algebras.

```
Monatsh. Math., 184(2):201–215.
```

[Nechaev, 2008] Nechaev, A. A. (2008).

Finite rings with applications.

The stabilizer group of R

In *Handbook of algebra. Vol. 5*, volume 5 of *Handb. Algebr.*, pages 213–320. Elsevier/North-Holland, Amsterdam.

```
[Stewart, 1972] Stewart, I. (1972).
```

Finite rings with a specified group of units.

```
Math. Z., 126:51-58.
```

```
[Werner, 2014] Werner, N. J. (2014).
```

Polynomials that kill each element of a finite ring.

```
J. Algebra Appl., 13(3):1350111, 12.
```