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Basics

Definition 1

Let R be a non-commutative ring, and g =
n∑

i=0
aix i ∈ R[x ]. Then:

1. The polynomial g induces a function F : R −→ R by right substitution

F (a) = f (a) =
n∑

i=0
aiai for the variable x . We call F a (right)polynomial

function on R. If F is a bijection, we call F a polynomial permutation
and f is a permutation polynomial.

2. By [g]R, we denote the (right) polynomial function induced by g on R.
When the ring is understood, we write [g].

3. If f ∈ R[x ] such that f and g induce the same (right)function on R, i.e.
[g] = [f ], then we abbreviate this with g ≜ f on R.

4. We define F(R) = {[g] | g ∈ R[x ]}, and

P(R) = {[f ] | [f ] is a permutation of R and f ∈ R[x ]}.



4

Basics

Remark 2
F(R) is an additive group with respect to pointwise addition “+”.

F(R) is a monoid with respect to “◦”. Its group of units is P(R).
We can not endorse F(R) with pointwise multiplication “∗”.

Because, substitution is not a homomorphism. Indeed, we can find
f ,g ∈ R[x ] and r ∈ R such that

h(r) ̸= f (r)g(r), where h = fg,

that is
[fg] ̸= [f ] ∗ [g].
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Basics

Definition 3

Let f ,g ∈ R[x ]. Let f (x) =
n∑

j=0
ajx j . Then

1. (fg)(x) =
n∑

j=0
ajg(x)x j ;

2. (fg)(r) =
n∑

j=0
ajg(r)r j for every r ∈ R.

3. f ∈ R[x ] is called null polynomial on R if f (r) = 0 for every r ∈ R. We
write f ≜ 0 on R.

4. We define: NR = {f ∈ R[x ] | f ≜ 0 on R}.



6

Basics

Corollary 4

Let R be a finite non-commutative ring. Then

1. NR is a left ideal of R[x ];
2. NR is an ideal of R[x ] if and only if NR is an R-right module.

Remark 5

If every element in R can be written as a sum of units (for example
semisimple rings and local rings), then NR is an ideal [Werner, 2014].

A result of [Stewart, 1972] infers that every element of a finite ring R is
a sum of units if only if R/J(R) has no factor ring isomorphic to F2 ×F2.
When R is the ring of upper triangular (lower) over commutative ring A,
NR is an ideal [Frisch, 2017].
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Basics

Proposition 6

Let R be a finite non-commutative ring. Define an operation “·” on F(R) by
letting F · F1 = [fg], where f ,g ∈ R[x ] such that F = [f ] and [g] = F1. Then “·” is
well defined if and only if NR is a two sided ideal; in this case F(R) is a ring
endorsed with multiplication “·” and pointwise addition.
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Dual numbers

Definition 7

Let R be a non-commutative ring and let T be the ideal of the polynomial ring
R[x1, . . . , xk ] generated by the set {xixj | i , j ∈ {1, . . . , k}}. We call the quotient
ring R[x1, . . . , xk ]/T the ring of dual numbers of k variables over R. We write
R[β1, . . . , βk ] for R[x1, . . . , xk ]/T , where βi denotes xi + T .
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Dual numbers

Remark 8
R[β1, . . . , βk ] is a free R-algebra with basis {1, β1, . . . , βk}.We have,

R[β1, . . . , βk ] = {r0 +
k∑

i=1
ri β i | r0, ri ∈ R, with β i β j = 0 for 1 ≤ i , j ≤ k}.

We call the coefficient of 1 the “constant coefficient”.
Every polynomial f ∈ R[β1, . . . , βk ][x ] has a unique representation

f = f0 +
k∑

i=1
fi β i , where f0, f1, . . . , fk ∈ R[x ].

(a0 +
k∑

i=1
ai β i)(b0 +

k∑
i=1

bi β i) = a0b0 +
k∑

i=1
(a0bi + aib0) β i for every

ai ,bi ∈ R.
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Dual numbers

Proposition 9

Let R be a non-commutative ring. Then the following statements hold.

1. For a0, . . . ,ak ,b0, . . . ,bk ∈ R, we have:

a0 +
k∑

i=1
ai β i is a unit in R[β1, . . . , βk ] if and only if a0 is a unit in R.

2. R[β1, . . . , βk ] is a local ring if and only if R is a local ring.

3. J(R[β1, . . . , βk ]) = J(R) +
k∑

i=1
β i R.

4. C(R[β1, . . . , βk ]) = C(R) +
k∑

i=1
C(R) β i .
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Dual numbers

If R is commutative, then by binomial theorem, for any f ∈ R[x ] and
a,bi ∈ R,

f (a +
k∑

i=1
bi β i) = f (a) +

k∑
i=1

f ′(a)bi β i .

Definition 10

Let f =
n∑

j=0
ajx j ∈ R[x ]. Then we assign to f a unique polynomial λf (y , z) in the

non-commutative variables y and z defined by

λf (y , z) =
n∑

j=1

j∑
r=1

ajy r−1zy j−r .

We call λf the assigned polynomial of (to) f .
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Dual numbers

Fact 11

Let r , s,w ∈ R. Let f and g ∈ R[x ]. Then

1. λrf+sg = λrf + λsg;
2. λfr+gs = λfr + λgs;
3. λf = 0 if and only if f is constant;

4. λf (0, z) = a1z and λf (y ,1) = f ′(y), where f (x) =
n∑

j=0
ajx j ;

5. λf (y ,0) = 0;
6. λf (r , s ± w) = λf (r , s)± λf (r ,w).

From now on let Rk denote R[β1, . . . , βk ].
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Dual numbers

Lemma 12

Let R be a ring and a,b1, . . . ,bk ∈ R.

1. If f ∈ R[x ] and λf is its assigned polynomial then

f (a +
k∑

i=1

bi β i) = f (a) +
k∑

i=1

λf (a,bi) β i .

2. If f = f0 +
k∑

i=1
fi β i , where f0, . . . , fk ∈ R[x ], then

f (a +
k∑

i=1

bi β i) = f0(a) +
k∑

i=1

(λf0(a,bi) + fi(a)) β i .
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Polynomial functions on R[β1, . . . , βk ]

Definition 13

Let f =
n∑

j=0
ajx j ∈ R[x ] and λf (y , z) be its assigned polynomial. Then

1. the assigned λf induces (defines) a function F : R × R −→ R

F (a,b) = λf (a,b) =
n∑

j=1

j∑
r=1

ajar−1baj−r ,

which we denote by [λf (y , z)];

2. for every a ∈ R the polynomial λf (a, z) =
n∑

j=1

j∑
r=1

ajar−1zaj−r defines a

function Fa : R −→ R by Fa(b) = λf (a,b), which we denote by [λf (a, z)].
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Polynomial functions on R[β1, . . . , βk ]

Definition 14

1. Let f ∈ R[x ] and let λf be its assigned polynomial. We call λf is null if
λf (a,b) = 0 for every a,b ∈ R. We write [λf (y , z)] = 0.

2. We define ANR as: ANR = {f ∈ NR | [λf (y , z)] = 0}.
3. We define N ′

R as: N ′
R = {f ∈ NR | f ′ ∈ NR}.

Remark 15

1. Obviously, ANR and N ′
R are left ideals of R[x ] with ANR,N ′

R ⊆ NR.
2. Let f ∈ ANR. Then [λf (y , z)] = 0 ⇒ λf (a,1) = f ′(a) = 0 for every a ∈ R.

Hence f ∈ N ′
R, and ANR ⊆ N ′

R ⊆ NR.
3. When R is commutative: the condition on λf in the definition of ANR is

equivalent to f ′ ∈ NR. So, ANR = N ′
R over commutative rings.
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Polynomial functions on R[β1, . . . , βk ]

Theorem 16

Let NR and ANR be as in Definition 14. Then

1. NRk = ANR +
k∑

i=1
NR β i ;

2. NRk is an ideal of Rk [x ] if and only if ANR and NR are ideals of R[x ].

Corollary 17

Let f = f0 +
k∑

i=1
fi β i , where f0, . . . , fk ∈ R[x ]. Then the following are equivalent

1. f ∈ NRk (i.e. f is a null polynomial on Rk );
2. f0, fi β i ∈ NRk for i = 1, . . . , k;
3. [λf0(y , z)] = 0 and fi ∈ NR for i = 0, . . . , k.
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Polynomial functions on R[β1, . . . , βk ]

Corollary 18

Let f = f0 +
k∑

i=1
fi β i and g = g0 +

k∑
i=1

gi β i , where f0, . . . , fk ,g0, . . . ,gk ∈ R[x ].

Then f ≜ g on Rk if and only if the following conditions hold:

1. [λf0(y , z)] = [λg0(y , z)];
2. [fi ]R = [gi ]R for i = 0, . . . , k.

Or equivalently:

f0 ≡ g0 mod ANR;
fi ≡ gi mod NR for i = 1, . . . , k.
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Polynomial functions on R[β1, . . . , βk ]

Proposition 19

Let R be a finite non-commutative. The following statements are equivalent

1. every element of R is a sum of units;
2. every element of Rk is a sum of units;
3. R/J(R) has no factor ring isomorphic to F2 × F2;
4. Rk/J(Rk) has no factor ring isomorphic to F2 × F2.

Proof.
By Remark 5, we need only show only (3)⇔ (4). By Proposition 9,

J(Rk ) = J(R) +
k∑

i=1
β i R. Then one easily sees that

Rk/J(Rk ) = (R +
k∑

i=1
β i R)/(J(R) +

k∑
i=1

β i R) ∼= R/J(R).
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Polynomial functions on R[β1, . . . , βk ]

Corollary 20
Suppose that R (alternatively Rk ) satisfies the condition of Proposition 19.
Then

1. NRk is an ideal of Rk [x ];
2. NR and ANR are ideals of R[x ].

From now on we consider a non-commutative ring R in which NR and
ANR are ideals of R[x ] (equivalently NRk is an ideal of Rk [x ]).
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Polynomial functions on R[β1, . . . , βk ]

Corollary 20
Suppose that R (alternatively Rk ) satisfies the condition of Proposition 19.
Then

1. NRk is an ideal of Rk [x ];
2. NR and ANR are ideals of R[x ].

From now on we consider a non-commutative ring R in which NR and
ANR are ideals of R[x ] (equivalently NRk is an ideal of Rk [x ]).
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Polynomial functions on R[β1, . . . , βk ]

Proposition 21

The number of polynomial functions on Rk is given by

|F(Rk )| =
[
R[x ] : ANR

][
R[x ] : NR

]k
= [NR : ANR]|F(R)|k+1.

Corollary 22

Let F ∈ F(R) be fixed.

[NR : ANR] = |{[λf (y , z)] | f ∈ R[x ] such that [f ]R = F}|.
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Permutation polynomials on R[β1, . . . , βk ]

Theorem 23

Let R be a finite non-commutative ring. Let f = f0 +
k∑

i=1
fi β i , where

f0, . . . , fk ∈ R[x ]. Then the following statements are equivalent:

1. f is a permutation polynomial on Rk ;
2. f0 is a permutation polynomial on Rk ;
3. f0 is a permutation polynomial on R and [λf0(y , z)] is a local

permutation on R in z.

Definition 24

A function G : R × R −→ R a local permutation in the second coordinate, if for
every a ∈ R the function Ga : R −→ R, r → G(a, r ), is bijective.
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Permutation polynomials on R[β1, . . . , βk ]

Remark and Question 25

1. If R is a commutative ring, then the condition on λf0(y , z) (f0 ∈ R[x ]) in
Theorem 23 is equivalent to f ′0 maps R to its group of units.

2. In the special case R is a local commutative that is not a field, the
condition on f ′0 is redundant, that is f0 is a permutation polynomial on
Rk if and only if f0 is a permutation polynomial on R ( [Al-Maktry, 2023,
Proposition 4.7]).

3. The previous point motivates us to ask the following question in the
non-commutative case:
Let R be a finite non-commutative local rings does the condition on
λf0(y , z) (f0 ∈ R[x ]) in Theorem 23 is redundant?
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Permutation polynomials on R[β1, . . . , βk ]

Corollary 26

Let f0, . . . , fk ∈ R[x ]. The following statements are equivalent:

1. f = f0 +
k∑

i=1
fi β i is a permutation polynomial on Rk ;

2. f0 + fi β i is a permutation polynomial on R[β i ] for every i ∈ {1, . . . , k};
3. f0 is a permutation polynomial on R[β i ] for every i ∈ {1, . . . , k}.

4. f0 +
j∑

i=1
fi β i is a permutation polynomial on Rl for every 1 ≤ j ≤ k and

l ≥ j ;
5. f0 is a permutation polynomial on Rj for every j ≥ 1.
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Permutation polynomials on R[β1, . . . , βk ]

Remark 27
For the ring of Matrices of dimension n over a finite local ring R, Mn(R),
Brawley proved the following criteria [Brawley, 1976, Theorem 2]:
Let f ∈ R[x ] and let f̄ ∈ Fq[x ] be the image of f in Fq[x ], where Fq = R/M. Then
f is a permutation polynomial on Mn(R) if and only if

1. f̄ is a permutation polynomial on Mn(Fq), and
2. the function [λf̄ (y , z)] is a local permutation of Mn(Fq) in z.
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Permutation polynomials on R[β1, . . . , βk ]

Proposition 28

Let R be a finite non-commutative ring. Let L be the number of pairs of
functions (F ,H) such that

1. F : R −→ R is bijective;
2. H : R × R −→ R is a local permutation in the second coordinate;

occurring as ([f ]R, [λf (y , z)]) for some f ∈ R[x ].
Then the number of polynomial permutations on Rk is given by

|P(Rk )| = L · |F(R)|k .



26

Permutation polynomials on R[β1, . . . , βk ]

Finite local rings
A finite ring R is called a local ring if the set M of all zero-divisors of R
is an ideal (two-sided ideal) of R.

M is the unique maximal ideal of R, and there exists a minimal positive
integer N such that MN = {0}.

The characteristic of the ring Char(R) = pc (1 ≤ c ≤ N) (p prime).

R/M = Fq where q = pw (w ≥ 1).

If c = N, R is commutative (not vice versa).

If the lattice of left ideals (right ideals) is a chain, R is called a chain.

In a chain ring: M i = t iR = Rt i for some element t ∈ M \ M2

(i = 0,1, . . . ,N).
See [Nechaev, 2008]
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Permutation polynomials on R[β1, . . . , βk ]

The case R is a chain ring

Lemma 29

Let R be a finite chain ring and let f ∈ R[x ]. The following statements hold

1. R is semi-commutative;
2. f (a + m) = f (a) + λf (a,m) for every a,m ∈ R with m2 = 0.

From now on, whenever R is a chain ring, we assume Char (R) = pc

with c > 1.
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Permutation polynomials on R[β1, . . . , βk ]

The case R is a chain ring

Proposition 30

Let R be a finite-non commutative chain ring, and let f ∈ R[x ] be a permutation
polynomial on R. Then the following statements hold

1. f ′(a) ̸= 0 mod M for every a ∈ R;
2. [λf (y , z)] is a local permutation in z.
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Permutation polynomials on R[β1, . . . , βk ]

The case R is a chain ring
Theorem 31

Let R be a finite chain. Let f = f0 +
k∑

i=1
fi β i , where f0, . . . , fk ∈ R[x ]. Then the

following statements are equivalent:

1. f is a permutation polynomial on Rk ;
2. f0 is a permutation polynomial on Rk ;
3. f0 is a permutation polynomial on R.

Proof.
(1)≡ (2)⇒ (3) by Theorem 23. (3) ⇒ (2) by Proposition 30.
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The group of pure polynomial permutations

Definition 32

Let k ≥ 1. The set PR(Rk ) = {F ∈ P(Rk ) | F = [f ]Rk for some f ∈ R[x ]} is a
subgroup of the group P(Rk ). We call PR(Rk ) the group of pure polynomial
permutations.

Fact 33

Let k , i ≥ 1. Then PR(Ri) ∼= PR(Rk ).

Definition 34

The set Px = {F ∈ P(Rk ) | F = [x +
k∑

i=1
fi β i ]Rk , where f1,. . . , fk ∈ R[x ]} is a

subgroup of the group P(Rk ).
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The group of pure polynomial permutations

Theorem 35

Let P(Rk ) be the group of polynomial permutations on Rk . Then

1. P(Rk) = Px ⋊ PR(Rk);
2. |P(Rk)| = |PR(Rk)||F(R)|k .

Corollary 36

|PR(Rk )| = |{([f ]R, [λ(y , z)]) | f ∈ R[x ], [f ]R ∈ P(R) and [λ(y , z)] L. P. in z}| .

In particular, when R is a chain ring,

|PR(Rk )| = |{([f ]R, [λ(y , z)]) | f ∈ R[x ], [f ]R ∈ P(R)}| .
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Theorem 35

Let P(Rk ) be the group of polynomial permutations on Rk . Then

1. P(Rk) = Px ⋊ PR(Rk);
2. |P(Rk)| = |PR(Rk)||F(R)|k .

Corollary 36

|PR(Rk )| = |{([f ]R, [λ(y , z)]) | f ∈ R[x ], [f ]R ∈ P(R) and [λ(y , z)] L. P. in z}| .

In particular, when R is a chain ring,

|PR(Rk )| = |{([f ]R, [λ(y , z)]) | f ∈ R[x ], [f ]R ∈ P(R)}| .
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The stabilizer group of R

Definition 37

Let Stk (R) = {F ∈ P(Rk ) | F (a) = a for every a ∈ R}.

Proposition 38

Let R be a finite ring. Then

Stk (R) = {F ∈ P(Rk ) | F is induced by x + h(x),h ∈ NR}.

Theorem 39

Let k , i ≥ 1. Then Stk (R) ∼= Sti(R).
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The stabilizer group of R

Definition 37

Let Stk (R) = {F ∈ P(Rk ) | F (a) = a for every a ∈ R}.

Proposition 38

Let R be a finite ring. Then

Stk (R) = {F ∈ P(Rk ) | F is induced by x + h(x),h ∈ NR}.

Theorem 39

Let k , i ≥ 1. Then Stk (R) ∼= Sti(R).
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Proposition 40

The stabilizer group Stk (R) is a normal subgroup of the group PR(Rk ).
Furthermore, if every element of P(R) is the restriction to R of an element of
PR(Rk ), then

PR(Rk )
/

Stk (R) ∼= P(R).

Theorem 41

Let R be a chain ring. Then:

1. each element of P(R) appears as a restriction on R of some
G ∈ PR(Rk);

2. Stk(R) is a normal subgroup of PR(Rk) and

PR(Rk)
/

Stk(R) ∼= P(R).
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Proposition 40

The stabilizer group Stk (R) is a normal subgroup of the group PR(Rk ).
Furthermore, if every element of P(R) is the restriction to R of an element of
PR(Rk ), then

PR(Rk )
/

Stk (R) ∼= P(R).

Theorem 41

Let R be a chain ring. Then:

1. each element of P(R) appears as a restriction on R of some
G ∈ PR(Rk);

2. Stk(R) is a normal subgroup of PR(Rk) and

PR(Rk)
/

Stk(R) ∼= P(R).
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Let Ψ: PR(Rk ) −→ P(R) be the map defined by Ψ(F ) = [f ]R, where
F = [f ]Rk .

Corollary 42

The number of polynomial permutations on Rk is given by

|P(Rk )| = |F(R)|k · |Ψ(PR(Rk ))| · |Stk (R)|.

In particular, when R is a finite chain ring,

|P(Rk )| = |F(R)|k · |P(R)| · |Stk (R)|.
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Corollary 43

Let F ∈ Ψ(PR(Rk )) ⊆ P(R) be fixed. Then

|Stk (R)| =
∣∣{[λg(y , z)] | g ∈ R[x ], [g]Rk ∈ PR(Rk ) and [g]R = F}

∣∣ .
When R is chain ring, we fixed F ∈ P(R). Then

|Stk (R)| =
∣∣{[λg(y , z)] | g ∈ R[x ], and [g]R = F}

∣∣ .
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Definition 44

For n ≥ 1, we define

NR(< n) = {g ∈ R[x ] | g ∈ NR with deg g < n}, and

ANR(< n) = {g ∈ R[x ] | g ∈ ANR with deg g < n}.

Proposition 45

1. |Stk(R)| = |{[λg(y , z)] | g ∈ NR and [g + x ]Rk ∈ PR(Rk)}|.
2. If there exists a monic null polynomial on Rk in R[x ] of degree n, then:

|Stk (R)| = |{[λg(y , z)] | g ∈ NR and [g+x ]Rk ∈ PR(Rk ) with deg g < n}|;

|Stk (R)| ≤ [NR : ANR] =
|NR(<n)|
|ANR(<n)| .
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Theorem 46
Let R be a finite chain.

1. |Stk(R)| = |{[λg(y , z)] | g ∈ NR}|.
2. If there exists a monic null polynomial on Rk in R[x ] of degree n, then:

|Stk(R)| = |{[λg(y , z)] | g ∈ NR and deg g < n}|;
|Stk(R)| = [NR : ANR] =

|NR(<n)|
|ANR(<n)| .
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