Polynomial functions on a class of finite noncommutative rings

A Ali Abdulkader AI-Maktry ${ }^{1}$ Susan F. EI-Deken ${ }^{2}$, ${ }^{1}$ TU Graz University
${ }^{2}$ Helwan University
Ring Theory SeminarUniversity of Graz 25 April

1. Basics
2. Dual numbers
3. Polynomial functions on $R\left[\beta_{1}, \ldots, \beta_{k}\right]$
4. Permutation polynomials on $R\left[\beta_{1}, \ldots, \beta_{k}\right]$

- The case R is a chain ring

5. The group of pure polynomial permutations
6. The stabilizer group of R

Definition 1

Let R be a non-commutative ring, and $g=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$. Then:

1. The polynomial g induces a function $F: R \longrightarrow R$ by right substitution $F(a)=f(a)=\sum_{i=0}^{n} a_{i} a^{i}$ for the variable x. We call F a (right)polynomial function on R. If F is a bijection, we call F a polynomial permutation and f is a permutation polynomial.
2. By $[g]_{R}$, we denote the (right) polynomial function induced by g on R. When the ring is understood, we write $[g]$.
3. If $f \in R[x]$ such that f and g induce the same (right)function on R, i.e. $[g]=[f]$, then we abbreviate this with $g \triangleq f$ on R.
4. We define $\mathcal{F}(R)=\{[g] \mid g \in R[x]\}$, and

$$
\mathcal{P}(R)=\{[f] \mid[f] \text { is a permutation of } R \text { and } f \in R[x]\} .
$$

Remark 2

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".

Remark 2

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.

Remark 2

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.
- We can not endorse $\mathcal{F}(R)$ with pointwise multiplication "*".

Remark 2

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.
- We can not endorse $\mathcal{F}(R)$ with pointwise multiplication "*".

Remark 2

- $\mathcal{F}(R)$ is an additive group with respect to pointwise addition "+".
- $\mathcal{F}(R)$ is a monoid with respect to " \circ ". Its group of units is $\mathcal{P}(R)$.
- We can not endorse $\mathcal{F}(R)$ with pointwise multiplication "*".

Because, substitution is not a homomorphism. Indeed, we can find $f, g \in R[x]$ and $r \in R$ such that

$$
h(r) \neq f(r) g(r), \text { where } h=f g,
$$

that is

$$
[f g] \neq[f] *[g] .
$$

Definition 3

Let $f, g \in R[x]$. Let $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$. Then

1. $(f g)(x)=\sum_{j=0}^{n} a_{j} g(x) x^{j}$;
2. $(f g)(r)=\sum_{j=0}^{n} a_{j} g(r) r^{j}$ for every $r \in R$.
3. $f \in R[x]$ is called null polynomial on R if $f(r)=0$ for every $r \in R$. We write $f \triangleq 0$ on R.
4. We define: $N_{R}=\{f \in R[x] \mid f \triangleq 0$ on $R\}$.

Corollary 4
Let R be a finite non-commutative ring. Then

1. N_{R} is a left ideal of $R[x]$;
2. N_{R} is an ideal of $R[x]$ if and only if N_{R} is an R-right module.

Remark 5

- If every element in R can be written as a sum of units (for example semisimple rings and local rings), then N_{R} is an ideal [Werner, 2014].

Corollary 4

Let R be a finite non-commutative ring. Then

1. N_{R} is a left ideal of $R[x]$;
2. N_{R} is an ideal of $R[x]$ if and only if N_{R} is an R-right module.

Remark 5

- If every element in R can be written as a sum of units (for example semisimple rings and local rings), then N_{R} is an ideal [Werner, 2014].
- A result of [Stewart, 1972] infers that every element of a finite ring R is a sum of units if only if $R / J(R)$ has no factor ring isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$.

Corollary 4
Let R be a finite non-commutative ring. Then

1. N_{R} is a left ideal of $R[x]$;
2. N_{R} is an ideal of $R[x]$ if and only if N_{R} is an R-right module.

Remark 5

- If every element in R can be written as a sum of units (for example semisimple rings and local rings), then N_{R} is an ideal [Werner, 2014].
- A result of [Stewart, 1972] infers that every element of a finite ring R is a sum of units if only if $R / J(R)$ has no factor ring isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$.
- When R is the ring of upper triangular (lower) over commutative ring A, N_{R} is an ideal [Frisch, 2017].

Proposition 6

Let R be a finite non-commutative ring. Define an operation "." on $\mathcal{F}(R)$ by letting $F \cdot F_{1}=[f g]$, where $f, g \in R[x]$ such that $F=[f]$ and $[g]=F_{1}$. Then "." is well defined if and only if N_{R} is a two sided ideal; in this case $\mathcal{F}(R)$ is a ring endorsed with multiplication "." and pointwise addition.

Definition 7
Let R be a non-commutative ring and let T be the ideal of the polynomial ring $R\left[x_{1}, \ldots, x_{k}\right]$ generated by the set $\left\{x_{i} x_{j} \mid i, j \in\{1, \ldots, k\}\right\}$. We call the quotient ring $R\left[x_{1}, \ldots, x_{k}\right] / T$ the ring of dual numbers of k variables over R. We write $R\left[\beta_{1}, \ldots, \beta_{k}\right]$ for $R\left[x_{1}, \ldots, x_{k}\right] / T$, where β_{i} denotes $x_{i}+T$.

Remark 8

- $R\left[\beta_{1}, \ldots, \beta_{k}\right]$ is a free R-algebra with basis $\left\{1, \beta_{1}, \ldots, \beta_{k}\right\}$. We have, $R\left[\beta_{1}, \ldots, \beta_{k}\right]=\left\{r_{0}+\sum_{i=1}^{k} r_{i} \beta_{i} \mid r_{0}, r_{i} \in R\right.$, with $\beta_{i} \beta_{j}=0$ for $\left.1 \leq i, j \leq k\right\}$.
- We call the coefficient of 1 the "constant coefficient".
- Every polynomial $f \in R\left[\beta_{1}, \ldots, \beta_{k}\right][x]$ has a unique representation $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$, where $f_{0}, f_{1}, \ldots, f_{k} \in R[x]$.
- $\left(a_{0}+\sum_{i=1}^{k} a_{i} \beta_{i}\right)\left(b_{0}+\sum_{i=1}^{k} b_{i} \beta_{i}\right)=a_{0} b_{0}+\sum_{i=1}^{k}\left(a_{0} b_{i}+a_{i} b_{0}\right) \beta_{i}$ for every $a_{i}, b_{i} \in R$.

Proposition 9

Let R be a non-commutative ring. Then the following statements hold.

1. For $a_{0}, \ldots, a_{k}, b_{0}, \ldots, b_{k} \in R$, we have:
$a_{0}+\sum_{i=1}^{k} a_{i} \beta_{i}$ is a unit in $R\left[\beta_{1}, \ldots, \beta_{k}\right]$ if and only if a_{0} is a unit in R.
2. $R\left[\beta_{1}, \ldots, \beta_{k}\right]$ is a local ring if and only if R is a local ring.
3. $J\left(R\left[\beta_{1}, \ldots, \beta_{k}\right]\right)=J(R)+\sum_{i=1}^{k} \beta_{i} R$.
4. $C\left(R\left[\beta_{1}, \ldots, \beta_{k}\right]\right)=C(R)+\sum_{i=1}^{k} C(R) \beta_{i}$.
${ }^{11}$ If R is commutative, then by binomial theorem, for any $f \in R[x]$ and $a, b_{i} \in R$,

$$
f\left(a+\sum_{i=1}^{k} b_{i} \beta_{i}\right)=f(a)+\sum_{i=1}^{k} f^{\prime}(a) b_{i} \beta_{i} .
$$

If R is commutative, then by binomial theorem, for any $f \in R[x]$ and $a, b_{i} \in R$,

$$
f\left(a+\sum_{i=1}^{k} b_{i} \beta_{i}\right)=f(a)+\sum_{i=1}^{k} f^{\prime}(a) b_{i} \beta_{i}
$$

Definition 10

Let $f=\sum_{j=0}^{n} a_{j} x^{j} \in R[x]$. Then we assign to f a unique polynomial $\lambda_{f}(y, z)$ in the non-commutative variables y and z defined by

$$
\lambda_{f}(y, z)=\sum_{j=1}^{n} \sum_{r=1}^{j} a_{j} y^{r-1} z y^{j-r} .
$$

We call λ_{f} the assigned polynomial of (to) f.

Fact 11

Let $r, s, w \in R$. Let f and $g \in R[x]$. Then

1. $\lambda_{r f+s g}=\lambda_{r f}+\lambda_{s g}$;
2. $\lambda_{f r+g s}=\lambda_{f r}+\lambda_{g s}$;
3. $\lambda_{f}=0$ if and only if f is constant;
4. $\lambda_{f}(0, z)=a_{1} z$ and $\lambda_{f}(y, 1)=f^{\prime}(y)$, where $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$;
5. $\lambda_{f}(y, 0)=0$;
6. $\lambda_{f}(r, s \pm w)=\lambda_{f}(r, s) \pm \lambda_{f}(r, w)$.

From now on let R_{k} denote $R\left[\beta_{1}, \ldots, \beta_{k}\right]$.

Lemma 12

Let R be a ring and $a, b_{1}, \ldots, b_{k} \in R$.

1. If $f \in R[x]$ and λ_{f} is its assigned polynomial then

$$
f\left(a+\sum_{i=1}^{k} b_{i} \beta_{i}\right)=f(a)+\sum_{i=1}^{k} \lambda_{f}\left(a, b_{i}\right) \beta_{i} .
$$

2. If $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k} \in R[x]$, then

$$
f\left(a+\sum_{i=1}^{k} b_{i} \beta_{i}\right)=f_{0}(a)+\sum_{i=1}^{k}\left(\lambda_{f_{0}}\left(a, b_{i}\right)+f_{i}(a)\right) \beta_{i} .
$$

Definition 13

Let $f=\sum_{j=0}^{n} a_{j} x^{j} \in R[x]$ and $\lambda_{f}(y, z)$ be its assigned polynomial. Then

1. the assigned λ_{f} induces (defines) a function $F: R \times R \longrightarrow R$

$$
F(a, b)=\lambda_{f}(a, b)=\sum_{j=1}^{n} \sum_{r=1}^{j} a_{j} a^{r-1} b a^{j-r}
$$

which we denote by $\left[\lambda_{f}(y, z)\right]$;
2. for every $a \in R$ the polynomial $\lambda_{f}(a, z)=\sum_{j=1}^{n} \sum_{r=1}^{j} a_{j} a^{r-1} z a^{j-r}$ defines a function $F_{a}: R \longrightarrow R$ by $F_{a}(b)=\lambda_{f}(a, b)$, which we denote by $\left[\lambda_{f}(a, z)\right]$.

Definition 14

1. Let $f \in R[x]$ and let λ_{f} be its assigned polynomial. We call λ_{f} is null if $\lambda_{f}(a, b)=0$ for every $a, b \in R$. We write $\left[\lambda_{f}(y, z)\right]=0$.
2. We define $A N_{R}$ as: $A N_{R}=\left\{f \in N_{R} \mid\left[\lambda_{f}(y, z)\right]=0\right\}$.
3. We define N_{R}^{\prime} as: $N_{R}^{\prime}=\left\{f \in N_{R} \mid f^{\prime} \in N_{R}\right\}$.

Remark 15

1. Obviously, $A N_{R}$ and N_{R}^{\prime} are left ideals of $R[x]$ with $A N_{R}, N_{R}^{\prime} \subseteq N_{R}$.
2. Let $f \in A N_{R}$. Then $\left[\lambda_{f}(y, z)\right]=0 \Rightarrow \lambda_{f}(a, 1)=f^{\prime}(a)=0$ for every $a \in R$. Hence $f \in N_{R}^{\prime}$, and $A N_{R} \subseteq N_{R}^{\prime} \subseteq N_{R}$.
3. When R is commutative: the condition on λ_{f} in the definition of $A N_{R}$ is equivalent to $f^{\prime} \in N_{R}$. So, $A N_{R}=N_{R}^{\prime}$ over commutative rings.

Theorem 16

Let N_{R} and $A N_{R}$ be as in Definition 14. Then

1. $N_{R_{k}}=A N_{R}+\sum_{i=1}^{k} N_{R} \beta_{i}$;
2. $N_{R_{k}}$ is an ideal of $R_{k}[x]$ if and only if $A N_{R}$ and N_{R} are ideals of $R[x]$.

Corollary 17

Let $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k} \in R[x]$. Then the following are equivalent

1. $f \in N_{R_{k}}$ (i.e. f is a null polynomial on R_{k});
2. $f_{0}, f_{i} \beta_{i} \in N_{R_{k}}$ for $i=1, \ldots, k$;
3. $\left[\lambda_{f_{0}}(y, z)\right]=0$ and $f_{i} \in N_{R}$ for $i=0, \ldots, k$.

Corollary 18

Let $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$ and $g=g_{0}+\sum_{i=1}^{k} g_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k}, g_{0}, \ldots, g_{k} \in R[x]$.
Then $f \triangleq g$ on R_{k} if and only if the following conditions hold:

1. $\left[\lambda_{t_{0}}(y, z)\right]=\left[\lambda_{g_{0}}(y, z)\right]$;
2. $\left[f_{i}\right]_{R}=\left[g_{i}\right]_{R}$ for $i=0, \ldots, k$.

Corollary 18

Let $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$ and $g=g_{0}+\sum_{i=1}^{k} g_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k}, g_{0}, \ldots, g_{k} \in R[x]$.
Then $f \triangleq g$ on R_{k} if and only if the following conditions hold:

1. $\left[\lambda_{f_{0}}(y, z)\right]=\left[\lambda_{g_{0}}(y, z)\right] ;$
2. $\left[f_{i}\right]_{R}=\left[g_{i}\right]_{R}$ for $i=0, \ldots, k$.

Or equivalently:

- $f_{0} \equiv g_{0} \bmod A N_{R}$;
- $f_{i} \equiv g_{i} \bmod N_{R}$ for $i=1, \ldots, k$.

Proposition 19
Let R be a finite non-commutative. The following statements are equivalent

1. every element of R is a sum of units;
2. every element of R_{k} is a sum of units;
3. $R / J(R)$ has no factor ring isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$;
4. $R_{k} / J\left(R_{k}\right)$ has no factor ring isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$.

Proposition 19

Let R be a finite non-commutative. The following statements are equivalent

1. every element of R is a sum of units;
2. every element of R_{k} is a sum of units;
3. $R / J(R)$ has no factor ring isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$;
4. $R_{k} / J\left(R_{k}\right)$ has no factor ring isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$.

Proof.

By Remark 5, we need only show only $(3) \Leftrightarrow$ (4). By Proposition 9, $J\left(R_{k}\right)=J(R)+\sum_{i=1}^{k} \beta_{i} R$. Then one easily sees that

$$
R_{k} / J\left(R_{k}\right)=\left(R+\sum_{i=1}^{k} \beta_{i} R\right) /\left(J(R)+\sum_{i=1}^{k} \beta_{i} R\right) \cong R / J(R) .
$$

Corollary 20

Suppose that R (alternatively R_{k}) satisfies the condition of Proposition 19. Then

1. $N_{R_{k}}$ is an ideal of $R_{k}[x]$;
2. N_{R} and $A N_{R}$ are ideals of $R[x]$.

Corollary 20

Suppose that R (alternatively R_{k}) satisfies the condition of Proposition 19. Then

1. $N_{R_{k}}$ is an ideal of $R_{k}[x]$;
2. N_{R} and $A N_{R}$ are ideals of $R[x]$.

From now on we consider a non-commutative ring R in which N_{R} and $A N_{R}$ are ideals of $R[x]$ (equivalently $N_{R_{k}}$ is an ideal of $R_{k}[x]$).

Proposition 21

The number of polynomial functions on R_{k} is given by

$$
\left|\mathcal{F}\left(R_{k}\right)\right|=\left[R[x]: A N_{R}\right]\left[R[x]: N_{R}\right]^{k}=\left[N_{R}: A N_{R}\right]|\mathcal{F}(R)|^{k+1} .
$$

Proposition 21

The number of polynomial functions on R_{k} is given by

$$
\left|\mathcal{F}\left(R_{k}\right)\right|=\left[R[x]: A N_{R}\right]\left[R[x]: N_{R}\right]^{k}=\left[N_{R}: A N_{R}\right]|\mathcal{F}(R)|^{k+1} .
$$

Corollary 22
Let $F \in \mathcal{F}(R)$ be fixed.

$$
\left[N_{R}: A N_{R}\right]=\mid\left\{\left[\lambda_{f}(y, z)\right] \mid f \in R[x] \text { such that }[f]_{R}=F\right\} \mid .
$$

Theorem 23

Let R be a finite non-commutative ring. Let $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k} \in R[x]$. Then the following statements are equivalent:

1. f is a permutation polynomial on R_{k};
2. f_{0} is a permutation polynomial on R_{k};
3. f_{0} is a permutation polynomial on R and $\left[\lambda_{f_{0}}(y, z)\right]$ is a local permutation on R in z.

Theorem 23

Let R be a finite non-commutative ring. Let $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k} \in R[x]$. Then the following statements are equivalent:

1. f is a permutation polynomial on R_{k};
2. f_{0} is a permutation polynomial on R_{k};
3. f_{0} is a permutation polynomial on R and $\left[\lambda_{f_{0}}(y, z)\right]$ is a local permutation on R in z.

Definition 24

A function $G: R \times R \longrightarrow R$ a local permutation in the second coordinate, if for every $a \in R$ the function $G_{a}: R \longrightarrow R, r \rightarrow G(a, r)$, is bijective.

Remark and Question 25

1. If R is a commutative ring, then the condition on $\lambda_{f_{0}}(y, z)\left(f_{0} \in R[x]\right)$ in Theorem 23 is equivalent to f_{0}^{\prime} maps R to its group of units.
2. In the special case R is a local commutative that is not a field, the condition on f_{0}^{\prime} is redundant, that is f_{0} is a permutation polynomial on R_{k} if and only if f_{0} is a permutation polynomial on R ([Al-Maktry, 2023, Proposition 4.7]).
3. The previous point motivates us to ask the following question in the non-commutative case:

Let R be a finite non-commutative local rings does the condition on $\lambda_{f_{0}}(y, z)\left(f_{0} \in R[x]\right)$ in Theorem 23 is redundant?

Corollary 26

Let $f_{0}, \ldots, f_{k} \in R[x]$. The following statements are equivalent:

1. $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$ is a permutation polynomial on R_{k};
2. $f_{0}+f_{i} \beta_{i}$ is a permutation polynomial on $R\left[\beta_{i}\right]$ for every $i \in\{1, \ldots, k\}$;
3. f_{0} is a permutation polynomial on $R\left[\beta_{i}\right]$ for every $i \in\{1, \ldots, k\}$.
4. $f_{0}+\sum_{i=1}^{j} f_{i} \beta_{i}$ is a permutation polynomial on R_{l} for every $1 \leq j \leq k$ and $I \geq j$;
5. f_{0} is a permutation polynomial on R_{j} for every $j \geq 1$.

Remark 27
For the ring of Matrices of dimension n over a finite local ring $R, M_{n}(R)$,
Brawley proved the following criteria [Brawley, 1976, Theorem 2]:
Let $f \in R[x]$ and let $\bar{f} \in \mathbb{F}_{q}[x]$ be the image of f in $\mathbb{F}_{q}[x]$, where $\mathbb{F}_{q}=R / M$. Then f is a permutation polynomial on $M_{n}(R)$ if and only if

1. \bar{f} is a permutation polynomial on $M_{n}\left(\mathbb{F}_{q}\right)$, and
2. the function $\left[\lambda_{\bar{f}}(y, z)\right]$ is a local permutation of $M_{n}\left(\mathbb{F}_{q}\right)$ in z.

Proposition 28

Let R be a finite non-commutative ring. Let L be the number of pairs of functions (F, H) such that

1. $F: R \longrightarrow R$ is bijective;
2. $H: R \times R \longrightarrow R$ is a local permutation in the second coordinate; occurring as $\left([f]_{R},\left[\lambda_{f}(y, z)\right]\right)$ for some $f \in R[x]$.
Then the number of polynomial permutations on R_{k} is given by

$$
\left|\mathcal{P}\left(R_{k}\right)\right|=L \cdot|\mathcal{F}(R)|^{k} .
$$

Finite local rings

- A finite ring R is called a local ring if the set M of all zero-divisors of R is an ideal (two-sided ideal) of R.
- M is the unique maximal ideal of R, and there exists a minimal positive integer N such that $M^{N}=\{0\}$.
- The characteristic of the ring $\operatorname{Char}(R)=p^{c}(1 \leq c \leq N)$ (p prime).
- $R / M=\mathbb{F}_{q}$ where $q=p^{w}(w \geq 1)$.
- If $c=N, R$ is commutative (not vice versa).
- If the lattice of left ideals (right ideals) is a chain, R is called a chain.
- In a chain ring: $M^{i}=t^{i} R=R t^{i}$ for some element $t \in M \backslash M^{2}$ $(i=0,1, \ldots, N)$.
See [Nechaev, 2008]

The case R is a chain ring

Lemma 29

Let R be a finite chain ring and let $f \in R[x]$. The following statements hold

1. R is semi-commutative;
2. $f(a+m)=f(a)+\lambda_{f}(a, m)$ for every $a, m \in R$ with $m^{2}=0$.

The case R is a chain ring

Lemma 29

Let R be a finite chain ring and let $f \in R[x]$. The following statements hold

1. R is semi-commutative;
2. $f(a+m)=f(a)+\lambda_{f}(a, m)$ for every $a, m \in R$ with $m^{2}=0$.

From now on, whenever R is a chain ring, we assume $\operatorname{Char}(R)=p^{c}$ with $c>1$.

Proposition 30

Let R be a finite-non commutative chain ring, and let $f \in R[x]$ be a permutation polynomial on R. Then the following statements hold

1. $f^{\prime}(a) \neq 0 \bmod M$ for every $a \in R$;
2. $\left[\lambda_{f}(y, z)\right]$ is a local permutation in z.

Theorem 31

Let R be a finite chain. Let $f=f_{0}+\sum_{i=1}^{k} f_{i} \beta_{i}$, where $f_{0}, \ldots, f_{k} \in R[x]$. Then the following statements are equivalent:

1. f is a permutation polynomial on R_{k};
2. f_{0} is a permutation polynomial on R_{k};
3. f_{0} is a permutation polynomial on R.

Proof.

$(1) \equiv(2) \Rightarrow(3)$ by Theorem 23. $(3) \Rightarrow(2)$ by Proposition 30.

Definition 32

Let $k \geq 1$. The set $\mathcal{P}_{R}\left(R_{k}\right)=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F=[f]_{R_{k}}\right.$ for some $\left.f \in R[x]\right\}$ is a subgroup of the group $\mathcal{P}\left(R_{k}\right)$. We call $\mathcal{P}_{R}\left(R_{k}\right)$ the group of pure polynomial permutations.

Fact 33

Let $k, i \geq 1$. Then $\mathcal{P}_{R}\left(R_{i}\right) \cong \mathcal{P}_{R}\left(R_{k}\right)$.

Definition 32

Let $k \geq 1$. The set $\mathcal{P}_{R}\left(R_{k}\right)=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F=[f]_{R_{k}}\right.$ for some $\left.f \in R[x]\right\}$ is a subgroup of the group $\mathcal{P}\left(R_{k}\right)$. We call $\mathcal{P}_{R}\left(R_{k}\right)$ the group of pure polynomial permutations.

Fact 33

Let $k, i \geq 1$. Then $\mathcal{P}_{R}\left(R_{i}\right) \cong \mathcal{P}_{R}\left(R_{k}\right)$.

Definition 34

The set $\mathcal{P}_{x}=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F=\left[x+\sum_{i=1}^{k} f_{i} \beta_{i}\right]_{R_{k}}\right.$, where $\left.f_{1}, \ldots, f_{k} \in R[x]\right\}$ is a subgroup of the group $\mathcal{P}\left(R_{k}\right)$.

Theorem 35

Let $\mathcal{P}\left(R_{k}\right)$ be the group of polynomial permutations on R_{k}. Then

1. $\mathcal{P}\left(R_{k}\right)=\mathcal{P}_{x} \rtimes \mathcal{P}_{R}\left(R_{k}\right)$;
2. $\left|\mathcal{P}\left(R_{k}\right)\right|=\left|\mathcal{P}_{R}\left(R_{k}\right)\right||\mathcal{F}(R)|^{k}$.

Theorem 35

Let $\mathcal{P}\left(R_{k}\right)$ be the group of polynomial permutations on R_{k}. Then

1. $\mathcal{P}\left(R_{k}\right)=\mathcal{P}_{x} \rtimes \mathcal{P}_{R}\left(R_{k}\right)$;
2. $\left|\mathcal{P}\left(R_{k}\right)\right|=\left|\mathcal{P}_{R}\left(R_{k}\right)\right||\mathcal{F}(R)|^{k}$.

Corollary 36

$$
\left|\mathcal{P}_{R}\left(R_{k}\right)\right|=\mid\left\{\left([f]_{R},[\lambda(y, z)]\right) \mid f \in R[x],[f]_{R} \in \mathcal{P}(R) \text { and }[\lambda(y, z)] \text { L. P. in } z\right\} \mid .
$$

In particular, when R is a chain ring,

$$
\left|\mathcal{P}_{R}\left(R_{k}\right)\right|=\left|\left\{\left([f]_{R},[\lambda(y, z)]\right) \mid f \in R[x],[f]_{R} \in \mathcal{P}(R)\right\}\right| .
$$

Definition 37

Let $S t_{k}(R)=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F(a)=a\right.$ for every $\left.a \in R\right\}$.

Proposition 38

Let R be a finite ring. Then

$$
S t_{k}(R)=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F \text { is induced by } x+h(x), h \in N_{R}\right\} .
$$

Definition 37

Let $S t_{k}(R)=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F(a)=a\right.$ for every $\left.a \in R\right\}$.

Proposition 38

Let R be a finite ring. Then

$$
S t_{k}(R)=\left\{F \in \mathcal{P}\left(R_{k}\right) \mid F \text { is induced by } x+h(x), h \in N_{R}\right\} .
$$

Theorem 39

Let $k, i \geq 1$. Then $S t_{k}(R) \cong S t_{i}(R)$.

Proposition 40
The stabilizer group $S t_{k}(R)$ is a normal subgroup of the group $\mathcal{P}_{R}\left(R_{k}\right)$. Furthermore, if every element of $\mathcal{P}(R)$ is the restriction to R of an element of $\mathcal{P}_{R}\left(R_{k}\right)$, then

$$
\mathcal{P}_{R}\left(R_{k}\right) / S t_{k}(R) \cong \mathcal{P}(R) .
$$

Proposition 40

The stabilizer group $S t_{k}(R)$ is a normal subgroup of the group $\mathcal{P}_{R}\left(R_{k}\right)$. Furthermore, if every element of $\mathcal{P}(R)$ is the restriction to R of an element of $\mathcal{P}_{R}\left(R_{k}\right)$, then

$$
\mathcal{P}_{R}\left(R_{k}\right) / S t_{k}(R) \cong \mathcal{P}(R) .
$$

Theorem 41

Let R be a chain ring. Then:

1. each element of $\mathcal{P}(R)$ appears as a restriction on R of some $G \in \mathcal{P}_{R}\left(R_{k}\right) ;$
2. $S t_{k}(R)$ is a normal subgroup of $\mathcal{P}_{R}\left(R_{k}\right)$ and

$$
\mathcal{P}_{R}\left(R_{k}\right) / S_{k}(R) \cong \mathcal{P}(R)
$$

Let $\psi: \mathcal{P}_{R}\left(R_{k}\right) \longrightarrow \mathcal{P}(R)$ be the map defined by $\Psi(F)=[f]_{R}$, where $F=[f]_{R_{k}}$.

Corollary 42

The number of polynomial permutations on R_{k} is given by

$$
\left|\mathcal{P}\left(R_{k}\right)\right|=|\mathcal{F}(R)|^{k} \cdot\left|\Psi\left(\mathcal{P}_{R}\left(R_{k}\right)\right)\right| \cdot\left|S t_{k}(R)\right| .
$$

In particular, when R is a finite chain ring,

$$
\left|\mathcal{P}\left(R_{k}\right)\right|=|\mathcal{F}(R)|^{k} \cdot|\mathcal{P}(R)| \cdot\left|S t_{k}(R)\right| .
$$

Corollary 43

Let $F \in \Psi\left(\mathcal{P}_{R}\left(R_{k}\right)\right) \subseteq \mathcal{P}(R)$ be fixed. Then

$$
\left|S t_{k}(R)\right|=\mid\left\{\left[\lambda_{g}(y, z)\right] \mid g \in R[x],[g]_{R_{k}} \in \mathcal{P}_{R}\left(R_{k}\right) \text { and }[g]_{R}=F\right\} \mid .
$$

When R is chain ring, we fixed $F \in \mathcal{P}(R)$. Then

$$
\left|S t_{k}(R)\right|=\mid\left\{\left[\lambda_{g}(y, z)\right] \mid g \in R[x], \text { and }[g]_{R}=F\right\} \mid .
$$

Definition 44

For $n \geq 1$, we define

$$
\begin{gathered}
N_{R}(<n)=\left\{g \in R[x] \mid g \in N_{R} \text { with } \operatorname{deg} g<n\right\}, \text { and } \\
A N_{R}(<n)=\left\{g \in R[x] \mid g \in A N_{R} \text { with } \operatorname{deg} g<n\right\} .
\end{gathered}
$$

Proposition 45

1. $\left|S t_{k}(R)\right|=\mid\left\{\left[\lambda_{g}(y, z)\right] \mid g \in N_{R}\right.$ and $\left.[g+x]_{R_{k}} \in \mathcal{P}_{R}\left(R_{k}\right)\right\} \mid$.
2. If there exists a monic null polynomial on R_{k} in $R[x]$ of degree n, then:

- $\left|S t_{k}(R)\right|=\mid\left\{\left[\lambda_{g}(y, z)\right] \mid g \in N_{R}\right.$ and $[g+x]_{R_{k}} \in \mathcal{P}_{R}\left(R_{k}\right)$ with $\left.\operatorname{deg} g<n\right\} \mid$;
- $\left|S t_{k}(R)\right| \leq\left[N_{R}: A N_{R}\right]=\frac{\left|N_{R}(<n)\right|}{\left|A N_{R}(<n)\right|}$.

Theorem 46
Let R be a finite chain.

1. $\left|S t_{k}(R)\right|=\left|\left\{\left[\lambda_{g}(y, z)\right] \mid g \in N_{R}\right\}\right|$.
2. If there exists a monic null polynomial on R_{k} in $R[x]$ of degree n, then:

- $\left|S t_{k}(R)\right|=\mid\left\{\left[\lambda_{g}(y, z)\right] \mid g \in N_{R}\right.$ and $\left.\operatorname{deg} g<n\right\} \mid$;
- $\left|S t_{k}(R)\right|=\left[N_{R}: A N_{R}\right]=\frac{\left|N_{R}(<n)\right|}{\left|A N_{R}(<n)\right|}$.
[Al-Maktry, 2023] Al-Maktry, A. A. A. (2023).
Polynomial functions over dual numbers of several variables.
J. Algebra Appl., 22(11):Paper No. 2350231.
[Brawley, 1976] Brawley, J. V. (1976).
Polynomials over a ring that permute the matrices over that ring.
J. Algebra, 38(1):93-99.
[Frisch, 2017] Frisch, S. (2017).
Polynomial functions on upper triangular matrix algebras.
Monatsh. Math., 184(2):201-215.
[Nechaev, 2008] Nechaev, A. A. (2008).
Finite rings with applications.

In Handbook of algebra. Vol. 5, volume 5 of Handb. Algebr., pages 213-320. Elsevier/North-Holland, Amsterdam.
[Stewart, 1972] Stewart, I. (1972).
Finite rings with a specified group of units.
Math. Z., 126:51-58.
[Werner, 2014] Werner, N. J. (2014).
Polynomials that kill each element of a finite ring.
J. Algebra Appl., 13(3):1350111, 12.

